Introduction to Computer Science and Programming in C

Session 24: December 2, 2008
Columbia University
Announcements

- Homework 4 is out, due last day of class: December 4 before class
- Final Review Thursday 12/4
- Final Exam: Tuesday, 12/16, 1:10 pm - 4:00 pm Mudd 233 (our normal room)
Review

- A look at C++ and Java
Artificial Intelligence

- General discussion of AI
- Problem Solving (by searching)
- Machine learning

- Some examples from Artificial Intelligence: A Modern Approach by Russell, Norvig
Intelligent Agents

- Act “rationally” (performance metric)
- Percepts, actions, goals, environment
- e.g., Medical diagnosis system
 - P: Symptoms, findings, patient’s answers
 - A: Questions, tests, treatments
 - G: Healthy patient, minimize costs
 - E: Patient, hospital
Types of Agents

- Reflex agents – simple reaction to percepts:
 if car-in-front-is-braking then initiate-braking

- Internal state agents – store in memory information about the world
 Updating state becomes one of the actions the agent must consider

- Goal-based – best action depends on goal
Problem Solving

- A formal definition of a problem includes:
 - state space, initial state, goal state
 - actions/operators, successor function
 - path, path cost, goal test
- Find a path to the goal state with minimal cost:
 - Search cost vs. path cost
Problem Example: 15 puzzle

- State: the location of 1-15 and a space on a 4x4 board.
- Operators: blank moves left, right, up, down
- Goal test: check if numbers are in order
- Path cost: each step costs 1
Search Strategies

- Search strategies can have these properties:
 - Completeness: will find solution if one exists
 - Time complexity: how many steps to solution
 - Space complexity: how much memory
 - Optimality: if multiple solutions, will find best
Depth First

- Try first untested operator until no more operators possible
- If not at goal, backtrack and try next operator
- DFS fails if infinite search paths
Breadth First

- Try each operator at each level before trying next operator
Iterative Deepening

- Run depth first search to limited depths, iteratively increasing depth
Best-First Heuristic Search

- We can design a function that approximates how close each state is to solution based on prior knowledge.

- e.g., in the 15 puzzle, we can use the number of moves if we directly move each block to its final destination.

- Best-First search – explore state with least heuristic score $h(x)$.

A* Search

- Explore state with the best current path cost plus heuristic cost: $g(x)+h(x)$

- Given certain mathematical properties of $h(x)$, A* is optimal and often the best way to solve problems like 15-puzzle
Search Strategies

<table>
<thead>
<tr>
<th></th>
<th>Depth First</th>
<th>Breadth First</th>
<th>Iterative Deepening</th>
<th>“Best” First</th>
<th>A*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>O(b^m)</td>
<td>O(b^d)</td>
<td>O(b^d)</td>
<td>O(b^m)</td>
<td>O(b^d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O(p(d))</td>
</tr>
<tr>
<td>Space</td>
<td>O(bm)</td>
<td>O(b^d)</td>
<td>O(bd)</td>
<td>O(b^m)</td>
<td>O(b^m)</td>
</tr>
<tr>
<td>Optimal</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Complete</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
A* demo

Learning

- How do we store and update internal states to make rational decisions after seeing data?

- Machine learning: use Statistics and AI techniques together

- Example: Face recognition

- Supervised versus unsupervised

- Online versus batch learning
Learning

- Some goals of Machine Learning
 - Classification
 - Regression
 - Clustering