Introduction to Computer Science and Programming in C

Session 4: September 11, 2008
Columbia University
Announcements

- Reminder: Homework 1 is out. Due 9/23
- Additional TA: Peter Lu. Office hours TBA. UNI: yl2505
- Use the message boards. Counts as class participation.
Review

- Unix/cunix demo
- PuTTY fix
- Hello World
- Submission procedure
- Breaking down Hello World (cut off)
PuTTY Fix

Today

- Breaking down Hello World (continued)
- Variables and basic types
Computer Programs Illustrated

User

O.S.

Computer Hardware

Program
Bert Huang. My first program.

#include <stdio.h>

int main()
{
 printf("Hello, World!\n");

 return 0;
}
The main() of hello.c

- No arguments.
- Returns an integer variable.
Bert Huang. My first program.

#include <stdio.h>

int main()
{
 printf("Hello, World!\n");

 return 0;
}

return "0" to OS: "everything is OK"
C Statements

- One-line commands

- Always end in semicolon ;

Examples:

- call function: `printf("hello"); /* from stdio */`

- declare variable: `int x;`

- assign variable value: `x = 123+456;`
Variables

- Placeholders for values: just like in Algebra

- C variables have **types**:
 - **int** – integer valued (1, -23, 128, -999)
 - **char** – ASCII character (a, b, $, \n)
 - **float** – decimal fractional numbers (1.2, 0.3)

- Variables must be **declared**
Variables

- Declaring a variable:
 - I want to use a variable of this type...
 - I will refer to it as...
 - int counter;
 - float ratio, ratio2;
 - char firstLetter, secondLetter;
Manipulating Variables

- Basic arithmetic operators: \(^\wedge\) \(^\ast\) \(/\) \(+\) \(-\)

 - Obey order of operations

 - Use parentheses () to override order of operations.

 \[
 z = (x+y)/2;
 \]
Types

Why do we need types?

Different types are represented differently in memory.

Example: Can’t efficiently represent fractional numbers in base-2.
int

- 4 bytes (on Unix)
- Base-2 representation.
- Need one bit for + or -
- Range: -2^{31} to 2^{31}
- Variants: short (2 bytes), long (8 bytes), unsigned (only non-negative)
char

- 1 byte
- ASCII representation in base-2
- Range: 0-255 (lots of unused)
float

- Stands for “floating decimal point”
- 4 bytes
- Similar to scientific notation: 4.288×10^3
- Very different interpretation of bits than int and char.
- Range: -10^{38} to 10^{38}
Casting

- We can cast a variable as a different type than its actual type:

```java
float x;
int y;
y = 3;
x = (float) y;
```

- Casting allows us to correctly use variables of different types together.
```c
printf([formatted text], [arguments],...);

Use placeholders for variables:

- `%d` int  
- `%f` float  
- `%c` char

Examples:

```c
printf("%d plus %d is %d\n", x, y, x+y);
```
Reading

- Practical C Programming: Chapters 3 and 4.