
Introduction to
Computer

Science and
Programming in

C
Session 14: October 16, 2008

Columbia University

Announcements

Midterm Exam on 10/21

2

Today

Homework 2 solutions

Midterm review: Every topic from beginning
to C Library

3

Homework 2
Solutions

http://www.cs.columbia.edu/~bert/courses/
1003/homework2_soln.txt

4

1. Introduction
Algorithm – systematic method to solve a
problem.

Handwritten Addition

Characteristics of C:

high-level: similar to English (low-level
would be more similar to machine language)

compiled: convert to machine language
5

2. History and
Architecture

Analog vs. Digital.

Analog - numbers represented by analogy

Digital - numbers represented by symbols

volatile memory vs. non-volatile

6

2. History and
Architecture

Binary representation:

bit: 0 or 1

byte = 8 bits

Base-2 representation

ASCII: standardized table of mapping from
characters to numbers

7

3. Cunix Tutorial

Mostly irrelevant for midterm.

8

4. Variables and
Basic Types

Variables are declared and initialized:
int x = 3;

Basic types: int, char, float

C arithmetic operators: + - * / (not ^)

Casting: (<new type>) variable:
float y = (float) x;

Casting float to int truncates

9

5. Arrays, strings, i/o

Array: an ordered group of variables. Also
often called a vector.
int scores[10];

individual entries are accessed with index,
which begins at 0 and ends at size-1.
int x = scores[4];

String: an array of characters, used to store
text.

10

5. Arrays, strings

The end of a string is marked with a NULL
character, written ‘\0’
‘S’ , ‘a’, ‘m’, ‘\0’

Strings can be read from standard input (stdin)
and from command line

See 5th lecture slides or book for syntax

11

6. If, loops
Control flow: instead of a linear path through
your code, if statements and loops allow you to
design multiple paths

if (<Boolean statement>)
 ...do stuff...
else
 ...do something else...

while (<Boolean statement>)

12

6. If, loops

for (<initialization>; <Boolean>; <count>)

switch(<variable>) {
 case <value>:
 ...do stuff...
 break;
 case <another value>:
 ...do stuff...
 break;
 default:
 ...do default stuff...
 break;
}

13

7. Functions, scope

Functions allow us to abstract repeated code.

arguments: input values to function

return value: output value of function

When we call a function, we give it arguments
and it returns a response.

14

7. Functions, scope

scope: area of program where variable is valid

Variables are only valid within block

block: area of code designated by curly-braces

15

8. Recursion

When a function calls itself

Towers of Hanoi: to move N discs,
1) move N-1 discs out of the way
2) move bottom disc to target peg
3) move N-1 discs onto target

Produces elegant algorithms that are easier to
understand

16

9. More types

Struct: data structure holding multiple fields–
Any assortment of other variables.

Union: block of memory that can hold
variables of different types. “multi-purpose

enum: type with discretized settings,
represented with numbers, but numerical
value is meaningless (like chars)

17

10. File I/O

stdio.h provides the FILE type

fopen(<FILE>, <mode>);

fclose(<FILE>);

18

10. File I/O

19

Name Input Output
fprintf()
printf()
sprintf()

fputc(), fputs()
fscanf()
scanf()
sscanf()

fgetc(), fgets()

formatted text + args file

formatted text + args stdout

formatted text + args string

char, string file

file formatted text + args

stdin formatted text + args

string formatted text + args

file (char) int, string

11. C Preprocessor

Commands that modify your code text before
compilation

#include – copies text from external file

#define – find and replace

#ifdef – conditional compilation

20

12. Bit operations
Hexadecimal: base-16 counting. One symbol
for every four bits.

bitwise operations perform same operation on
each bit independently

and & , or | , xor ^ , not ~

left shift << fills with zeros

right shift >> fills with sign bit
21

13. C Libraries

C libraries provide standardized functions,
types macros for portability

We’ve used: stdio.h, string.h

time.h, stdlib.h, ctype.h, math.h, assert.h,

...and some more

22

