Introduction to
Computer
Science and
Progra,néming in

Session 19: November 11, 2008
Columbia University

Announcements

o Homework 3 due now

o Homework 4 is out, due last day of class:
December 4 before class

» Final Exam: Tuesday, 12/16, 1:10 pm - 4:00 pm
Mudd 233 (our normal room)

Review

o Pseudocode:
o Precise like programming language
o Understandable like English
o Headers, .h files
o Declares global vars, functions, custom types

» Shared between modules of large program

3

Today

» Modular Programming (continued)

o Makefiles

SCC -C

» Last time I had trouble compiling individual
file without a main function

o Use “gcc -c” to compile a file as an object

without a main function. Default output for
file.c is file.o

Modular
Programming

» modular - Designed with standardized units or
dimensions, as for easy assembly and repair or
flexible arrangement and use: modular furniture;
modular homes.

» Organize programs into interchangeable parts

» Keep functions that deal with a certain type
together, but separate them from functions that
deal with other types.

6

calendar.c

struct appointment
sort()
addEvent()
cancelEvent()
printDate()
printMonth()
printWeek()

main()

7

calendar.c calendar.h
#include “calendarh” &__y struct appointment
main() <function declarations>

v

print.c

event.c
#include “calendar.h”

#include “calendar.h”

printDate()
printMonth() sort()
printWeek() addEvent()

cancelEvent()

(@)

ODbject Oriented
Programming

Strictly modularize programs
All variables are objects
Computation is the interaction of objects

All objects have “classes”

Classes

C does not explicitly use classes, but it is useful
to think in terms of classes.

A class is a generalization of a type
Type - what kind of information is stored

Class - what kind of information is stored
what we can do with this information

A collection of variable fields and functions

10

C and Classes

» We can approximate OOP with C

» Put type definition (struct) and functions that
work with that type in separate file

o OQP likes to set certain fields and functions
public and private (whether they are visible to
other objects). C can’t do this.

11

ODbject Oriented
Programming

» OQOP is like the abolishment of goto

o Organizes programmers’ thinking to reduce
errors

o Helps programmers collaborate

12

Makefiles

o We use “make”, which is a compiler utility

o “make” looks for a file in your directory called
“Makefile”, which contains:

o Comments
o Macros

o Rules

13

Makefile Syntax

o Comments are indicated by a #
This is a comment, it won’t affect make

o Macros are defined by =
SIZE =10
and used with $(): echo $(SIZE) -> echo 10

» Rules, the most important part, are the
compiling commands

14

Makefile Rules

target: source [source2] [source3]
command

Then, typing “make target” in Unix will
compile source using command.

Make checks if target needs to be compiled

If command is omitted, default command is
used: $(CC) $(CFLAGS) -c source

15

Makefiles

o If target already was compiled and source has
not changed, make will skip

o Extremely helpful when compiling multi-file
code

o Macros allow programmers to customize
makefiles for different systems

16

F e e e e
Makefile for unix systems

using a GNU C compiler

F e e e
CC=gcc

CFLAGS=-g -Wall -D_USE FIXED PROTOTYPES _ -ansi

all: hist

hist: hist.o ia.o
$(CC) $(CFLAGS) -o hist hist.o 1ia.o

hist.o: hist.c ia.h
ia.o: ia.c ia.h

clean:
rm -f hist hist.o ia.o

17

Reading

» Practical C Programming. Chapter 18

18

