Introduction to Computer Science and Programming in C

Session 1: September 2, 2008
Columbia University
Administrative
About the course

- General overview of Computer Science while learning how to program in C.

- **Instructor: Bert Huang** Tues. 2:30 - 4:30 PM CEPSR 624

- **TA: Deergha Sahni** Wed. 3:00 - 5:00 PM TA room

- Tuesdays and Thursdays at 1:10 PM-2:25 PM

Requirements and Textbooks

- Basic computer skills
- CUNIX account
- The C Programming Language (2nd Edition) by Brian Kernighan and Dennis Ritchie
- Practical C Programming (3rd Edition) by Steve Oualline
Course Policies

- Grading:
 - 4 homework assignments, 15% each.
 - In-class Midterm Exam, 15%
 - Final Exam, 20%
 - Class Participation, %5
Course Policies

- **Grievances:**
 - Type and print argument/correction on paper and deliver to TA.

- Attendance and Reading
 - In your best interest.
Assignments in this course should be done individually.

http://www.cs.columbia.edu/education/honesty/
Courseworks

- We will be using the courseworks message board. http://courseworks.columbia.edu
Who am I?

- PhD student in Computer Science department.
- I do Machine Learning research:
 - A mix of Artificial Intelligence and Statistics.
- I learned to program in C eight years ago.
- Still use it often when I need very efficient programs. For everyday research I use MATLAB.
Who are you?

- Non-CS majors looking for programming skills.

- Potential CS majors (warning).

- You will learn C but you should be able to quickly pick up other programming languages.
Introduction to “Introduction to Computer Science and Programming in C”
What is Computer Science?

- Scientific study of computers.
- “What can and can’t computers do?”
- “If a computer can do something, how can we do it efficiently?”
What is a computer?

- A device that executes a sequence of computations and instructions.
- Modern computers are electronic and digital.
- Does pencil and paper count as a computer?
Programs

- These sequences of instructions and computations is called a **program**.

- We’ll be designing programs in this course.

- These programs will be based on **algorithms**.

Example Problem to solve: Add a list of large numbers.
123 + 456 + 789 = ?

Too much to compute in one step, so break down into smaller steps.

123 + 456 + 789 = 1,368
Algorithms

- Why are algorithms important?
 - Need to break down tasks into instructions computers are able to execute.
 - By defining algorithms, we can describe how to solve even more complex tasks.
 - $(123 + 456) + 789$
Languages

- Computers operate on binary circuits:
 - **bits** are either on (1) or off (0).
 - Basic operations (adding, multiplying, etc).
 - But we do not want to write our programs in 0’s and 1’s!
 - Instead we use programming languages.
Languages

- Want language to be close to English, but more precise.

- PCP describes legal system as attempting to program using imprecise English.

- Many disputes over interpretation of wording in legal text.
Languages

- We will learn the C programming language.
- C is a “high-level” language; close to English.
- C was designed in the 1970’s by Dennis Ritchie for programming operating systems: Unix.
- C is very popular and is the basis for a few other popular languages:
 - C++, Java, Objective-C, C#
Characteristics of C

- C is both praised and criticized for the amount of freedom given to the programmer.
- C is a compiled language
 - a compiler analyzes your code and translates it to efficient machine code.
- We will be using the open-source GNU Compiler Collection or “gcc”
Reading

- Read Chapter 1 in Practical C Programming.
- Short introduction which basically goes over what we talked about today, in more detail in some parts and less detail in others.