Data Structures in Java

Session 1

Instructor: Bert Huang

http://www.cs.columbia.edu/~bert/courses/3134

Session Plan

* Administrative overview

* Introduction to course content

About the Course: Description

- * Title COMS W3134; Data Structures in Java
- * Lectures: Tuesday/Thursday 5:40-6:55 PM
- * homepage: http://www1.cs.columbia.edu/~bert/courses/3134
- We'll study useful data structures, their applications and implementations. We'll gain intuition about designing our own

About the Course: Staff

* Bert Huang, 3rd year PhD candidate Office hours tentatively Wednesday 2-4 PM CEPSR/Schapiro Building 624 <u>bert@cs.columbia.edu</u>

* TA: Nikhil Ramesh, UNI nf2241 Office hours TBA

About the Course: Reading

* Data Structures and Algorithm Analysis in Java, 2nd Edition by Mark Allen Weiss. ISBN-10: 0321370139

About the Course: Resources

- * Course homepage: <u>http://www.cs.columbia.edu/~bert/courses/3134</u>
- Courseworks: <u>http://courseworks.columbia.edu</u>
- * Textbook Errata:

http://users.cs.fiu.edu/~weiss/dsaajava2/errata.html

* Textbook Source Code: <u>http://users.cs.fiu.edu/~weiss/dsaajava2/code/</u>

About the Course: Prerequisites etc.

* COMS W1004, Introduction to Computer Science and Programming in Java (or equivalent)

* CompSci majors should be taking COMS W3137

About the Course: Grading

- # 50% Homework Assignments (six)
- # 20% Midterm Exam
- * 30% Final Exam

About the Course: Academic Honesty

- * You must read the Computer Science department's academic honesty policy listed at <u>http://www.cs.columbia.edu/education/honesty/</u>
- * Additional Comments:
 - * Plagiarism is easy to catch.
 - * All homework and exams in *this class* are individual assignments. <u>No collaboration.</u>

About the Course: Expectations

- # Attend class
 - * Ask questions; slow me down
- Read assigned text
- Start homework early
- Write well and clearly
- # Get help when you need it

Abstraction

- Stand on the shoulders of giants
- In practice: a well tested class should be treated as a black box with inputs and outputs, with no concern over implementation.
- In theory: a well tested abstract data type should be treated as a black box with inputs and outputs, with no concern over implementation.

Benefits of Abstraction

- * Consider Java Strings
 - * We use them all the time
 - * How is the text in a String object stored?
 - When we call the length() method, how does it find the length?
 - * How does it concatenate strings?

Abstract Data Types

* Data structures implement Abstract Data Types

- * ADTs are defined only as black box input and outputs
- * ADTs vary in complexity.
 - * E.g., bits*, ints*, arrays,
 - # lists, stacks, queues, trees, heaps, hash tables, graphs

Array ADT

- * You can:
 - * insert elements into arrays by index
 - * read elements by index
- * You (typically) don't have to think about:
 - * where is the data in memory?
 - * how does the computer find the *i*th element?

Our dual role

- * As programmers, it is good practice to shield our eyes and treat our black boxes as black boxes.
 - * This yields easier design and cleaner programs.
- * As computer scientists, we should understand the theory behind data structures
 - # Helps us invent new structures, better understand when to use which ADT or implementation.

Homework 0

- <u>http://spreadsheets.google.com/viewform?</u> <u>hl=en&formkey=dHE3c3V4X3E5SIFycFJDTWNybH</u> <u>N3bnc6MA</u>..
- # 1 percentage point "extra credit" survey
- * Follow the link on homepage
- * Due by next class

Homework 1

- * Running time analysis theory
- # Java refresher
- Collection data structure
- http://www1.cs.columbia.edu/~bert/courses/3134/ hw1.pdf

Reading

- * Course Website: <u>http://www.cs.columbia.edu/~bert/courses/3134</u>
- * Academic Honesty policy

http://www.cs.columbia.edu/education/honesty

* Weiss Chapters 1 and 2