Data Structures in Java

Session 16
Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3134
Announcements

- Homework 4 due next class
- Midterm grades posted. Avg: 79/90
- Remaining grades:
 - hw4, hw5, hw6 – 25%
 - Final exam – 30%
Today’s Plan

• Graphs
• Topological Sort
• Shortest Path Algorithms: Dijkstra’s
Graphs

Trees

Linked Lists
Graphs

Linked List

Tree

Graph
Graph Terminology

- A **graph** is a set of **nodes** and **edges**
 - nodes aka vertices
 - edges aka arcs, links
- Edges exist between pairs of nodes
 - if nodes x and y share an edge, they are **adjacent**
Graph Terminology

- Edges may have **weights** associated with them.
- Edges may be **directed** or **undirected**.
- A **path** is a series of adjacent vertices.
 - The **length** of a path is the sum of the edge weights along the path (1 if unweighted).
- A **cycle** is a path that starts and ends on a node.
Graph Properties

- An undirected graph with no cycles is a tree
- A directed graph with no cycles is a special class called a directed acyclic graph (DAG)
- In a connected graph, a path exists between every pair of vertices
- A complete graph has an edge between every pair of vertices
Graph Applications: A few examples

- Computer networks
- The World Wide Web
- Social networks
- Public transportation
- Probabilistic Inference
- Flow Charts
Implementation

- Option 1:
 - Store all nodes in an indexed list
 - Represent edges with adjacency matrix

- Option 2:
 - Explicitly store adjacency lists
Adjacency Matrices

- 2d-array A of boolean variables
- $A[i][j]$ is true when node i is adjacent to node j
- If graph is undirected, A is symmetric

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
\hline
1 & 0 & 1 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 & 1 & 0 \\
3 & 1 & 0 & 0 & 1 & 0 \\
4 & 0 & 1 & 1 & 0 & 1 \\
5 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]
Adjacency Lists

• Each node stores references to its neighbors

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Diagram:

1 → 2 → 4
2 → 1
3 → 4
4 → 3
5 → 4
Math Notation for Graphs

- Set Notation:
 - $v \in V$ (v is in V)
 - $U \cup V$ (union)
 - $U \cap V$ (intersection)
 - $U \subset V$ (U is a subset of V)

- $G = \{V, E\}$
- G is the graph
- V is set of vertices
- E is set of edges
- $(v_i, v_j) \in E$
- |V| = N = size of V
Topological Sort

• Problem definition:

 • Given a directed acyclic graph G, order the nodes such that for each edge $(v_i, v_j) \in E$, v_i is before v_j in the ordering.

 • e.g., scheduling errands when some tasks depend on other tasks being completed.
Topological Sort Ex.

- Buy Groceries
- Look up recipe online
- Mail recipe to Grandma
- Mail Postcard
- Cook Dinner
- Fix Computer
- Buy Stamps
- Mail Tax Form
- Go to ATM
- Taxes
- Mail
Topological Sort
Naïve Algorithm

- **Degree** means # of edges,
 indegree means # of incoming edges

- 1. Compute the **indegree** of all nodes
- 2. Print any node with indegree 0
- 3. Remove the node we just printed. Go to 1.

- Which nodes’ indegrees change?
Topological Sort
Better Algorithm

1. Compute all indegrees
2. Put all indegree 0 nodes into a Collection
3. Print and remove a node from Collection
4. Decrement indegrees of the node’s neighbors.
5. If any neighbor has indegree 0, place in Collection. Go to 3.
<table>
<thead>
<tr>
<th>ATM</th>
<th>comp</th>
<th>groceries</th>
<th>recipe</th>
<th>stamps</th>
<th>taxes</th>
<th>cook</th>
<th>grandma</th>
<th>postcard</th>
<th>mail taxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Topological Sort
Running time

- Initial indegree computation: $O(|E|)$
- Unless we update indegree as we build graph
- $|V|$ nodes must be enqueued/dequeued
- Dequeue requires operation for outgoing edges
- Each edge is used, but never repeated
- Total running time $O(|V| + |E|)$
Shortest Path

• Given $G = (V, E)$, and a node $s \in V$, find the shortest (weighted) path from s to every other vertex in G.

• Motivating example: subway travel
 • Nodes are junctions, transfer locations
 • Edge weights are estimated time of travel
Approximate MTA Express Stop Subgraph

- A few inaccuracies (don’t use this to plan any trips)
Breadth First Search

- Like a level-order traversal
- Find all adjacent nodes (level 1)
- Find new nodes adjacent to level 1 nodes (level 2)
- ... and so on
- We can implement this with a queue
Unweighted Shortest Path Algorithm

- Set node s’ distance to 0 and enqueue s.
- Then repeat the following:
 - Dequeue node v. For unset neighbor u:
 - set neighbor u’s distance to v’s distance +1
 - mark that we reached v from u
 - enqueue u
Weighted Shortest Path

• The problem becomes more difficult when edges have different weights

• Weights represent different costs on using that edge

• Standard algorithm is Dijkstra’s Algorithm
Dijkstra’s Algorithm

- Keep distance overestimates $D(v)$ for each node v (all non-source nodes are initially infinite)
- 1. Choose node v with smallest unknown distance
- 2. Declare that v’s shortest distance is known
- 3. Update distance estimates for neighbors
Updating Distances

- For each of v’s neighbors, w,
- if $\min(D(v) + \text{weight}(v,w), D(w))$
 - i.e., update $D(w)$ if the path going through v is cheaper than the best path so far to w
Dijkstra’s Algorithm Analysis

• First, convince ourselves that the algorithm works.

• At each stage, we have a set of nodes whose shortest paths we know.

• In the base case, the set is the source node.

• Inductive step: if we have a correct set, is greedily adding the shortest neighbor correct?
Proof by Contradiction (Sketch)

• Contradiction: Dijkstra’s finds a shortest path to node \(w \) through \(v \), but there exists an even shorter path.

• This shorter path must pass from inside our known set to outside.

• Call the 1\(^{st}\) node in cheaper path outside our set \(u \).

• The path to \(u \) must be shorter than the path to \(w \).

• But then we would have chosen \(u \) instead.
Computational Cost

- Keep a priority queue of all unknown nodes
- Each stage requires a `deleteMin`, and then some `decreaseKeys` (the # of neighbors of node)
- We call `decreaseKey` once per edge, we call `deleteMin` once per vertex
- Both operations are $O(\log |V|)$
- Total cost: $O(|E| \log |V| + |V| \log |V|) = O(|E| \log |V|)$
Reading

• Weiss Section 9.1-9.3 (today’s material)