
Introduction to 
Computer 

Science and 
Programming in 

C
Session 16: October 28, 2008

Columbia University



Announcements

Homework 3 is out. Due November 6th before 
class

Everybody check your homework 2 
submission files. If something is wrong with 
your tar file, go to office hours and get help 
submitting.

2



Review

Pointer: variable that stores memory address

Declare using:
int * x_ptr; /* a pointer called x_ptr to an int*/

Pointer operations:

* <pointer> – the thing <pointer> points to 

& <variable> – the address of <variable>

3



Today

Pointers and Arrays

(correction on argv)

Memory Management

4



Some vocabulary

* operator is also known as dereference

a pointer references a variable in memory

5



Pointers and Arrays

C blurs the distinction between pointers and 
arrays

When we declare an array
char A[10];

what is A?

A can be treated as a pointer to the first 
element of A

6



Pointers and Arrays

In other words, the following two lines are 
equivalent:

char * array_ptr = &A[0];

char * array_ptr = A;

This also means the following:

A[0] == *array_ptr

A[1] == *(array_ptr+1)

7



Pointers and Arrays

When we want a function to be able to modify 
the value of a variable, we pass it by reference
sscanf(price, “$%f”, &dollars);

Because arrays are basically pointers, this 
happens automatically when we pass arrays to 
functions.

For example: 
strcpy(stringA, stringB);

8



Pointer Arithmetic

What if A was an array of ints?
A[1] == *(array_ptr+1) ??

Yes. C automatically keeps pointer arithmetic 
in terms of the size of the variable type being 
pointed to.

Be careful to keep track of what C does for you 
and what it does not.

9



*argv[]
int main(int argc, char *argv[])

Last class we were unsure if *argv[] is a pointer 
to an array or an array of pointers: 

If it was a pointer to an array, it would just be 
an array. 

So (char *) argv[]
(*argv)[1] points to the first character of the 
first word

10



Memory 
Management

We discussed before that C does not like to 
initialize arrays with variable sizes.

To get around this, you can use stdlib.h’s 
malloc() command.

malloc() stands for memory allocation.

malloc(N) returns a pointer to an allocated 
block of memory of N bytes.

11



malloc()

Typical usage:
int N = 40000;
char *giantString = malloc(N*sizeof(char));

Returns a null pointer if malloc fails.

When we are done with the memory, we can 
free it with:
free(giantString);

12



Management

With malloc() and free(), we are able to use 
arbitrary amounts of memory and able to clear 
memory to save space.

This is one aspect of C that makes some people 
consider C too powerful.

Many other languages have automated 
memory management.

13



Memory Leaks

int N = 40000;
char *giantString = malloc(N*sizeof(char));
strcpy(giantString, argv[1]);
giantString = malloc(N*sizeof(char));

Now a huge block of memory is allocated but 
the program has no way of finding it. 

If this code runs a lot, the amount of memory 
the program is using will keep growing.

14


