Session Plan

- Administrative overview
- Introduction to course content
About the Course: Description

- Title COMS W3134; Data Structures in Java
- Lectures: Tuesday/Thursday 5:40-6:55 PM
- homepage: http://www1.cs.columbia.edu/~bert/courses/3134
- We’ll study useful data structures, their applications and implementations. We’ll gain intuition about designing our own
About the Course:
Staff

Bert Huang, 3rd year PhD candidate
Office hours tentatively Wednesday 2-4 PM
CEPSR/Schapiro Building 624
bert@cs.columbia.edu

TA: Nikhil Ramesh, UNI nf2241
Office hours TBA
About the Course: Reading

Data Structures and Algorithm Analysis in Java, 2nd Edition by Mark Allen Weiss.
ISBN-10: 0321370139
About the Course: Resources

- Course homepage: http://www.cs.columbia.edu/~bert/courses/3134
- Courseworks: http://courseworks.columbia.edu
- Textbook Source Code: http://users.cs.fiu.edu/~weiss/dsaajava2/code/
About the Course: Prerequisites etc.

- COMS W1004, Introduction to Computer Science and Programming in Java (or equivalent)

- CompSci **majors** should be taking COMS W3137
About the Course: Grading

- 50% Homework Assignments (six)
- 20% Midterm Exam
- 30% Final Exam
About the Course:
Academic Honesty

- You **must** read the Computer Science department’s academic honesty policy listed at http://www.cs.columbia.edu/education/honesty/

- Additional Comments:
 - Plagiarism is easy to catch.
 - All homework and exams in *this class* are individual assignments. **No collaboration.**
About the Course: Expectations

- Attend class
 - Ask questions; slow me down
- Read assigned text
- Start homework early
- Write well and clearly
- Get help when you need it
Abstraction

- Stand on the shoulders of giants

- In practice: a well tested class should be treated as a black box with inputs and outputs, with no concern over implementation.

- In theory: a well tested abstract data type should be treated as a black box with inputs and outputs, with no concern over implementation.
Benefits of Abstraction

- Consider Java Strings
 - We use them all the time
 - How is the text in a String object stored?
 - When we call the length() method, how does it find the length?
 - How does it concatenate strings?
Abstract Data Types

- **Data structures** implement Abstract Data Types
 - ADTs are defined only as black box input and outputs
 - ADTs vary in complexity.
 - E.g., bits*, ints*, arrays,
 - lists, stacks, queues, trees, heaps, hash tables, graphs
Array ADT

- You can:
 - insert elements into arrays by index
 - read elements by index

- You (typically) don’t have to think about:
 - where is the data in memory?
 - how does the computer find the ith element?
Our dual role

- As programmers, it is good practice to shield our eyes and treat our black boxes as black boxes.
 - This yields easier design and cleaner programs.
- As computer scientists, we should understand the theory behind data structures
 - Helps us invent new structures, better understand when to use which ADT or implementation.
Homework 0

- 1 percentage point "extra credit" survey

- Follow the link on homepage

- Due by next class
Homework 1

- Running time analysis theory
- Java refresher
- Collection data structure
Reading

- Course Website: http://www.cs.columbia.edu/~bert/courses/3134
- Academic Honesty policy http://www.cs.columbia.edu/education/honesty
- Weiss Chapters 1 and 2