
Introduction to
Computer

Science and
Programming in

C
Session 25: December 4, 2008

Columbia University

Announcements

Final Exam: Tuesday, 12/16, 1:10 pm - 4:00 pm
Mudd 233 (our normal room)

2

Variables Revisited

What actually happens when we declare
variables?
char a;

C reserves a byte in memory to store a.

Where is that memory? At an address.

Under the hood, C has been keeping track of
variables and their addresses.

3

Pointers

We can work with memory addresses too. We
can use variables called pointers.

pointer: an address variable

All pointers are the same size, regardless of
what they point to

4

Pointer Operators

Declaring a pointer variable:
int * x_ptr; /* declares a pointer to an int */

The & operator means “the address of this
thing”

The * operator means “the thing this points to”

5

& and *

int * x_ptr; /* declares a pointer to an int */
int x, y;

x_ptr = &x; /* set x_ptr to the address of x */

y = *x_ptr; /* set y to whatever x_ptr points to */

/* is equivalent to */
y = x;

6

Some vocabulary

* operator is also known as dereference

a pointer references a variable in memory

7

Pointers and Arrays

C blurs the distinction between pointers and
arrays

When we declare an array
char A[10];

what is A?

A can be treated as a pointer to the first
element of A

8

Pointers and Arrays

In other words, the following two lines are
equivalent:

char * array_ptr = &A[0];

char * array_ptr = A;

This also means the following:

A[0] == *array_ptr

A[1] == *(array_ptr+1)

9

Pointers and Arrays

When we want a function to be able to modify
the value of a variable, we pass it by reference
sscanf(price, “$%f”, &dollars);

Because arrays are basically pointers, this
happens automatically when we pass arrays to
functions.

For example:
strcpy(stringA, stringB);

10

Pointer Arithmetic

What if A was an array of ints?
A[1] == *(array_ptr+1) ??

Yes. C automatically keeps pointer arithmetic
in terms of the size of the variable type being
pointed to.

Be careful to keep track of what C does for you
and what it does not.

11

Memory
Management

We discussed before that C does not like to
initialize arrays with variable sizes.

To get around this, you can use stdlib.h’s
malloc() command.

malloc() stands for memory allocation.

malloc(N) returns a pointer to an allocated
block of memory of N bytes.

12

malloc()

Typical usage:
int N = 40000;
char *giantString = malloc(N*sizeof(char));

Returns a null pointer if malloc fails.

When we are done with the memory, we can
free it with:
free(giantString);

13

Memory Leaks

int N = 40000;
char *giantString = malloc(N*sizeof(char));
strcpy(giantString, argv[1]);
giantString = malloc(N*sizeof(char));

Now a huge block of memory is allocated but
the program has no way of finding it.

If this code runs a lot, the amount of memory
the program is using will keep growing.

14

Measuring
Algorithms

In Computer Science, we want to be able to
describe the running time and memory
requirements of our algorithms

A couple challenges:

Running time and space typically depend on
input size

Algorithms are run on different machines

15

Measuring
Algorithms

For varying input sizes, we can write our time
and space requirements as functions of N.

For varying implementation, we need our
description to not care about constant factors.

16

Example

What is the running time of a function that
sums an array of size 5 on a machine that takes
2 seconds to add numbers?

What if array is size N?

What if it takes c seconds to add?

17

4 * 2 = 8

2(N-1)

c(N-1)

Big-O

g(n) = O(f(n))
means that for some c
g(n) ≤ c(f(n))

In other words, big-O means less than some
constant scaling.

In big-O notation, what is the running time to
sum an array of size N? c(N-1) =

18

O(N)

Sorting

One of the most studied problems in CompSci

We are given N numbers

Put the numbers in order

least to greatest, greatest to least,
alphabetical, etc.

compare two numbers at at time

19

Algorithm for Sorting

In English: Given 50 index cards with numbers
on them, how do you put them in order?

Lots of different algorithms. We’ll go over three

20

Bubble Sort

Worst algorithm ever

Start at beginning of deck

Compare current and next cards. If next card
should be before current, swap. Move to next
card.

Keep passing through deck until no more
swaps necessary.

21

Selection Sort

Smarter cousin of Bubble Sort

Find the smallest unsorted card

Swap smallest with the first unsorted card

Consider that card sorted, and repeat

22

Merge Sort

If deck is 2 or less cards, just sort and return

Split deck into two halves

Merge Sort each half-deck (recursion!)

Then, merge the two half-decks:

Look at top of each deck. Take the smallest of
the two. Repeat until decks are combined.

23

Running time

Bubble Sort: O(N^2)

Selection Sort: O(N^2)
But the algorithm seems better organized.

Merge Sort: O(N log(N))

24

Pseudocode

Mix of English and programming language

Use programming constructs to keep thoughts
organized: loops, conditionals, variables

But use any syntax that is clear and consistent

And use functions that are obvious to abstract
busywork

25

Pseudocode example

print “Enter your friends’ names:”
while input is not “quit”
 input = keyboardInput
 add input to array Contacts

sort Contacts
output Contacts

Even though this is a simple piece of code, if it
were written in C, it would be much harder to
understand

26

Modular
Programming

modular - Designed with standardized units or
dimensions, as for easy assembly and repair or
flexible arrangement and use: modular furniture;
modular homes.

Organize programs into interchangeable parts

Keep functions that deal with a certain type
together, but separate them from functions that
deal with other types.

27

28

calendar.c

struct appointment
sort()

addEvent()
cancelEvent()

printDate()
printMonth()
printWeek()

...
main()

29

calendar.c
#include “calendar.h”

main()

calendar.h
struct appointment

<function declarations>

print.c
#include “calendar.h”

printDate()
printMonth()
printWeek()

event.c
#include “calendar.h”

sort()
addEvent()

cancelEvent()

Pointers to pointers

Recall that C arrays and pointers are basically
the same:
int A[10];
int *A_ptr = A;

How does C store 2d arrays?
int B[10][10];

B is a pointer to an array of pointers

30

int **

int * int

Pointers to pointers

31

B B[0]

B[1]

B[2]

B[3]

B[4]

B[0][0] B[0][1] B[0][2] B[0][3] B[0][4]

B[1][0] B[1][1] B[1][2] B[1][3] B[1][4]

B[2][0] B[2][1] B[2][2] B[2][3] B[2][4]

B[3][0] B[3][1] B[3][2] B[3][3] B[3][4]

B[4][0] B[4][1] B[4][2] B[4][3] B[4][4]

malloc()

We can dynamically allocate multi-
dimensional arrays

int **C;
C = (int**) malloc(N*sizeof(int*));

for (i=0; i<N; i++) {
 C[i] = (int*)malloc(N*sizeof(int));
}

32

Pointers to functions

It is occasionally useful to use pointers to
functions

Since functions are stored in memory, we can
reason about their addresses too

This allows us to say, “run the function at
address _____ on these arguments”

Useful for being truly general, e.g. stdlib qsort

33

Function Pointer
Syntax

int (*f_ptr)();
/* pointer to function that returns an int */

Parentheses are important. Without
parentheses, f_ptr looks like it returns a
pointer to an int.

int (*f_ptr)(int, int);
/* function takes 2 ints as arguments */

int greater_than(int a, int b);
f_ptr = greater_than;

34

qsort example

Stdlib’s qsort function is a general sorting
function.

Sort an array of any type, using any
comparison criterion

Define that comparison as a function pointer

void qsort(void *base, size_t n, size_t size,
 int (*cmp)(const void *, const void *));

35

qsort example

Compare function should take two entries A
and B,

return +1 if A>B

return -1 if A<B

return 0 if A==B

36

qsort example
int greater_than(const void *x, const void *y)
{
 float *a = (float*)x, *b = (float*)y;

 if (*a>*b)
 return 1;
 if (*a<*b)
 return -1;
 return 0;
}

void mySort(float A[], int N)
{
 int (*f_ptr)(const void *, const void *)
 = greater_than;
 qsort((void*)A, N, sizeof(float), f_ptr);
}

37

Linked Lists

Store each element in a struct that contains the
data and a pointer to the next struct: a node

Keep a pointer to the first node

Following a linked list is like a scavenger hunt

38

Linked Lists

struct node {
 int data;
 struct node * next;
};

struct node *start;

How do we add a node at beginning of list?

Allocate new node, set next pointer to start,
set start to new node.

39

Linked Lists
How do we add a node to the end of the list?

Follow pointers to last node, allocate new
node, set last node’s next to new node.

How do we add in the middle of the list?

Set previous node’s next to new node, set
new node’s next to next node.

How do we delete a node?
40

Doubly Linked Lists

Keep a next pointer and a previous pointer.

A little extra work for adding and removing,
but allows for faster backtracking.

41

Binary Trees

Finding an item in a list or array is usually an
O(N) operation.

We can create a structure that makes it faster
(at a cost; a tradeoff)

We use a tree structure, which is like a linked
list, except each node has more than one
pointer.

42

Binary Trees

Binary tree: Each node has left and right child.

Left child is less than, right child is greater
than

struct node {
 int data;
 struct node *left;
 struct node *right;
}

struct node *root;

43

Binary Trees

Inserting number x into a Binary Tree:

0. Start at root

1. If current node is NULL, create new node
and set node to x

2. Otherwise,
if x >= current node, follow right pointer,
else follow left pointer. Goto 1.

44

Binary Trees
Finding an item x in a binary tree:

0. Start at root

1. If current node is x, return

2. If x >= current node, follow right pointer
else, follow left pointer

3. If node is NULL, return “not found”,
otherwise goto 1.

45

Binary Trees

On average, lookup and insertion take
O(log N) time

But worst case is still O(N)

46

