Data Structures in Java

Session 14
Instructor: Bert Huang
http://www1.cs.columbia.edu/~bert/courses/3134
Announcements

- Homework 3 Programming due
- Homework 4 on website
Review

- Lists, Stacks, Queues
- Trees, Binary Search Trees
 - AVL, Splay
- Priority Queues: Binary Heaps
Today’s Plan

- Hash Table ADT
- Array implementation
- Collision resolution strategies
Hash Table ADT

- **Search tree:**
 findMin, findMax, insert/delete, search

- **Priority Queue:**
 findMin (or max), insert/delete, **no** search

- **Hash Table:**
 insert/delete, search
Hash Table ADT

- **Search tree:**
 Stores complete order information

- **Priority Queue:**
 Stores **incomplete** order information

- **Hash Table:**
 Stores **no** order information
Hash Table ADT

• Insert or delete objects by key
• Search for objects by key
• No order information whatsoever

• Ideally O(1) per operation
Implementation

- Suppose we have keys between 1 and K
- Create an array with K entries
- Insert, delete, search are just array operations

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
<th>K-3</th>
<th>K-2</th>
<th>K-1</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Obviously too expensive
Hash Functions

- A **hash function** maps any key to a valid array position.
- Array positions range from 0 to N-1.
- Key range possibly unlimited.
Hash Functions

• For integer keys, \((\text{key mod } N)\) is the simplest hash function

• In general, any function that maps from the space of keys to the space of array indices is valid

• but a good hash function spreads the data out evenly in the array

• A good hash function avoids collisions
Collisions

• A collision is when two distinct keys map to the same array index

• e.g., $h(x) = x \mod 5$
 \[
 h(7) = 2, \quad h(12) = 2
 \]

• Choose $h(x)$ to minimize collisions, but collisions are inevitable

• To implement a hash table, we must decide on collision resolution policy
Collision Resolution

• Two basic strategies
 • Strategy 1: Separate Chaining
 • Strategy 2: Probing; lots of variants
Strategy 1: Separate Chaining

- Keep a list at each array entry
 - Insert(x): find h(x), add to list at h(x)
 - Delete(x): find h(x), search list at h(x) for x, delete
 - Search(x): find h(x), search list at h(x)
Separate Chaining
Average Case

• **Load Factor** \(\lambda = \frac{\# \text{ objects}}{\text{TableSize}} \)

• Average list length is \(\lambda \)

• Time to insert = constant, or constant + \(\lambda \)

• Time to search = constant + \(\lambda \) or constant + \(\lambda/2 \)
Strategy 1: Advantages and Disadvantages

• Advantages:
 • Simple idea
 • Removals are clean *

• Disadvantages:
 • Need 2nd data structure, which causes extra overhead if the hash function is good
Strategy 2: Probing

- If \(h(x) \) is occupied, try \(h(x) + f(i) \mod N \) for \(i = 1 \) until an empty slot is found
- Many ways to choose a good \(f(i) \)
- Simplest method: Linear Probing
 - \(f(i) = i \)
Linear Probing Example

- $N = 5$
- $h(x) = x \mod 5$
- Insert 7
- Insert 12
- Insert 2
Primary Clustering

If there are many collisions, blocks of occupied cells form: **primary clustering**

Any hash value inside the cluster adds to the end of that cluster

(a) it becomes more likely that the next hash value will collide with the cluster, and (b) collisions in the cluster get more expensive
Removals

- How do we delete when probing?

- Lazy-deletion: mark as deleted,
 - we can overwrite it if inserting,
 - but we know to keep looking if searching.
Quadratic Probing

- \(f(i) = i^2 \)
- Avoids primary clustering
- Sometimes will never find an empty slot even if table isn’t full!
- Luckily, if load factor
 \[\lambda \leq \frac{1}{2}, \]
 guaranteed to find empty slot
Quadratic Probing Example

- $N = 7$
- $h(x) = x \mod 7$
- insert 9
- insert 16
- insert 2
Double Hashing

• If \(h_1(x) \) is occupied, probe according to

\[
f(i) = i \times h_2(x)
\]

• 2nd hash function must never map to 0

• Increments differently depending on the key
Double Hashing Example

- $N = 7$
- $h_1(x) = x \mod 7$, $h_2(x) = 5-x \mod 5$
- Insert 9
- Insert 16
- Insert 2
Hashing

- Indexing by the key needs too much memory
- Index into smaller size array, pray you don’t get collisions
- If collisions occur,
 - separate chaining, lists in array
 - probing, try different array locations
Reading

- Weiss Ch. 5