
Introduction to
Computer

Science and
Programming in

C
Session 10: October 2, 2008

Columbia University

Announcements

Homework 2 is out. Due 10/14 before class

Midterm Review on 10/16, exam on 10/21

2

Review
struct - data structures containing multiple
variable fields

union - variables of different types that share
the same memory

typedef - define a new type

enum - type representing discrete symbols

Programming tips
3

Today

File I/O

4

Review of Basic I/O

printf(“formatted text”, arg1, arg2,...);

Related to fprintf(), sprintf()

fgets(string, sizeof(string), stdin);

Related to fgetc()

sscanf(string, “formatted text”, &var1, &var2...);

Related to fscanf(), scanf()

5

File I/O

So far, we have received input from the
keyboard and output to the terminal.

Bigger programs perform computation on
larger amounts of input and output.

We need to be able to read from and write to
files.

6

File I/O Examples

“pico hello.c” – pico reads hello.c as output,
then when you save, outputs the text to a file.

“gcc hello.c -o hello” – gcc reads hello.c,
converts to machine language, and outputs to
hello

7

FILE

stdio.h defines a special type, FILE

Variables of type FILE are always declared
with an asterisk * before its name

FILE *input_file;

(This is because they are pointers. More on that
after the midterm)

8

fopen()

FILE variables have a special initialization
function: fopen();

fopen(<file name>, <mode>);

<file name> – the filename as you would
reference it in Unix (i.e. “hello.c”)

<mode> is a code for how you will use file:
read (r), write (w), binary (b)

9

fopen() Examples

Read a list of words from “names.txt”:

input_file = fopen(“names.txt”, “r”);

Write the solution to Hanoi with 10 discs:

output_file = fopen(“hanoi10.txt”, “w”);

Replace “teh” with “the” in “essay.txt”

text_file = fopen(“essay.txt”, “wr”);

10

fclose()

When done with a FILE, call fclose() to tell the
Operating System we’re done.

fclose(<FILE variable>);

11

Writing to output

fprintf(<target file>, “formatted text”, arg1,...);

format text just like printf() with placeholders

fprintf(stdout, “text”, args);

is equivalent to
printf(“text”, args);

12

Writing to output

fputc(<character>, <file>);

writes a character to a file

fputs(<string>, <file>);

writes a string to a file

Why would we use these instead of fprintf()?

13

Reading from input
fscanf(<file>, “formatted text”, &arg1, &arg2,...);

returns an int: number of arguments
successfully converted, or End of File (EOF)

fgets(<file>, sizeof(<string>), <string>);

Just like before; we used stdin as the file

fgetc(<file>);

Returns an int (EOF or convert to char)

14

Buffered Output

OS often stores output in buffer before writing
to the actual file.

Writing to file is relatively slow, writing to
buffer is fast (buffer is in RAM)

Force OS to write buffer to file using fflush()
fflush(<file>);

15

Summary of
Functions

16

Name Input Output
fprintf()
printf()
sprintf()

fputc(), fputs()
fscanf()
scanf()
sscanf()

fgetc(), fgets()

formatted text + args file

formatted text + args stdout

formatted text + args string

char, string file

file formatted text + args

stdin formatted text + args

string formatted text + args

file (char) int, string

File Formats

Standardized format for organizing data in a
file

Simple example, homework 2, problem 4:
<float>
<float>
<float>
<float>
...

17

File Formats

Data files representing more complicated data
structures can require more complicated
formats

Often files have headers. For example, storing
a 2-d array in a file:
rows: <number of rows>
cols: <number of columns>
<float> <float> <float>...
<float> <float> <float>...
...

18

File Formats

Ideally, format should be readable by humans
and by computer programs

Computer programs are not very robust, so
must be specific (i.e. tab versus spaces)

When you have huge amounts of data, you can
give up on human-readability and use binary
format for efficiency (read about it in the book)

19

Reading

Practical C Programming, Chapter 14

The C Programming Language, Section 7.5

20

