
COMS W1007 Homework 1

Submission instructions

All programs must compile and run on CUNIX to receive credit. Submit your electronic files via
http://courseworks.columbia.edu. We prefer electronic submission of written portions, though
you will not be penalized for paper submissions. (Do not print out your programs.) Include a
separate README text file that explains exactly what each file in your submission is. Place all
the files you want to submit into a submission directory with the following naming scheme.

<your_uni>_hw<number>

So if my UNI is uni1234 am submitting homework 5, my directory would be uni1234 hw5. Archive
your submission directory using zip, tar, or gzip format. In CUNIX, you can tar and gzip with the
following command:

tar -czvf uni1234_hw5.tar.gz uni1234_hw5

and upload uni1234 hw5.tar.gz to courseworks. (You will probably need to first download the
file to a local directory using an FTP program. See CUNIX tutorial for more info.)

Multiple Submissions: You can submit multiple times, but we will only consider the latest
submission based on the timestamp in courseworks. Please give at least 1-2 minutes between two
submissions so we can tell which is the newest submission.

Keep a pristine copy of your submission folder in case there is any submission error.

Programming Assignment

Description

Build a program that plays the board game Battleship! For those who may not have played
the game before, the game is a classic two player pen-and-paper game that was converted into a
popular board game by Milton Bradley. It is played on a grid, so needs no fancy interface and can
be implemented using a text-only console interface.

The rules for Battleship are as follows. Each player keeps a 10x10 grid of squares onto which
they each place a set of five ships. The ship pieces are each one square wide and varying lengths,
and represent different types of naval vessels, such as aircraft carriers, battleships, and submarines.
The standard ship lengths for the five ships are 5, 4, 3, 3, and 2. In the setup phase, the ship pieces
must be placed horizontally or vertically on the grid. After the players have placed their ships on
their boards, the main gameplay begins. At this point, each player does not know where the other
has placed his or her ships.

The players take turns “firing shots” at the other player’s board by announcing a grid location.
The player being attacked must reveal whether one of his or her ships is at the attacked grid

1

location. Once a ship has been hit on all its squares, it is considered destroyed. Players take turns
attacking each other until one player has lost all his or her ships, at which point the other player
wins.

To help strategize, each player also maintains a board marking where he or she has attempted
shots and whether they hit or missed.

Your program should allow a full game of Battleship following all its standard rules against a
computer opponent. This computer opponent should at least attack random grid locations that is
has not already attacked, or if you prefer, have a smarter strategy1. The program will use a text
interface for now. During the setup phase, the interface should allow the player to view the board
and select a location to place each ship. At each turn, the program should display the two grids,
and prompt the player for an attacking grid position. The program will detect when the game is
over, announce the winner, and exit.

Any invalid entries during user input should result in an error message and allow the user to
retry. The program should not crash. Ships must only be allowed to be placed in legal positions
(not overlapping, must fit on the grid).

One reasonable way to display a grid in text is as follows. Different characters can be placed
in the grid to represent hit, miss, and ship squares. You are welcome to come up with a better
text-based grid interface if you want.

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

--|---+---+---+---+---+---+---+---+---+---+

0 | | | | | | | | | | |

--|---+---+---+---+---+---+---+---+---+---+

1 | | | | | | | | | | |

--|---+---+---+---+---+---+---+---+---+---+

2 | | | | | | | | | | |

--|---+---+---+---+---+---+---+---+---+---+

3 | | | | | | | | | | |

--|---+---+---+---+---+---+---+---+---+---+

4 | | | | | | | | | | |

--|---+---+---+---+---+---+---+---+---+---+

5 | | | | | | | | | | |

--|---+---+---+---+---+---+---+---+---+---+

6 | | | | | | | | | | |

--|---+---+---+---+---+---+---+---+---+---+

7 | | | | | | | | | | |

--|---+---+---+---+---+---+---+---+---+---+

8 | | | | | | | | | | |

--|---+---+---+---+---+---+---+---+---+---+

9 | | | | | | | | | | |

--|---+---+---+---+---+---+---+---+---+---+

1
You won’t receive extra credit for a smarter AI.

2

Process and Deliverables

You must submit the results of the following steps. Do these steps in order, but do not hesitate to
return to a previous step when you realize you could have done things better as you are working
on a later step (this will likely happen). Submit the final version of each part.

1. (10 points) The description above is not exactly a use case. Write use cases for (1) the setup
phase, (2) for a turn of the game, and (3) for the end of the game. These use cases should
describe the user interface. You must submit these three, but you are welcome to write more,
as they will likely help your design.

2. (10 points) Identify classes and their responsibilities and submit CRC text describing each
class. If you use index cards for CRC, copy the text into a document so we won’t accidentally
lose your index cards.

3. (10 points) Walk through placing a couple ships and a couple turns of the game using the
classes you’ve decided on to make sure they make sense. Draw these walkthroughs as sequence
diagrams. For this step, submit the sequence diagrams of the final version of your design.

4. (10 points for javadoc) Write up a class skeleton for your program with full javadoc com-
menting for each class and public method. Make sure the javadoc compiles. This is a good
time to double check that your walkthrough makes sense. If any classes or methods seem like
they will be too complicated, it might make sense to refactor them before you write too much
code.

5. (50 points) Implement your program. I suggest starting with the class with the least depen-
dencies, because it should compile with no errors once you are done. You can submit your
final code for steps 4 and 5.

6. (10 points) Run your use cases from step 1 on the finished program. Copy and submit the
text of the console interaction.

Resist the temptation to start from step 4 or 5.

Hints

• If you need to store the ships in a set, you can use an ArrayList. However, you may also
consider ignoring the identity of the ships altogether once they have been placed, and instead
just treat each grid cell as water or ship. Both strategies make sense, depending on how you
prefer to represent the game state.

• Try to keep the user interface easily modifiable. For example, in the future, we may want to
use the same game engine to display the game graphically. The rules of the game should run
mostly independently of the interface. Allowing this, and other similar flexibility will help
keep your code organized.

• Don’t worry about efficiency for this program. We will be grading you on your design and
not on whether you’re using the most efficient data structures for storing and updating the
game states. Just use the easiest, functional way you can think of to store the state.

3

