
Introduction to
Computer

Science and
Programming in

C
Session 19: November 11, 2008

Columbia University

Announcements

Homework 3 due now

Homework 4 is out, due last day of class:
December 4 before class

Final Exam: Tuesday, 12/16, 1:10 pm - 4:00 pm
Mudd 233 (our normal room)

2

Review
Pseudocode:

Precise like programming language

Understandable like English

Headers, .h files

Declares global vars, functions, custom types

Shared between modules of large program
3

Today

Modular Programming (continued)

Makefiles

4

gcc -c

Last time I had trouble compiling individual
file without a main function

Use “gcc -c” to compile a file as an object
without a main function. Default output for
file.c is file.o

5

Modular
Programming

modular - Designed with standardized units or
dimensions, as for easy assembly and repair or
flexible arrangement and use: modular furniture;
modular homes.

Organize programs into interchangeable parts

Keep functions that deal with a certain type
together, but separate them from functions that
deal with other types.

6

7

calendar.c

struct appointment
sort()

addEvent()
cancelEvent()

printDate()
printMonth()
printWeek()

...
main()

8

calendar.c
#include “calendar.h”

main()

calendar.h
struct appointment

<function declarations>

print.c
#include “calendar.h”

printDate()
printMonth()
printWeek()

event.c
#include “calendar.h”

sort()
addEvent()

cancelEvent()

Object Oriented
Programming

Strictly modularize programs

All variables are objects

Computation is the interaction of objects

All objects have “classes”

9

Classes
C does not explicitly use classes, but it is useful
to think in terms of classes.

A class is a generalization of a type

Type - what kind of information is stored

Class - what kind of information is stored
 what we can do with this information

A collection of variable fields and functions
10

C and Classes

We can approximate OOP with C

Put type definition (struct) and functions that
work with that type in separate file

OOP likes to set certain fields and functions
public and private (whether they are visible to
other objects). C can’t do this.

11

Object Oriented
Programming

OOP is like the abolishment of goto

Organizes programmers’ thinking to reduce
errors

Helps programmers collaborate

12

Makefiles

We use “make”, which is a compiler utility

“make” looks for a file in your directory called
“Makefile”, which contains:

Comments

Macros

Rules

13

Makefile Syntax

Comments are indicated by a #
This is a comment, it won’t affect make

Macros are defined by =
SIZE = 10
and used with $(): echo $(SIZE) -> echo 10

Rules, the most important part, are the
compiling commands

14

Makefile Rules

target: source [source2] [source3]
 command

Then, typing “make target” in Unix will
compile source using command.

Make checks if target needs to be compiled

If command is omitted, default command is
used: $(CC) $(CFLAGS) -c source

15

Makefiles

If target already was compiled and source has
not changed, make will skip

Extremely helpful when compiling multi-file
code

Macros allow programmers to customize
makefiles for different systems

16

Example
#---#
#
 Makefile for unix systems

 #
using a GNU C compiler

 #
#---#
CC=gcc
CFLAGS=-g -Wall -D__USE_FIXED_PROTOTYPES__ -ansi

all:
 hist

hist: hist.o ia.o

 $(CC) $(CFLAGS) -o hist hist.o ia.o

hist.o: hist.c ia.h

ia.o: ia.c ia.h

clean:

 rm -f hist hist.o ia.o

17

Reading

Practical C Programming. Chapter 18

18

