Announcements

- Homework 4 on website
- Midterm grades almost done
- No class on Tuesday
Review

- Indexing by the key needs too much memory
- Index into smaller size array, pray you don’t get collisions
- If collisions occur,
 - separate chaining, lists in array
 - probing, try different array locations
Today’s Plan

- Rehashing
- Hash functions
- Graphs introduction
Rehashing

• Like ArrayLists, we have to guess the number of elements we need to insert into a hash table

• Whatever our collision policy is, the hash table becomes inefficient when load factor is too high.

• To alleviate load, **rehash**:
 • create larger table, scan current table, insert items into new table using new hash function
When to Rehash

• For quadratic probing, insert may fail if load > 1/2
 • We can rehash as soon as load > 1/2
 • Or, we can rehash only when insert fails
• Heuristically choose a load factor threshold, rehash when threshold breached
Rehash Example

- **Current Table:**

<table>
<thead>
<tr>
<th>0</th>
<th>8</th>
<th>7</th>
<th>17</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

- **quad. probing with** $h(x) = (x \mod 7)$

 8, 0, 25, 17, 7

- **New table**

<table>
<thead>
<tr>
<th>0</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **$h(x) = (x \mod 17)$**

<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Rehash Cost

- No profound algorithm: re-insert each item
- Linear time
- If you rehash, inserting N items costs $O(1) \times N + O(N) = O(N)$
- Insert still costs $O(1)$ amortized
Hash function design

- Spread the output as much as possible
- Consider function $h(x) = x \mod 5$
- What if our keys are always in tens?
- Less obvious collision-causing patterns can occur
- i.e., hashing images by the intensity of the first pixel if images have border
Hashing a String

- Simple but bad \(h(x) \)
 - add up all the character codes (ASCII/Unicode)
- ASCII 'a' is 97
- If keys are lowercase 5 character words, \(h(x) > 485 \)
Hashing a String II

- Weiss: Treat first 3 characters of a string as a 3 digit, base 27 number
- Once again, ‘a’ is 97, ‘A’ is 65
String.hashCode()

- Java's built in String hashCode() method
 - $s[0]*31^{(n-1)} + s[1]*31^{(n-2)} + \ldots + s[n-1]$
- nth degree polynomial of base 31
- String characters are coefficients
Hash Function Demo
• HashSet stores a set of objects, all hashed by their hashcode() method
 ● HashSet<String> table = new HashSet<String>();
 ● table.add("Hello");
 ● table.contains("Hello"); // returns true
Built-in Java HashMap

- HashMap stores set of **pairs of objects**,
- First object is the **key**, second is the value. Hashed by key’s `hashCode()`
- ```java
 HashMap<String,Integer> table = new HashMap<String,Integer>();
 table.set("hello", 42); // pairs “hello” to 42
 if “hello” is not already in the table, creates new pair. Otherwise, overwrites old Integer
 table.get("hello"); // returns 42
   ```
Hashed File Systems

- Gmail and Dropbox (for example) use a hashed file system
- All files are stored in a hash table, so attachments are not stored redundantly
- Saves server storage space and speeds up transactions
Graphs

Linked List

Tree

Graph
Graph Terminology

- A **graph** is a set of **nodes** and **edges**
  - nodes aka vertices
  - edges aka arcs, links
- Edges exist between pairs of nodes
  - if nodes $x$ and $y$ share an edge, they are **adjacent**
Graph Terminology

- Edges may have **weights** associated with them
- Edges may be **directed** or **undirected**
- A **path** is a series of adjacent vertices
  - the **length** of a path is the sum of the edge weights along the path (1 if unweighted)
- A **cycle** is a path that starts and ends on a node
Graph Properties

• An undirected graph with no cycles is a tree

• A directed graph with no cycles is a special class called a **directed acyclic graph (DAG)**

• In a **connected** graph, a path exists between every pair of vertices

• A **complete** graph has an edge between every pair of vertices
Graph Applications: A few examples

- Computer networks
- The World Wide Web
- Social networks
- Public transportation
- Probabilistic Inference
- Flow Charts
Implementation

• Option 1:
  • Store all nodes in an indexed list
  • Represent edges with adjacency matrix
• Option 2:
  • Explicitly store adjacency lists
Adjacency Matrices

- 2d-array $A$ of boolean variables
- $A[i][j]$ is true when node $i$ is adjacent to node $j$
- If graph is undirected, $A$ is symmetric

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Adjacency Lists

- Each node stores references to its neighbors

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- Node 1 connects to nodes 2 and 3.
- Node 2 connects to node 1.
- Node 3 connects to nodes 2 and 4.
- Node 4 connects to nodes 3 and 5.
- Node 5 connects to node 4.
Reading

• Weiss Section 5 (Hashing)
• Weiss Section 9.1