
Data Structures in Java
Session 1 

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3134



Session Plan

Administrative overview

Introduction to course content



About the Course:
Description
Title COMS W3134; Data Structures in Java

Lectures: Tuesday/Thursday 5:40-6:55 PM

homepage:
http://www1.cs.columbia.edu/~bert/courses/3134

We’ll study useful data structures, their 
applications and implementations. We’ll gain 
intuition about designing our own



About the Course:
Staff

Bert Huang, 3rd year PhD candidate
Office hours tentatively Wednesday 2-4 PM
CEPSR/Schapiro Building 624
bert@cs.columbia.edu

TA: Nikhil Ramesh, UNI nf2241
Office hours TBA



About the Course:
Reading

Data Structures and Algorithm Analysis in Java, 
2nd Edition by Mark Allen Weiss. 
ISBN-10: 0321370139



About the Course:
Resources
Course homepage: 
http://www.cs.columbia.edu/~bert/courses/3134

Courseworks: http://courseworks.columbia.edu

Textbook Errata: 
http://users.cs.fiu.edu/~weiss/dsaajava2/errata.html

Textbook Source Code: 
http://users.cs.fiu.edu/~weiss/dsaajava2/code/



About the Course:
Prerequisites etc.

COMS W1004, Introduction to Computer Science 
and Programming in Java (or equivalent)

CompSci majors should be taking COMS W3137



About the Course:
Grading

50% Homework Assignments (six)

20% Midterm Exam

30% Final Exam



About the Course:
Academic Honesty
You must read the Computer Science 
department’s academic honesty policy listed at 
http://www.cs.columbia.edu/education/honesty/

Additional Comments:

Plagiarism is easy to catch.

All homework and exams in this class are 
individual assignments. No collaboration. 



About the Course: 
Expectations
Attend class

Ask questions; slow me down

Read assigned text

Start homework early

Write well and clearly 

Get help when you need it



Abstraction

Stand on the shoulders of giants

In practice: a well tested class should be treated 
as a black box with inputs and outputs, with no 
concern over implementation.

In theory: a well tested abstract data type should 
be treated as a black box with inputs and outputs, 
with no concern over implementation.



Benefits of Abstraction

Consider Java Strings

We use them all the time

How is the text in a String object stored?

When we call the length() method, how does it 
find the length?

How does it concatenate strings?



Abstract Data Types

Data structures implement Abstract Data Types

ADTs are defined only as black box input and 
outputs

ADTs vary in complexity. 

E.g., bits*, ints*, arrays, 

lists, stacks, queues, trees, heaps, hash tables, 
graphs



Array ADT

You can:

insert elements into arrays by index

read elements by index

You (typically) don’t have to think about:

where is the data in memory? 

how does the computer find the ith element?



Our dual role
As programmers, it is good practice to shield our 
eyes and treat our black boxes as black boxes.

This yields easier design and cleaner programs.

As computer scientists, we should understand the 
theory behind data structures

Helps us invent new structures, better 
understand when to use which ADT or 
implementation.



Homework 0

http://spreadsheets.google.com/viewform?
hl=en&formkey=dHE3c3V4X3E5SlFycFJDTWNybH
N3bnc6MA..

1 percentage point "extra credit" survey

Follow the link on homepage

Due by next class



Homework 1

Running time analysis theory

Java refresher

Collection data structure

http://www1.cs.columbia.edu/~bert/courses/3134/
hw1.pdf



Reading

Course Website:
http://www.cs.columbia.edu/~bert/courses/3134

Academic Honesty policy 

http://www.cs.columbia.edu/education/honesty

Weiss Chapters 1 and 2


