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Announcements

• Homework 3 theory due now

• Midterm exam Thursday 

• Homework 3 Programming due next 
Tuesday 10/27



Review

• buildHeap in linear time

• jam array into heap structure

• fix order by calling percolateDown on 
nodes in reverse order

• Why in reverse order?



Todayʼs Plan

• Review for the midterm



Math Background: 
Exponents
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Math Background:
Logarithms

XA = B iff logX B = A

logA B =
logC B

logC A
; A, B,C > 0, A �= 1

log AB = log A + log B; A, B > 0



Math Background:
Series
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Definitions
• For N greater than some constant, we have the 

following definitions:

• There exists some constant c such that cf(N) 
bounds T(N)

T (N) = O(f (N))← T (N) ≤ cf (N)

T (N) = Ω(g(N))← T (N) ≥ cg(N)

T (N) = Θ(h(N))← T (N) = O(h(N))
T (N) = Ω(h(N))



Definitions

• Alternately, O(f(N)) can be thought of as 
meaning

• Big-Oh notation is also referred to as 
asymptotic analysis, for this reason.

T (N) = O(f(N))← lim
N→∞

f(N) ≥ lim
N→∞

T (N)



Comparing Growth 
Rates

T1(N) = O(f(N)) and T2(N) = O(g(N))

then
(a) T1(N) + T2(N) = O(f(N) + g(N))
(b) T1(N)T2(N) = O(f(N)g(N))

If you have to, use l’Hôpital’s rule

lim
N→∞

f(N)/g(N) = lim
N→∞

f �(N)/g�(N)



Abstract Data Type: 
Lists

• An ordered series of objects

• Each object has a previous and next

• Except first has no prev., last has no next

• We can insert an object (at location k)

• We can remove an object (at location k)

• We can read an object from (location k)



List Methods

• Insert object (at index)

• Delete by index

• Get by index



Array Implementation 
of Lists

• Insert   - need to shift higher-indexed elements →

• Delete - need to shift higher-indexed elements ←

• Get - easy

• How to insert more than array size?

• Create new, larger array. Copy to new array.

cat dog horse cow

cat bear dog horse cow



• Store elements in objects

• Each object has a reference to its next object

• Insert - rearrange references

• But we need to find the previous element

Linked List 
Implementation



Linked List 
Implementation

• Store elements in objects

• Each object has a reference to its next object

• Insert - rearrange references

• But we need to find the previous element



Linked List 
Implementation

• Finding an element in a linked list is slower

• If we keep a head reference, finding the last 
element takes N steps

• If we keep a head and a tail reference*, 
finding the middle element takes N/2 steps

• Be careful iterating; navigate the list smartly



Linked Lists vs. 
Array Lists

• Linked Lists

• No additional penalty 
on size

• Insert/remove O(1)* 

• get kth costs O(N)*

• Need some extra 
memory for links

• Array Lists

• Need to estimate 
size/grow array

• Insert/remove O(N)*

• get kth costs O(1)

• Arrays are compact 
in memory



Stacks

• A Stack is an ADT very similar to a list

• Can be implemented with a list, but 
limited to some O(1) operations

• Yet many important and powerful 
algorithms use stacks



Stack Definition

• Essentially a very restricted List

• Two (main) operations:

• Push(AnyType x)

• Pop()

• Analogy – Cafeteria Trays, PEZ



Evaluating Postfix
Postfix notation places operator after operands

Ambiguous Infix:      3 + 2 * 10

Postfix:                     3 2 + 10 *

(As opposed to)                         3 2 10 * +                      

((3+2) * 10)

((3 2 +) 10 *)

(3 (2 10 *) +)
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Stack 
Implementations

• Linked List:

• Push(x) <-> add(x)           <->   add(x,0)

• Pop()  <->  remove(0)

• Array:

• Push(x) <-> Array[k] = x; k = k+1; 

• Pop()  <->  k = k-1; return Array[k] 



Queue ADT
• Stacks are Last In First Out

• Queues are First In First Out, first-come 
first-served

• Operations: enqueue and dequeue

• Analogy: standing in line, garden hose, etc



Queue 
Implementation

• Linked List

• add(x,0) to enqueue, remove(N-1) to dequeue

• Array List wonʼt work well!

• add(x,0) is expensive

• Solution: use a circular array



Circular Array
• Donʼt shift after removing from array list

• Keep track of start and end of queue

• When run out of space, wrap around;
modular arithmetic

• When array is full, increase size using 
list tactic



Tree Terminology
• Just like Linked Lists, Trees are 

collections of nodes

• Conceptualize trees upside down (like 
family trees)

• the top node is the root

• nodes are connected by edges

• edges define parent and child nodes

• nodes with no children are called leaves



More Tree 
Terminology

• Nodes that share the 
same parent are siblings

• A path is a sequence of 
nodes such that the next 
node in the sequence is a 
child of the previous



More Tree 
Terminology

• a nodeʼs depth is the 
length of the path from 
root

• the height of a tree is 
the maximum depth

• if a path exists between 
two nodes, one is an 
ancestor and the other 
is a descendant



Tree Implementation

• Many possible implementations

• One approach: each node stores a list of 
children

• public class TreeNode<T> {
    T Data;
    Collection<TreeNode<T>> myChildren;
}



Tree Traversals

• Suppose we want to print all nodes in a tree

• What order should we visit the nodes? 

• Preorder - read the parent before its children

• Postorder - read the parent after its children



Preorder vs. 
Postorder

• // parent before children
preorder(node x)
    print(x)
    for child : myChildren
        preorder(child)

• // parent after children
postorder(node x)
    for child : myChildren
        postorder(child)
    print(x)



Binary Trees
• Nodes can only have two children:

• left child and right child

• Simplifies implementation and logic
• public class BinaryNode<T> {

    T element;
    BinaryNode<T> left;
    BinaryNode<T> right;
}

• Provides new inorder traversal



Inorder Traversal

• Read left child, then parent, then right child

• Essentially scans whole tree from left to right

• inorder(node x)
    inorder(x.left)
    print(x)
    inorder(x.right)



Search (Tree) ADT
• ADT that allows insertion, removal, and 

searching by key

• A key is a value that can be compared

• In Java, we use the Comparable interface

• Comparison must obey transitive property

• Search ADT doesnʼt use any index



Binary Search Tree

• Binary Search Tree Property:
     Keys in left subtree are less than root. 
     Keys in right subtree are greater than root.

• BST property holds for all subtrees of a BST

10

8 15

3 129



Inserting into a BST

• Compare new value to current node, if greater, insert 
into right subtree, if lesser, insert into left subtree

• insert(x, Node t)
    if (t == null) return new Node(x) 
    if (x > t.key), then t.right = insert(x, t.right)
    if (x < t.key), then t.left = insert(x, t.left)
    return t
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Searching a BST
• findMin(t)  // return left-most node

    if (t.left == null) return t.key
    else return findMin(t.left)

• search(x,t)  // similar to insert
    if (t == null) return false 
    if (x == t.key) return true
    if (x > t.key), then return search(x, t.right)
    if (x < t.key), then return search(x, t.left)



Deleting from a BST
• Removing a leaf is easy, 

removing a node with 
one child is also easy

• Nodes with no 
grandchildren are easy

• What about nodes with 
grandchildren?
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3 129



A Removal Strategy
• First, find node to be removed, t

• Replace with the smallest node 
from the right subtree

• a = findMin(t.right);       
t.key = a.key;

• Then delete original smallest 
node in right subtree
remove(a.key, t.right)

10

8 15

3 129

root



Sorting with BST

• Suppose we have a built BST

• How to print out nodes in order?

• inorder traversal

• Running time? 

• O(N)



Tradeoffs
insert remove search index

ArrayList

LinkedList

Stack/Queue

BST

AVL

O(N) O(N) O(N) O(1)

O(1) O(1) O(N) O(N)

O(1) O(1) N/A N/A

O(d)=O(N) O(d)=O(N) O(d)=O(N) N/A

O(log N) O(log N) O(log N) N/A

• There may not be free lunch, but sometimes 
thereʼs a cheaper lunch



AVL Trees
• Motivation: want height of tree to be 

close to log N 

• AVL Tree Property:
For each node, all keys in its left 
subtree are less than the nodeʼs and all 
keys in its right subtree are greater. 
Furthermore, the height of the left 
and right subtrees differ by at most 1



AVL Tree Visual

+- +-



Tree Rotations
• To balance the tree after an insertion 

violates the AVL property,

• rearrange the tree; make a new node 
the root.

• This rearrangement is called a 
rotation.

• There are 2 types of rotations.



AVL Tree Visual: 
Before insert
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AVL Tree Visual: 
After insert
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AVL Tree Visual: 
Single Rotation
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AVL Tree 
Single Rotation

• Works when new node is added to 
outer subtree (left-left or right-right)

• What about inner subtrees? (left-right or 
right-left)



AVL Tree Visual:
Before Insert 2
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AVL Tree Visual:
After Insert 2
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AVL Tree Visual:
Double Rotation
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AVL Tree Visual:
Double Rotation
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Rotation running time
• Constant number of link rearrangements

• Double rotation needs twice as many, 
but still constant

• So AVL rotations do not change O(d) 
running time of all BST operations*

• * remove() can require up to O(d) 
rotations; use lazy deletion



Amortized Running 
Time

• So far, we measure the worst-case 
running time of each operation

• Usually we perform many operations

• Sometimes M O(f(N)) operations can 
run provably faster than O(M f(N))

• Then we can guarantee better average 
running time, aka amortized



Comparing Models

• Amortized and Average case average 
running time of many operations

• Amortized and Standard: adversary 
chooses input values and operations

• Average analysis, analyst chooses 
randomization scheme



Splay Trees
• Like AVL trees, use the standard binary 

search tree property

• After any operation on a node, make 
that node the new root of the tree

• Make the node the root by repeating 
one of two moves that make the tree 
more spread out



Informal Justification

• Similar to caching. 

• Heuristically, data that is accessed 
tends to be accessed often.

• Easier to implement than AVL trees

• No height bookkeeping



Easy cases

• If node is root, do nothing

• If node is child of root, do single AVL 
rotation

• Otherwise, node has a grandparent, 
and there are two cases



Case 1: zig-zag

• Use when the node is the right child of a 
left child (or left-right)

• Double rotate, just like AVL tree
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Case 2: zig-zig

• We canʼt use the single-rotation 
strategy like AVL trees

• Instead we use a different process, and 
weʼll compare this to single-rotation



Case 2: zig-zig

• Use when node is the right-right child (or left-left)

• Reverse the order of grandparent->parent->node

• Make it node->parent->grandparent
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Splay Analysis 
(Informal)

• We can make a chain by inserting nodes that 
make the tree its left child

• Each of these operations is cheap

• Then we can search for deepest node

• Splay operation squishes the tree;
can only bad operations once before they 
become cheap

• M operations take O(M log N), so amortized 
O(log N) per operation (fyi, not proved)



Priority Queues
• New abstract data type Priority Queue

• Insert: add node with key

• deleteMin: delete the node with 
smallest key

• findMin: access the node with 
smallest key

• (increase/decrease priority)



Heap Implementation
• Binary tree with special 

properties

• Heap Structure Property: 
all nodes are full*

• Heap Order Property: 
any node is smaller than 
its children

A

B C

A < B

A < C

C ? B



Array Implementation
• A full tree is regular: we can store in an array

• Root at A[1] 

• Rootʼs children at A[2], A[3]

• Node i has children at 2i and (2i+1)

• Parent at floor(i/2)

• No links necessary, so much faster (but only 
constant speedup)



Insert
• To insert key X, create a hole in 

bottom level

• Percolate up

• Is holeʼs parent is less than X

• If so, put X in hole, heap 
order satisfied

• If not, swap hole and parent 
and repeat



DeleteMin
• Save root node, and delete, 

creating a hole

• Take the last element in the heap X

• Percolate down:

• is X is less than holeʼs children?

• if so, weʼre done

• if not, swap hole and smallest 
child and repeat



Changing a key

• Assuming you allow direct access to 
elements in heap

• decreaseKey: lower key, percolate up

• increaseKey: raise key, percolate down



Running times

• Insert/deleteMin O(log N)

• findMin O(1)

• Whereʼs the big gain?

• buildHeap: given N items, creates a 
heap in linear time



Building a Heap from 
an Array

• How do we construct a binary heap from an 
array?

• Simple solution: insert each entry one at a time

• Each insert is worst case O(log N), so creating a 
heap in this way is O(N log N)

• Instead, we can jam the entries into a full binary 
tree and run percolateDown intelligently



buildHeap

• Start at deepest non-leaf node

• in array, this is node N/2

• percolateDown on all nodes in 
reverse level-order

• for i = N/2 to 1
    percolateDown(i)



Heap Operations

• Insert – O(log N)

• deleteMin – O(log N)

• change key – O(log N)

• buildHeap – O(N)


