
Introduction to
Computer

Science and
Programming in

C
Session 12: October 9, 2008

Columbia University

Announcements

Homework 2 is out. Due 10/14 before class

Midterm Review on 10/16, exam on 10/21

Bert’s office hours on 10/14 moved to
Wednesday 10/15, 1-3 PM (or by appointment)

2

Review

Leftovers from FILE I/O:
 ferror(), feof(), rewind()

C preprocessor:

#include

#define

#ifdef, #else, #endif, #ifndef

3

Today

Bit Operations and Boolean Logic

4

Bit Operations

Sometimes we want to manipulate the actual
bits of variables

This is useful when we want extremely
efficient and compact programs

Specialized devices like cellphones, watches

Graphics programming

5

Hexadecimal
It’s often useful to represent numbers in
hexadecimal, which is base-16, instead of
binary (base-2) or decimal (base-10).

This is because hexadecimal (base-16) means
each symbol corresponds to four bits in binary
(base-2)

printf() can convert to hex. using the
placeholder %x

6

Hexadecimal

Consider a four-bit “word”.

The word can have 2^4 possible settings:
0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

In binary, these settings represent 0-15

In hex., we encode these settings as the
symbols: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

7

Hexadecimal

8

Hexadecimal Binary Hexadecimal Binary
0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

Hexadecimal

9

Hexadecimal Binary Hexadecimal Binary
0x0 0000 0x8 1000

0x1 0001 0x9 1001

0x2 0010 0xA 1010

0x3 0011 0xC 1011

0x4 0100 0xB 1100

0x5 0101 0xD 1101

0x6 0110 0xE 1110

0x7 0111 0xF 1111

Boolean Logic

Bit Operators
C has a few operators that manipulate bits:

and &

or |

xor (exclusive or) ^

not ~

Shift, << and >>
10

Bitwise “and”

For each bit independently, if both operands
are 1, the corresponding bit in the result is 1.

1 & 1 = 1 1 & 0 = 0
0 & 1 = 0 0 & 0 = 0

char c1 = 0x45, c2 = 0x71, c3;
c3 = c1 & c2;

c1: 0100 0101
c2: 0111 0001
c3: 0100 0001 ------> 0x41

11

Bitwise “or”

For each bit independently, if either operand is
1, the corresponding bit in the result is 1.

1 | 1 = 1 1 | 0 = 1
0 | 1 = 1 0 | 0 = 0

char c1 = 0x45, c2 = 0x71, c3;
c3 = c1 | c2;

c1: 0100 0101
c2: 0111 0001
c3: 0111 0101 ------> 0x75

12

Bitwise “xor”

For each bit independently, if exactly one
operand is 1, the corresponding result bit is 1.

1 ^ 1 = 0 1 ^ 0 = 1
0 ^ 1 = 1 0 ^ 0 = 0

char c1 = 0x45, c2 = 0x71, c3;
c3 = c1 ^ c2;

c1: 0100 0101
c2: 0111 0001
c3: 0011 0100 ------> 0x34

13

Bitwise “not”

AKA complement, flip. Set all 1’s to 0, and all
0’s to 1.

~1 = 0 ~0 = 1

char c1 = 0x45;
c2 = ~c2;

c1: 0100 0101
c2: 1011 1010 ------> 0xBA

14

Left Bit Shift <<

Moves bits to the left
Bits shifted outside the variable are erased
Bits shifted into the variable are 0’s

00100 << 1 = 01000 00100 << 2 = 10000

char c1 = 0x45, c2;
c2 = c1 << 2;

c1: 0100 0101
c2: 0001 0100 ------> 0x14

15

Right Bit Shift >>
Moves bits to the right
Bits shifted in from the right take the value of
the sign bit (unless variable is unsigned)

On signed variables, the first bit is reserved to
indicate sign and the meanings of 1 and 0 are
reversed

00100 >> 1 = 00010 00100 >> 2 = 00001
11011 >> 1 = 11101 11011 >> 2 = 11110

16

Shifting to multiply

x << 1 is equal to x*2
x >> 1 is equal to x/2

The flipped representation of negative
numbers preserves this.

Just like shifting in decimal is equivalent to
multiplying or dividing by 10: 123 x 10 = 1230

17

Shifting to multiply

Shifting is faster than multiplying on modern
computer hardware

But compilers know this, so gcc will
automatically convert code to take advantage

So no need for programmers to use shifting to
multiply.

18

Set, clear, test

Now that we can operate on lots of bits at a
time, how do we work with one bit at a time?

We want to do three things to each bit:

Set a bit: set bit to 1

Clear a bit: set bit to 0

Test a bit: get the value of bit

19

Testing a bit
Say we want to get the value of the 4th bit of:
char c1;

We can “and” it with 0000 1000 (0x08),
which we can also write as:
1 << 3

(c1 & (1 << 3))!=0

c1: 0100 0101
 & 0000 1000

(1 << 3) is sometimes called a “mask”
20

Setting a bit

Again using a mask, we can set the 4th bit by
“or”-ing with the mask:

c1 = c1 | (1 << 3);
c1 |= (1<<3);

c1: 0100 0101
 | 0000 1000
 0100 1101

21

Clearing a bit

Clearing is slightly trickier. But we can just flip
all the bits then set the bit we want and flip it
back.

c1 = ~((~c1) | (1 << 3));

c1: 0100 0101 ~1011 1010
 0100 0101
~c1: 1011 1010
 | 0000 1000
 1011 1010

22

Wrap up

Bit operations are very fast and space-efficient

Useful when writing time sensitive code

(Unix uses bit operations for job management)

23

Reading

Practical C Programming Ch. 11

24

