
Introduction to
Computer

Science and
Programming in

C
Session 4: September 11, 2008

Columbia University

Announcements

Reminder: Homework 1 is out. Due 9/23

Additional TA: Peter Lu. Office hours TBA.
UNI: yl2505

Use the message boards.
Counts as class participation.

2

Review

Unix/cunix demo

PuTTY fix

Hello World

Submission procedure

Breaking down Hello World (cut off)

3

PuTTY Fix

http://www.cs.columbia.edu/~bert/courses/1003/putty/

4

Today

Breaking down Hello World (continued)

Variables and basic types

5

Computer Programs
Illustrated

6

User O.S.

Computer
Hardware

Program

7

/*
Bert Huang. My first program.
*/

#include <stdio.h>

int main()
{

 printf("Hello, World!\n");

 return 0;
}

/* comments */

global declarations:
#include external files

main Function

The main() of hello.c

No arguments.

Returns an integer variable.

8

Program
int main()

Arguments

Return Value

9

/*
Bert Huang. My first program.
*/

#include <stdio.h>

int main()
{

 printf("Hello, World!\n");

 return 0;
}

return “0” to OS:
“everything is OK”

C Statements
One-line commands

Always end in semicolon ;

Examples:

call function: printf(“hello”); /* from stdio */

declare variable: int x;

assign variable value: x = 123+456;
10

Variables
Placeholders for values: just like in Algebra

C variables have types:

int – integer valued (1, -23, 128, -999)

char – ASCII character (a, b, $, \n)

float – decimal fractional numbers (1.2, 0.3)

Variables must be declared
11

Variables

Declaring a variable:

I want to use a variable of this type...

I will refer to it as...

int counter;

float ratio, ratio2;

char firstLetter, secondLetter;

12

Manipulating
Variables

Basic arithmetic operators: ^ * / + -

Obey order of operations

Use parentheses () to override order of
operations.

z = (x+y)/2;

13

Types

Why do we need types?

Different types are represented differently in
memory.

Example: Can’t efficiently represent
fractional numbers in base-2.

14

int

4 bytes (on Unix)

Base-2 representation.

need one bit for + or -

Range: -2^31 to 2^31

Variants: short (2 bytes), long (8 bytes),
unsigned (only non-negative)

15

char

1 byte

ASCII representation in base-2

Range: 0-255 (lots of unused)

16

float

Stands for “floating decimal point”

4 bytes

Similar to scientific notation: 4.288 * 10^3

Very different interpretation of bits than int
and char.

Range: -10^(38) to 10^(38)

17

Casting

We can cast a variable as a different type than
its actual type:

float x;
int y;
y = 3;
x = (float) y;

Casting allows us to correctly use variables of
different types together.

18

printf

printf([formatted text], [arguments],...);

Use placeholders for variables:
 %d int
 %f float
 %c char

Examples:

printf(“%d plus %d is %d\n”, x, y, x+y);

19

Reading

Practical C Programming: Chapters 3 and 4.

20

