
Introduction to
Computer

Science and
Programming in

C
Session 21: November 18, 2008

Columbia University

Announcements

Deergha’s Office hours this week moved to
Tuesday (today) from 6 PM to 8 pm

Homework 4 is out, due last day of class:
December 4 before class

Final Exam: Tuesday, 12/16, 1:10 pm - 4:00 pm
Mudd 233 (our normal room)

2

Review

Homework 3 solutions

Revisiting pointers:

Pointers to pointers
(multidimensional arrays)

Pointers to functions
(qsort example)

3

Today

Data structures:

Linked Lists

Binary Trees

4

Data Structures

Ways to store data so that computation can be
done efficiently

Most basic: variables, 1-d arrays

Depending on the computational task, more
sophisticated data structures can be helpful,
with a tradeoff

We’ll look at two very common data structures

5

What’s Wrong with
Arrays?

Arrays are of fixed size

We can allocate variable sized arrays, but once
they are allocated, the size becomes fixed

Consider a task where a user inputs as few or
as many integers as desired, and we must store
them. How do we store them?

6

Linked Lists

Store each element in a struct that contains the
data and a pointer to the next struct: a node

Keep a pointer to the first node

Following a linked list is like a scavenger hunt

7

Linked Lists

struct node {
 int data;
 struct node * next;
};

struct node *start;

How do we add a node at beginning of list?

Allocate new node, set next pointer to start,
set start to new node.

8

Linked Lists
How do we add a node to the end of the list?

Follow pointers to last node, allocate new
node, set last node’s next to new node.

How do we add in the middle of the list?

Set previous node’s next to new node, set
new node’s next to next node.

How do we delete a node?
9

Doubly Linked Lists

Keep a next pointer and a previous pointer.

A little extra work for adding and removing,
but allows for faster backtracking.

10

Binary Trees

Finding an item in a list or array is usually an
O(N) operation.

We can create a structure that makes it faster
(at a cost; a tradeoff)

We use a tree structure, which is like a linked
list, except each node has more than one
pointer.

11

Binary Trees

Binary tree: Each node has left and right child.

Left child is less than, right child is greater
than

struct node {
 int data;
 struct node *left;
 struct node *right;
}

struct node *root;

12

Binary Trees

Inserting number x into a Binary Tree:

0. Start at root

1. If current node is NULL, create new node
and set node to x

2. Otherwise,
if x >= current node, follow right pointer,
else follow left pointer. Goto 1.

13

Binary Trees
Finding an item x in a binary tree:

0. Start at root

1. If current node is x, return

2. If x >= current node, follow right pointer
else, follow left pointer

3. If node is NULL, return “not found”,
otherwise goto 1.

14

Binary Trees

On average, lookup and insertion take
O(log N) time

But worst case is still O(N)

15

Reading

Practical C Programming. Chapter 17

16

