
Introduction to
Computer

Science and
Programming in

C
Session 15: October 23, 2008

Columbia University

Announcements

Homework 3 is out. Due November 6th before
class

Everybody check your homework 2
submission files. If something is wrong with
your tar file, go to office hours and get help
submitting.

2

Today

Midterm solutions

Pointers

Return midterm at end of class

3

About Grading

If you’re struggling:

I will reweight your grades if you perform
better at the end of the semester

I’ll try to make your final grade reflect how
well you know the material at the end of the
course

4

Midterm Statistics

Mean = 51.6, Median = 56, Std = 10.9 (out of 60)

Mean = 86%, Median = 93%, Std = 18%

5

10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

Score

Nu
m

be
r o

f S
tu

de
nt

s

Variables Revisited

What actually happens when we declare
variables?
char a;

C reserves a byte in memory to store a.

Where is that memory? At an address.

Under the hood, C has been keeping track of
variables and their addresses.

6

Pointers

We can work with memory addresses too. We
can use variables called pointers.

pointer: an address variable

All pointers are the same size, regardless of
what they point to

7

Pointer Operators

Declaring a pointer variable:
int * x_ptr; /* declares a pointer to an int */

The & operator means “the address of this
thing”

The * operator means “the thing this points to”

8

& and *

int * x_ptr; /* declares a pointer to an int */
int x, y;

x_ptr = &x; /* set x_ptr to the address of x */

y = *x_ptr; /* set y to whatever x_ptr points to */

/* is equivalent to */
y = x;

9

sscanf()

fgets(input, sizeof(input), stdin);
sscanf(input, "%d", &index);

This tells sscanf() the address of the variable
index so it knows where to stick the result.

10

*argv[]

int main(int argc, char *argv[])

*argv[] is a bunch of strings, but argv[]
(without asterisk) is an array of pointers.

11

FILE pointers

When we use the FILE variables from stdio.h,
we always use pointers

FILE *inFile = fopen(“data.txt”, “rw”);

fopen() returns a pointer to a file

Then when we want to write to that file,
fprintf(inFile, “Hello World”);

We give fprintf() an address

12

Example
We’ve talked about using arrays of structures:
struct business fortune[500];

What if we need to reorder these businesses?

Move large structs around

Instead, store an array of pointers

Reorder the pointers, which are each
relatively small.

13

Memory
Management

Using pointers, we are able to work with
variables without explicitly naming each piece
of memory

But then we have to carefully manage what
memory we have allocated and where it is
stored

This allows us to start using variable-size
arrays

14

Reading

Practical C Programming, Chapter 13

15

