Introduction to
Computer
Science and
Progra,néming in

Session 10: October 2, 2008
Columbia University




Announcements

o Homework 2 is out. Due 10/ 14 before class

o Midterm Review on 10/16, exam on 10/21




Review

struct - data structures containing multiple
variable fields

union - variables of different types that share
the same memory

typedef - define a new type
enum - type representing discrete symbols

Programming tips




o FileI/O

Today




Review of Basic I/O

printf (“formatted text”, argl, arg2,...);
o Related to fprintf(), sprintf()
fgets(string, sizeof(string), stdin);

o Related to fgetc()

sscanf (string, “formatted text”, &varl, &var2...);

o Related to fscanf(), scanf()




File I/0O

» So far, we have received input from the
keyboard and output to the terminal.

o Bigger programs perform computation on
larger amounts of input and output.

o We need to be able to read from and write to
files.




File I/O Examples

“pico hello.c” — pico reads hello.c as output,
then when you save, outputs the text to a file.

“gcc hello.c -0 hello” — gcc reads hello.c,

converts to machine language, and outputs to
hello




FILE

stdio.h defines a special type, FILE

Variables of type FILE are always declared
with an asterisk * before its name

FILE *input_file;

(This is because they are pointers. More on that
after the midterm)




fopen()

FILE variables have a special initialization
function: fopen();

fopen(<file name>, <mode>);

<file name> — the filename as you would
reference it in Unix (i.e. “hello.c”)

<mode> is a code for how you will use file:
read (r), write (w), binary (b)

9




fopen() Examples

o Read a list of words from “names.txt”:

o 1input file = fopen(“names.txt”, “r”);

o Write the solution to Hanoi with 10 discs:

o output file = fopen(”hanoill.txt”, “w”);

» Replace “teh” with “the” in “essay.txt”

o text file = fopen(“essay.txt”, “wr”);

10




fclose()

o When done with a FILE, call fclose() to tell the
Operating System we’re done.

o fclose(<FILE variable>);

11




Writing to output

fprintf(<target file>, “formatted text”, argl,...);

format text just like printf() with placeholders

fprintf(stdout, “text”, args);

is equivalent to
printf (“text”, args);

12




Writing to output

» fputc(<character>, <file>);

e writes a character to a file

o fputs(<string>, <file>);
o writes a string to a file

» Why would we use these instead of fprintf()?

13




Reading from input

fscanf (<file>, “formatted text”, &argl, &arg2,...);

o returns an int: number of arguments
successfully converted, or End of File (EOF)

fgets(<file>, sizeof(<string>), <string>);
o Just like before; we used stdin as the file
fgetc(<file>);

o Returns an int (EOF or convert to char)

14




Buffered Output

o OS often stores output in buffer before writing
to the actual file.

o Writing to file is relatively slow, writing to
buffer is fast (buffer is in RAM)

» Force OS to write buffer to file using fflush()
fflush(<file>);

15




summary of
Functions

Name Input Output
fprintf() formatted text + args file
printf() formatted text + args stdout
sprintf() formatted text + args string
fputc(), fputs() char, string file
fscanf() file formatted text + args
scanf() stdin formatted text + args
sscanf() string formatted text + args
fgetc(), fgets() file (char) int, string

16




File Formats

o Standardized format for organizing data in a
file

» Simple example, homework 2, problem 4:
<float>
<float>
<float>
<float>

17




File Formats

o Data files representing more complicated data
structures can require more complicated
formats

» Often files have headers. For example, storing
a 2-d array in a file:

rows: <number of rows>

cols: <number of columns>
<float> <float> <float>...
<float> <float> <float>...

18




File Formats

» Ideally, format should be readable by humans
and by computer programs

o Computer programs are not very robust, so
must be specific (i.e. tab versus spaces)

o When you have huge amounts of data, you can
give up on human-readability and use binary
format for efficiency (read about it in the book)

19




Reading

» Practical C Programming, Chapter 14

» The C Programming Language, Section 7.5

20




