
Data Structures in
Java
Session 13

Instructor: Bert Huang
http://www1.cs.columbia.edu/~bert/courses/3134

Announcements

• Homework 3 theory due now

• Midterm exam Thursday

• Homework 3 Programming due next
Tuesday 10/27

Review

• buildHeap in linear time

• jam array into heap structure

• fix order by calling percolateDown on
nodes in reverse order

• Why in reverse order?

Todayʼs Plan

• Review for the midterm

Math Background:
Exponents

XAXB = XA+B

XA

XB
= XA−B

�
XA

�B
= XAB

XN + XN = 2XN �= X2N

2N + 2N = 2N+1

Math Background:
Logarithms

XA = B iff logX B = A

logA B =
logC B

logC A
; A, B,C > 0, A �= 1

log AB = log A + log B; A, B > 0

Math Background:
Series

N�

i=0

2i = 2N+1 − 1

N�

i=0

Ai =
AN+1 − 1

A− 1
N�

i=1

i =
N(N + 1)

2
� N2

2

N�

i=1

i2 =
N(N + 1)(2N + 1)

6
≈ N3

3

Definitions
• For N greater than some constant, we have the

following definitions:

• There exists some constant c such that cf(N)
bounds T(N)

T (N) = O(f (N))← T (N) ≤ cf (N)

T (N) = Ω(g(N))← T (N) ≥ cg(N)

T (N) = Θ(h(N))← T (N) = O(h(N))
T (N) = Ω(h(N))

Definitions

• Alternately, O(f(N)) can be thought of as
meaning

• Big-Oh notation is also referred to as
asymptotic analysis, for this reason.

T (N) = O(f(N))← lim
N→∞

f(N) ≥ lim
N→∞

T (N)

Comparing Growth
Rates

T1(N) = O(f(N)) and T2(N) = O(g(N))

then
(a) T1(N) + T2(N) = O(f(N) + g(N))
(b) T1(N)T2(N) = O(f(N)g(N))

If you have to, use l’Hôpital’s rule

lim
N→∞

f(N)/g(N) = lim
N→∞

f �(N)/g�(N)

Abstract Data Type:
Lists

• An ordered series of objects

• Each object has a previous and next

• Except first has no prev., last has no next

• We can insert an object (at location k)

• We can remove an object (at location k)

• We can read an object from (location k)

List Methods

• Insert object (at index)

• Delete by index

• Get by index

Array Implementation
of Lists

• Insert - need to shift higher-indexed elements →

• Delete - need to shift higher-indexed elements ←

• Get - easy

• How to insert more than array size?

• Create new, larger array. Copy to new array.

cat dog horse cow

cat bear dog horse cow

• Store elements in objects

• Each object has a reference to its next object

• Insert - rearrange references

• But we need to find the previous element

Linked List
Implementation

Linked List
Implementation

• Store elements in objects

• Each object has a reference to its next object

• Insert - rearrange references

• But we need to find the previous element

Linked List
Implementation

• Finding an element in a linked list is slower

• If we keep a head reference, finding the last
element takes N steps

• If we keep a head and a tail reference*,
finding the middle element takes N/2 steps

• Be careful iterating; navigate the list smartly

Linked Lists vs.
Array Lists

• Linked Lists

• No additional penalty
on size

• Insert/remove O(1)*

• get kth costs O(N)*

• Need some extra
memory for links

• Array Lists

• Need to estimate
size/grow array

• Insert/remove O(N)*

• get kth costs O(1)

• Arrays are compact
in memory

Stacks

• A Stack is an ADT very similar to a list

• Can be implemented with a list, but
limited to some O(1) operations

• Yet many important and powerful
algorithms use stacks

Stack Definition

• Essentially a very restricted List

• Two (main) operations:

• Push(AnyType x)

• Pop()

• Analogy – Cafeteria Trays, PEZ

Evaluating Postfix
Postfix notation places operator after operands

Ambiguous Infix: 3 + 2 * 10

Postfix: 3 2 + 10 *

(As opposed to) 3 2 10 * +

((3+2) * 10)

((3 2 +) 10 *)

(3 (2 10 *) +)

Evaluating Postfix
Postfix notation places operator after operands

Ambiguous Infix: (3 + 2)* 10

Postfix: 3 2 + 10 *

(As opposed to) 3 2 10 * +

((3+2) * 10)

((3 2 +) 10 *)

(3 (2 10 *) +)

Stack
Implementations

• Linked List:

• Push(x) <-> add(x) <-> add(x,0)

• Pop() <-> remove(0)

• Array:

• Push(x) <-> Array[k] = x; k = k+1;

• Pop() <-> k = k-1; return Array[k]

Queue ADT
• Stacks are Last In First Out

• Queues are First In First Out, first-come
first-served

• Operations: enqueue and dequeue

• Analogy: standing in line, garden hose, etc

Queue
Implementation

• Linked List

• add(x,0) to enqueue, remove(N-1) to dequeue

• Array List wonʼt work well!

• add(x,0) is expensive

• Solution: use a circular array

Circular Array
• Donʼt shift after removing from array list

• Keep track of start and end of queue

• When run out of space, wrap around;
modular arithmetic

• When array is full, increase size using
list tactic

Tree Terminology
• Just like Linked Lists, Trees are

collections of nodes

• Conceptualize trees upside down (like
family trees)

• the top node is the root

• nodes are connected by edges

• edges define parent and child nodes

• nodes with no children are called leaves

More Tree
Terminology

• Nodes that share the
same parent are siblings

• A path is a sequence of
nodes such that the next
node in the sequence is a
child of the previous

More Tree
Terminology

• a nodeʼs depth is the
length of the path from
root

• the height of a tree is
the maximum depth

• if a path exists between
two nodes, one is an
ancestor and the other
is a descendant

Tree Implementation

• Many possible implementations

• One approach: each node stores a list of
children

• public class TreeNode<T> {
 T Data;
 Collection<TreeNode<T>> myChildren;
}

Tree Traversals

• Suppose we want to print all nodes in a tree

• What order should we visit the nodes?

• Preorder - read the parent before its children

• Postorder - read the parent after its children

Preorder vs.
Postorder

• // parent before children
preorder(node x)
 print(x)
 for child : myChildren
 preorder(child)

• // parent after children
postorder(node x)
 for child : myChildren
 postorder(child)
 print(x)

Binary Trees
• Nodes can only have two children:

• left child and right child

• Simplifies implementation and logic
• public class BinaryNode<T> {

 T element;
 BinaryNode<T> left;
 BinaryNode<T> right;
}

• Provides new inorder traversal

Inorder Traversal

• Read left child, then parent, then right child

• Essentially scans whole tree from left to right

• inorder(node x)
 inorder(x.left)
 print(x)
 inorder(x.right)

Search (Tree) ADT
• ADT that allows insertion, removal, and

searching by key

• A key is a value that can be compared

• In Java, we use the Comparable interface

• Comparison must obey transitive property

• Search ADT doesnʼt use any index

Binary Search Tree

• Binary Search Tree Property:
 Keys in left subtree are less than root.
 Keys in right subtree are greater than root.

• BST property holds for all subtrees of a BST

10

8 15

3 129

Inserting into a BST

• Compare new value to current node, if greater, insert
into right subtree, if lesser, insert into left subtree

• insert(x, Node t)
 if (t == null) return new Node(x)
 if (x > t.key), then t.right = insert(x, t.right)
 if (x < t.key), then t.left = insert(x, t.left)
 return t

10

8 15

3 129

Searching a BST
• findMin(t) // return left-most node

 if (t.left == null) return t.key
 else return findMin(t.left)

• search(x,t) // similar to insert
 if (t == null) return false
 if (x == t.key) return true
 if (x > t.key), then return search(x, t.right)
 if (x < t.key), then return search(x, t.left)

Deleting from a BST
• Removing a leaf is easy,

removing a node with
one child is also easy

• Nodes with no
grandchildren are easy

• What about nodes with
grandchildren?

10

8 15

3 129

A Removal Strategy
• First, find node to be removed, t

• Replace with the smallest node
from the right subtree

• a = findMin(t.right);
t.key = a.key;

• Then delete original smallest
node in right subtree
remove(a.key, t.right)

10

8 15

3 129

root

Sorting with BST

• Suppose we have a built BST

• How to print out nodes in order?

• inorder traversal

• Running time?

• O(N)

Tradeoffs
insert remove search index

ArrayList

LinkedList

Stack/Queue

BST

AVL

O(N) O(N) O(N) O(1)

O(1) O(1) O(N) O(N)

O(1) O(1) N/A N/A

O(d)=O(N) O(d)=O(N) O(d)=O(N) N/A

O(log N) O(log N) O(log N) N/A

• There may not be free lunch, but sometimes
thereʼs a cheaper lunch

AVL Trees
• Motivation: want height of tree to be

close to log N

• AVL Tree Property:
For each node, all keys in its left
subtree are less than the nodeʼs and all
keys in its right subtree are greater.
Furthermore, the height of the left
and right subtrees differ by at most 1

AVL Tree Visual

+- +-

Tree Rotations
• To balance the tree after an insertion

violates the AVL property,

• rearrange the tree; make a new node
the root.

• This rearrangement is called a
rotation.

• There are 2 types of rotations.

AVL Tree Visual:
Before insert

b

a

3

1 2

AVL Tree Visual:
After insert

b

a

3

1 2

AVL Tree Visual:
Single Rotation

b

a

31 2

AVL Tree
Single Rotation

• Works when new node is added to
outer subtree (left-left or right-right)

• What about inner subtrees? (left-right or
right-left)

AVL Tree Visual:
Before Insert 2

b

a

1

c

2 3

4

AVL Tree Visual:
After Insert 2

b

a

1

c

3
2

4

AVL Tree Visual:
Double Rotation

b

a

1

c

3

2

4

AVL Tree Visual:
Double Rotation

ba

1

c

2 4

3

Rotation running time
• Constant number of link rearrangements

• Double rotation needs twice as many,
but still constant

• So AVL rotations do not change O(d)
running time of all BST operations*

• * remove() can require up to O(d)
rotations; use lazy deletion

Amortized Running
Time

• So far, we measure the worst-case
running time of each operation

• Usually we perform many operations

• Sometimes M O(f(N)) operations can
run provably faster than O(M f(N))

• Then we can guarantee better average
running time, aka amortized

Comparing Models

• Amortized and Average case average
running time of many operations

• Amortized and Standard: adversary
chooses input values and operations

• Average analysis, analyst chooses
randomization scheme

Splay Trees
• Like AVL trees, use the standard binary

search tree property

• After any operation on a node, make
that node the new root of the tree

• Make the node the root by repeating
one of two moves that make the tree
more spread out

Informal Justification

• Similar to caching.

• Heuristically, data that is accessed
tends to be accessed often.

• Easier to implement than AVL trees

• No height bookkeeping

Easy cases

• If node is root, do nothing

• If node is child of root, do single AVL
rotation

• Otherwise, node has a grandparent,
and there are two cases

Case 1: zig-zag

• Use when the node is the right child of a
left child (or left-right)

• Double rotate, just like AVL tree

a

b

c
w

x y

z
ab

c

w x y z

Case 2: zig-zig

• We canʼt use the single-rotation
strategy like AVL trees

• Instead we use a different process, and
weʼll compare this to single-rotation

Case 2: zig-zig

• Use when node is the right-right child (or left-left)

• Reverse the order of grandparent->parent->node

• Make it node->parent->grandparent

a

b

c y

w x

z

a

b

c

y

w

x

z

Splay Analysis
(Informal)

• We can make a chain by inserting nodes that
make the tree its left child

• Each of these operations is cheap

• Then we can search for deepest node

• Splay operation squishes the tree;
can only bad operations once before they
become cheap

• M operations take O(M log N), so amortized
O(log N) per operation (fyi, not proved)

Priority Queues
• New abstract data type Priority Queue

• Insert: add node with key

• deleteMin: delete the node with
smallest key

• findMin: access the node with
smallest key

• (increase/decrease priority)

Heap Implementation
• Binary tree with special

properties

• Heap Structure Property:
all nodes are full*

• Heap Order Property:
any node is smaller than
its children

A

B C

A < B

A < C

C ? B

Array Implementation
• A full tree is regular: we can store in an array

• Root at A[1]

• Rootʼs children at A[2], A[3]

• Node i has children at 2i and (2i+1)

• Parent at floor(i/2)

• No links necessary, so much faster (but only
constant speedup)

Insert
• To insert key X, create a hole in

bottom level

• Percolate up

• Is holeʼs parent is less than X

• If so, put X in hole, heap
order satisfied

• If not, swap hole and parent
and repeat

DeleteMin
• Save root node, and delete,

creating a hole

• Take the last element in the heap X

• Percolate down:

• is X is less than holeʼs children?

• if so, weʼre done

• if not, swap hole and smallest
child and repeat

Changing a key

• Assuming you allow direct access to
elements in heap

• decreaseKey: lower key, percolate up

• increaseKey: raise key, percolate down

Running times

• Insert/deleteMin O(log N)

• findMin O(1)

• Whereʼs the big gain?

• buildHeap: given N items, creates a
heap in linear time

Building a Heap from
an Array

• How do we construct a binary heap from an
array?

• Simple solution: insert each entry one at a time

• Each insert is worst case O(log N), so creating a
heap in this way is O(N log N)

• Instead, we can jam the entries into a full binary
tree and run percolateDown intelligently

buildHeap

• Start at deepest non-leaf node

• in array, this is node N/2

• percolateDown on all nodes in
reverse level-order

• for i = N/2 to 1
 percolateDown(i)

Heap Operations

• Insert – O(log N)

• deleteMin – O(log N)

• change key – O(log N)

• buildHeap – O(N)

