Data Structures In Java

Session 1

Instructor: Bert Huang
hitp://www.cs.columbia.edu/~bert/courses/3134




Session Plan

¥ Administrative overview

% Introduction to course content




About the Course:
Description

* Title COMS W3134; Data Structures in Java
* Lectures: Tuesday/Thursday 5:40-6:55 PM

* homepage:
http://www1.cs.columbia.edu/~bert/courses/3134

* We’'ll study useful data structures, their
applications and implementations. We’ll gain
intuition about designing our own




About the Course:
Staff

* Bert Huang, 3rd year PhD candidate
Office hours tentatively Wednesday 2-4 PM
CEPSR/Schapiro Building 624
bert@cs.columbia.edu

* TA: Nikhil Ramesh, UNI nf2241
Office hours TBA




About the Course:
Reading

* Data Structures and Algorithm Analysis in Java,
2nd Edition by Mark Allen Weiss.
ISBN-10: 0321370139




About the Course:
Resources

* Course homepage:
http://www.cs.columbia.edu/~bert/courses/3134

* Courseworks: http://courseworks.columbia.edu

% Textbook Errata:

http://users.cs.fiu.edu/~weiss/dsaajava2/errata.html

% Textbook Source Code:

http://users.cs.fiu.edu/~weiss/dsaajava?2/code/




About the Course:
Prerequisites etc.

* COMS W1004, Introduction to Computer Science
and Programming in Java (or equivalent)

* CompSci majors should be taking COMS W3137




About the Course:
Grading

* 50% Homework Assignments (six)
* 20% Midterm Exam

¥ 30% Final Exam




About the Course:
Academic Honesty

* You must read the Computer Science
department’s academic honesty policy listed at

http://www.cs.columbia.edu/education/honesty/

* Additional Comments:
* Plagiarism is easy to catch.

* All homework and exams in this class are
individual assignments. No collaboration.




About the Course:
EXpectations

* Attend class
* Ask questions; slow me down
* Read assigned text
* Start homework early
* Write well and clearly

* Get help when you need it




Abstraction

* Stand on the shoulders of giants

* In practice: a well tested class should be treated
as a black box with inputs and outputs, with no
concern over implementation.

* In theory: a well tested abstract data type should
be treated as a black box with inputs and outputs,
with no concern over implementation.




Benefits of Abstraction

* Consider Java Strings
* We use them all the time
* How is the text in a String object stored?

* When we call the length() method, how does it
find the length?

* How does it concatenate strings?




Abstract Data Types

* Data structures implement Abstract Data Types

* ADTs are defined only as black box input and
outputs

* ADTs vary in complexity.
* E.g., bits*, ints”, arrays,

* lists, stacks, queues, trees, heaps, hash tables,
graphs




Array ADT

* You can:
* Insert elements into arrays by index
* read elements by index

* You (typically) don’t have to think about:
* where is the data in memory?

* how does the computer find the ith element?




Our dual role

* As programmers, it is good practice to shield our
eyes and treat our black boxes as black boxes.

* This yields easier design and cleaner programs.

* As computer scientists, we should understand the
theory behind data structures

* Helps us invent new structures, better
understand when to use which ADT or
implementation.




Homework O

% http://spreadsheets.google.com/viewform?
hl=en&formkey=dHE3c3V4X3ES5SIFycFJDTWNybH

N3bncoMA..

* 1 percentage point "extra credit" survey
* Follow the link on homepage

* Due by next class




Homework 1

* Running time analysis theory
% Java refresher
* Collection data structure

* http://www1.cs.columbia.edu/~bert/courses/3134/
hw1.pdf




Reading

* Course Website:
http://www.cs.columbia.edu/~bert/courses/3134

* Academic Honesty policy

http://www.cs.columbia.edu/education/honesty

* Weiss Chapters 1 and 2




