
COMS W1007 Homework 5

Submission instructions

All programs must compile and run on CUNIX to receive credit. Submit your electronic files
via http://courseworks.columbia.edu. Post your archived submission directory to the CLASS
FILES section in the appropriate homework directory. We prefer electronic submission of written
portions, though you will not be penalized for paper submissions. (Do not print out your programs.)
Include a separate README text file that explains exactly what each file in your submission is.
Your submission should contain your code (.java files), written problems, and your README file.
Do not include your compiled .class files or your compiled javadoc, since we will generate those from
your code. Place all the files you want to submit into a submission directory with the following
naming scheme.

<your_uni>_hw<number>

So if my UNI is uni1234 am submitting homework 5, my directory would be uni1234 hw5. Archive
your submission directory using zip, tar, or gzip format. In CUNIX, you can tar and gzip with the
following command:

tar -czvf uni1234_hw5.tar.gz uni1234_hw5

and upload uni1234 hw5.tar.gz to courseworks. (You will probably need to first download the
file to a local directory using an FTP program. See CUNIX tutorial for more info.)

Multiple Submissions: You can submit multiple times, but we will only consider the latest
submission based on the timestamp in courseworks. Please give at least 1-2 minutes between two
submissions so we can tell which is the newest submission.

Keep a pristine copy of your submission folder in case there is any submission error.

Written Problems

1. (6 points) Horstmann 9.8 What happens when a thread calls await and no other thread
calls signalAll or signal?

2. (6 points) Suppose two threads are sharing an LinkedList. One thread is adding elements
to the LinkedList and the other is only reading, but never modifying the LinkedList. Can
a race condition occur in this scenario? If so, give an example? Or, if not, why is this setup
safe? What, if anything, is necessary to ensure the LinkedList behavior is not corrupted by
race conditions?

1



3. (6 points) The Collections class contains a static method unmodifiableSortedMap 1. Read
the API, describe what these do and describe how you would implement them (your approach
does not need to be exactly how the standard library does it as long as it works).

4. (6 points) Horstmann 10.2 Explain why MouseAdapter and WindowAdapter are not adapters
in the sense of the ADAPTER pattern.

5. (6 points) Horstmann 10.6 The STRATEGY and COMMAND patterns both suggest using
objects in place of methods. What is the difference between these two patterns?

Programming Assignment

(70 points) For this assignment, you will build a pigeon feeding simulation, which will use multi-
threading and simple data structures. The game will simulate pigeons roaming around a public
area (e.g., the steps of Low Library). The game takes place in a window on which some “pigeons”
will wait for food. Each pigeon must be controlled by a separate thread. The user clicks on a spot
on the window and food is immediately placed at the location of the click.

The pigeons will move according to the following rules:

• If there is no food anywhere, each pigeon goes to sleep and does not move.

• If there is any food, each pigeon moves toward the freshest food (the most recently placed
food).

• If a pigeon touches the freshest food, it eats the food and the food is deleted.

• If any pigeon accidentally touches food that is not the freshest available, it ignores it and
does not eat it. (So you only need to do collision-detection between pigeons and the freshest
food.)

• The pigeons will randomly get startled, which causes them to quickly fly to a random location.
Choose a constant to determine the probability of this happening each “turn”, and when it
does, animate the pigeon quickly flying to its new random location. This behavior will reduce
the change that the pigeons will converge and all overlap on the screen.

The food and the pigeons should be drawn graphically on the screen, but don’t spend too much
time on the graphics; you may draw the food and pigeons as simple shapes, such as circles, but the
key exercise in this assignment is to make sure the multithreading and data structures work. The
multithreading issues you must handle follow.

• You will need to make sure the pigeons stop when there is no food available. The threads
should actually stop, which means your program will use very low (almost zero) cpu usage
when there is no food available.

• You will also need to make sure that if two pigeons reach the food simultaneously, only one
pigeon deletes the food from your data structure.

1It also contains similar methods unmodifiableSet, unmodifiableSortedSet, unmodifiableList,
unmodifiableMap, and unmodifiableCollection.

2



• When your drawing code executes, it will probably need to iterate over an Iterable of food
locations. Since unsynchronized code allows food to be added or deleted during this drawing
code, you should lock the data structure(s) while drawing.

Figure 1: Two pigeons wait for you to drop crumbs.

You should choose a data struc-
ture that allows your program to
efficiently find the freshest food in
constant time, no matter how
much food has been already placed
on the ground. There are a couple
ways to do this.

Model-view-controller (MVC) is
a useful starting-point for this as-
signment, but you are not required
to follow the pattern this time.
Nonetheless, it is a good starting
point for your design, since the game
does involve some data state, a
view of that state and some con-
trollers (the user and the pigeon
threads). However you structure
your data and view classes, make
sure to think about how each pigeon
thread will move its representation
on the screen in a thread-safe way.

There is some freedom in how
you design your pigeon behavior, such as defining the size of their representations on screen, their
speed 2, the number of pigeons, how often pigeons get startled, how fast the pigeons fly away when
startled, etc. These are all up to you, as long as the core functionality is there and implemented
using multithreading.

Process and Deliverables

For this programming assignment, you are only required to submit code that compiles via javac
and javadoc. Also submit the code from Horstmann’s framework. At least all public methods must
have javadoc comments for any parameters and return values. You should include your code and
a “README” file that briefly describes each included file, and can be used to indicate to us any
notes that would be helpful for grading (such as any extra functionality you have added or were
unable to finish in time).

You are encouraged to use the design tools we practiced on previous homework, but you do not
need to submit them.

As always, to get full credit, your code must not crash for any reasonable user behavior. You
may exit with an informative error message, but uncaught exceptions or crashes will lose some
points.

2You may want to add some randomization to the speed and direction of the pigeons so the animation looks more
organic.

3


