
Data Structures in 
Java
Session 11

Instructor: Bert Huang
http://www1.cs.columbia.edu/~bert/courses/3134



Announcements

• Homework 2 solutions posted

• Homework 3 due 10/20

• Midterm Exam, open book/notes 10/22

• see theory problems for examples

• My office hours this week 4-6 PM



Review

• Amortized Running time

• Splay Trees

• Tries



Priority Queues
• New abstract data type Priority Queue

• Insert: add node with key

• deleteMin: delete the node with 
smallest key

• findMin: access the node with 
smallest key

• (increase/decrease priority)



Tradeoffs

• Binary search trees contain full order 
information (inorder returns sorted list)

• Priority queues only maintain efficient 
method to find minimum element

• Loss in functionality is worth it for gain 
in speed



Simple 
Implementations

• Use a list

• O(1) insert, O(N) deleteMin/findMin

• Use a balanced BST

• O(log N) insert/deleteMin*/findMin

• deleting min from BST leads to 
imbalance



Heap Implementation
• Binary tree with special 

properties

• Heap Structure Property: 
all nodes are full*

• Heap Order Property: 
any node is smaller than 
its children

A

B C

A < B

A < C

C ? B



Array Implementation
• A full tree is regular: we can store in an array

• Root at A[1] 

• Rootʼs children at A[2], A[3]

• Node i has children at 2i and (2i+1)

• Parent at floor(i/2)

• No links necessary, so much faster (but only 
constant speedup)



Array Implementation
• A full tree is regular: we can easily store in an 

array

• Root at A[0] 

• Rootʼs children at A[1], A[2]

• Node i has children at 2(i+1)-1 and 2(i+1)

• Parent at floor((i+1)/2)-1

• No links necessary, so faster (in most languages)



Insert
• To insert key X, create a hole in 

bottom level

• Percolate up

• Is holeʼs parent is less than X

• If so, put X in hole, heap 
order satisfied

• If not, swap hole and parent 
and repeat



DeleteMin
• Save root node, and delete, 

creating a hole

• Take the last element in the heap X

• Percolate down:

• is X is less than holeʼs children?

• if so, weʼre done

• if not, swap hole and smallest 
child and repeat



Changing a key

• Assuming you allow direct access to 
elements in heap

• decreaseKey: lower key, percolate up

• increaseKey: raise key, percolate down



Running times

• Insert/deleteMin O(log N)

• findMin O(1)

• Whereʼs the big gain?

• buildHeap: given N items, creates a 
heap in linear time



Reading

• This class and next: Weiss 6.1-6.3


