Announcements

• Homework 3 due 10/20
Review

• AVL Trees
 • Single rotate for left-left imbalance
 • Double rotate for left-right right imbalance
• Running time Analysis
 • Depth always $O(\log N)$
 • Constant cost for rotations
Today’s Plan

• Amortized Running time
• Splay Trees
• Tries
Amortized Running Time

• So far, we measure the worst-case running time of each operation
• Usually we perform many operations
• Sometimes $M O(f(N))$ operations can run provably faster than $O(M f(N))$
• Then we can guarantee better average running time, aka amortized
Comparing Models

- Amortized and Average case average running time of many operations
- Amortized and Standard: adversary chooses input values and operations
- Average analysis, analyst chooses randomization scheme
Splay Trees

• Like AVL trees, use the standard binary search tree property

• After any operation on a node, make that node the new root of the tree

• Make the node the root by repeating one of two moves that make the tree more spread out
Informal Justification

• Similar to *caching*.
 • Heuristically, data that is accessed tends to be accessed often.
• Easier to implement than AVL trees
 • No height bookkeeping
Easy cases

• If node is root, do nothing
• If node is child of root, do single AVL rotation
• Otherwise, node has a grandparent, and there are two cases
Case 1: zig-zag

- Use when the node is the right child of a left child (or left-right)
- Double rotate, just like AVL tree
Case 2: zig-zig

- We can’t use the single-rotation strategy like AVL trees
- Instead we use a different process, and we’ll compare this to single-rotation
Case 2: zig-zig

- Use when node is the right-right child (or left-left)
- Reverse the order of grandparent->parent->node
- Make it node->parent->grandparent
Case 2 versus Single Rotations 1

zig-zig

single-rotate
Case 2 versus Single Rotations 2

zig-zig

single-rotate
Case 2 versus Single Rotations 3

zig-zig

single-rotate
Case 2 versus Single Rotations 4

zig-zig

single-rotate
Splay Analysis
(Informal)

- We can make a chain by inserting nodes that make the tree its left child
- Each of these operations is cheap
- Then we can search for deepest node
- Splay operation squishes the tree; can only bad operations once before they become cheap
- \(M \) operations take \(O(M \log N) \), so amortized \(O(\log N) \) per operation (fyi, not proved)
Prefix Trees (Tries)

- Nicknamed “Trie”, short for retrieval
- Efficiently store objects for fast retrieval via keys
 - Usually key is a String
- Basic strategy:
 - split into sub-tries based on current letter
Trie Example

- “cat”, “cow”, “dog”, “doberman”, “duck”
Trie Analysis

- In the worst case, inserting a key of length k or (looking up) is $O(k)$
- This is not dependent on N (this is shocking!)
- Much better than $\log(N)$ for huge data like dictionaries
Reading

- Splay Trees: 4.5