Data Structures in Java

Session 12
Instructor: Bert Huang
http://www1.cs.columbia.edu/~bert/courses/3134
Announcements

• Homework 2 solutions posted
• Homework 3 due 10/20, if submitting late, contact me
• Midterm Exam, open book/notes 10/22
• example problems posted on courseworks
Review

- Priority Queue data type
- Heap data structure
- Insert, percolate up
- deleteMin, percolate down
Building a Heap from an Array

- How do we construct a binary heap from an array?
- Simple solution: insert each entry one at a time
- Each insert is worst case $O(\log N)$, so creating a heap in this way is $O(N \log N)$
- Instead, we can jam the entries into a full binary tree and run percolateDown intelligently
buildHeap

- Start at deepest non-leaf node
- in array, this is node N/2
- percolateDown on all nodes in reverse level-order
- for $i = N/2$ to 1
 percolateDown(i)
buildHeap Example

8 3 9 2 6 1 12 99 5 4
buildHeap Example

8 3 9 2 6 1 12 99 5 4
buildHeap Example

| 8 | 3 | 9 | 2 | 6 | 1 | 12 | 99 | 5 | 4 |

Diagram:
- 8
 - 3
 - 2
 - 99
 - 5
 - 6
 - 4
 - 1
 - 9
 - 12
buildHeap Example

8 3 9 2 6 1 12 99 5 4
buildHeap Example

8 3 9 2 6 1 12 99 5 4
Analysis of buildHeap

- \(\frac{N}{2}\) percolateDown calls: \(O(N \log N)\)?
 - But calls to deeper nodes are much cheaper
- Percolate Down costs the height of the node
- Let \(h\) be height of tree. 1 node at height \(h\)
 - 2 nodes at \((h-1)\), 4 nodes at \((h-2)\)...
 - \(2^h\) nodes at height 0
buildHeap Running Time

\[T(2^h) = \sum_{i=0}^{h} 2^i (h - i) \]

\[2^0 \times 3 \]

\[2^1 \times 2 \]

\[2^2 \times 1 \]
Reducing the Summation

\[T(2^h) = \sum_{i=0}^{h} 2^i (h - i) \quad \quad 2T(N) = \sum_{i=0}^{h} 2^{i+1} (h - i) \]

\[T(N) = 2T(N) - T(N) = \\
2^1(h - 0) + 2^2(h - 1) + 2^3(h - 2) + \ldots + 2^h(1) + 2^{h+1}(0) \]
\[- \left[2^0(h - 0) + 2^1(h - 1) + 2^2(h - 2) + \ldots + 2^{h-1}(1) + 2^h(0) \right] \]
Reducing the Summation

\[T(2^h) = \sum_{i=0}^{h} 2^i (h - i) \quad 2T(N) = \sum_{i=0}^{h} 2^{i+1} (h - i) \]

\[T(N) = 2T(N) - T(N) = 2^1(h - 0) + 2^2(h - 1) + 2^3(h - 2) + \ldots + 2^h(1) + \]

\[- \left[2^0(h - 0) + 2^1(h - 1) + 2^2(h - 2) + \ldots + 2^{h-1}(1) + 2^h(0) \right] \]

\[= -h + \sum_{i=1}^{h} 2^i = 2^{h+1} - 2 - h \]

Series identity

\[= 2^\log N + 1 - 2 - \log N = 2N - 2 - \log N \]
Heap Operations

- Insert – $O(\log N)$
- deleteMin – $O(\log N)$
- change key – $O(\log N)$
- buildHeap – $O(N)$
HeapSort

- buildHeap, then deleteMin all elements
- but we’d need to store elements in separate array
- Instead, build a max-heap (parent always greater than child; root is max)
- After each deleteMax, move deleted element to end of array
Heapsort Animation

• This class and next: Weiss 6.1-6.3