Introduction to
Computer
Science and
Progra,néming in

Session 21: November 18, 2008
Columbia University




Announcements

» Deergha’s Office hours this week moved to
Tuesday (today) from 6 PM to 8 pm

o Homework 4 is out, due last day of class:
December 4 before class

» Final Exam: Tuesday, 12/16, 1:10 pm - 4:00 pm
Mudd 233 (our normal room)




Review

o Homework 3 solutions
o Revisiting pointers:

o Pointers to pointers
(multidimensional arrays)

o Pointers to functions
(gsort example)




Today

o Data structures:
o Linked Lists

o Binary Trees




Data Structures

Ways to store data so that computation can be
done efficiently

Most basic: variables, 1-d arrays

Depending on the computational task, more
sophisticated data structures can be helpful,
with a tradeoff

We'll look at two very common data structures

5




What’s Wrong with
Arrays?

o Arrays are of fixed size

o We can allocate variable sized arrays, but once
they are allocated, the size becomes fixed

» Consider a task where a user inputs as few or
as many integers as desired, and we must store
them. How do we store them?




Linked Lists

» Store each element in a struct that contains the
data and a pointer to the next struct: a node

» Keep a pointer to the first node

» Following a linked list is like a scavenger hunt




Linked Lists

o struct node {
int data;
struct node * next;

}i

struct node *start;

o How do we add a node at beginning of list?

» Allocate new node, set next pointer to start,
set start to new node.




Linked Lists

How do we add a node to the end of the list?

» Follow pointers to last node, allocate new
node, set last node’s next to new node.

How do we add in the middle of the list?

o Set previous node’s next to new node, set
new node’s next to next node.

How do we delete a node?

9




Doubly Linked Lists

» Keep a next pointer and a previous pointer.

o A little extra work for adding and removing,
but allows for faster backtracking.

10




Binary Trees

o Finding an item in a list or array is usually an
O(N) operation.

o We can create a structure that makes it faster
(at a cost; a tradeoff)

o We use a tree structure, which is like a linked
list, except each node has more than one
pointer.

11




Binary Trees

Binary tree: Each node has left and right child.

o Left child is less than, right child is greater
than

struct node {
int data;
struct node *left;
struct node *right;

}

struct node *root;

12




Binary Trees

o Inserting number x into a Binary Tree:
o (. Start at root

o 1. If current node is NULL, create new node
and set node to x

o 2. Otherwise,
if x >= current node, follow right pointer,
else follow left pointer. Goto 1.

13




Binary Trees

o Finding an item x in a binary tree:
o (. Start at root
o 1. If current node is x, return

o 2.If x >= current node, follow right pointer
else, follow left pointer

o 3. If node is NULL, return “not found”,
otherwise goto 1.

14




Binary Trees

o On average, lookup and insertion take
O(log N) time

o But worst case is still O(IN)

15




Reading

» Practical C Programming. Chapter 17

16




