
Introduction to
Computer

Science and
Programming in

C
Session 11: October 7, 2008

Columbia University

Announcements

Homework 2 is out. Due 10/14 before class

Midterm Review on 10/16, exam on 10/21

Bert’s office hours on 10/14 moved to
Wednesday 10/15, 1-3 PM (or by appointment)

2

Review

File I/O – use the FILE type

fprintf(), printf(), sprintf() – print formatted
text to file, stdout, string

fscanf(), sscanf() – read formatted text from
file, string into variables

fgets(), fgetc(), fputs(), fputc() – get string/
char from file, put string/char in file.

3

Today

Leftovers from FILE I/O:
 ferror(), feof(), rewind()

C preprocessor

4

ferror()

Since reading files communicates with OS,
there can be more errors outside your control.

Check for errors in your FILE variables with
the function
int err = ferror(myFile);

Returns non-zero if error occurs.
Zero if everything is fine.

5

feof()

Similarly, we can check if a FILE variable has
reached the end of a file without calling
fscanf() or fgets().

Instead, use
while(feof(myFile)==0)

feof() returns non-zero if EOF has occurred.

6

rewind()

When we want to start reading a file at the
beginning, use rewind()

rewind(myFile);
fscanf(myFile, “%f\n”, &x);

Similar to calling fclose() and reopening file,
but instead the OS won’t let someone else grab
the file.

7

C preprocessor

Special text that gets preprocessed by compiler

Essentially modifies your code right before
compiling.

Preprocessor commands always begin with #

8

#include
#include <stdio.h>

Copies the text in stdio.h into your code,
including function definitions for printf(), etc.

#include “myFile.h”

copies local file myFile.h into current program

Use <> brackets for standard library (built in C
files), “” quotation marks for local files (your
own files)

9

#define

#define VALUE 10

Macro replaces all occurrences of the string
VALUE in your program with 10.

Useful for defining constants:
#define MAX_NAME 30
char name[MAX_NAME];

Preprocessor does not check syntax for these
replacements: we can do very weird stuff

10

#define
#define FOR_ALL for (i=0; i<ARRAY_SIZE; i++)
FOR_ALL {
 data[i] = 0;
}

#define just replaces text.

#define FIRST 7
#define SECOND 5
#define BOTH FIRST+SECOND
int main() {
 printf(“The square of both parts is %d\n”,
 BOTH * BOTH);
 return 0;
}

11

#define
Especially useful for setting constant array
sizes.

Some compilers not allow you to define an
array with a const variable size:
int size;
int A[size]; /* should cause error */

const int size=10;
int A[size]; /* causes errors in many compilers */

#define SIZE 10;
int A[SIZE]; /* OK in any C compiler */

12

Conditional
Compilation

#ifdef WORD

Checks if WORD is defined as a macro in the
preprocessor. If so, keep the following lines
until #endif

Also #ifndef, #else and #undef

13

#ifdef Examples

#define DEBUG
...
#ifdef DEBUG
 printf(“The value of x is %d\n”, x);
#endif

#ifndef _HELPER_INCLUDED
#include “helper.h”
#define _HELPER_INCLUDED
#endif

14

#ifdef Examples

/*** COMMENT OUT THIS SECTION
startFunction();
counter++; /* increase the count */
finishFunction();
*** END OF COMMENTED SECTION **/

#undef DEBUG
#ifdef DEBUG
startFunction();
counter++; /* increase the count */
finishFunction();
#endif

15

Parameterized
Macros

#define can also create macros with arguments

#define SQR(x) (x * x)

Like a function, but just replaces text.

16

Viewing the
preprocessed code
GCC has a special flag to just run the
preprocessor

gcc -E myFile.c

If output is too long, we can send output to a
file using >
gcc -E myFile.c > output.txt

Saves gcc’s output to output.txt

17

