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ABSTRACT 
The size of human fingers and the lack of sensing precision 
can make precise touch screen interactions difficult. We 
present a set of five techniques, called Dual Finger 
Selections, which leverage the recent development of multi-
touch sensitive displays to help users select very small 
targets. These techniques facilitate pixel-accurate targeting 
by adjusting the control-display ratio with a secondary 
finger while the primary finger controls the movement of 
the cursor. We also contribute a “clicking” technique, called 
SimPress, which reduces motion errors during clicking and 
allows us to simulate a hover state on devices unable to 
sense proximity. We implemented our techniques on a 
multi-touch tabletop prototype that offers computer vision-
based tracking. In our formal user study, we tested the 
performance of our three most promising techniques 
(Stretch, X-Menu, and Slider) against our baseline (Offset), 
on four target sizes and three input noise levels. All three 
chosen techniques outperformed the control technique in 
terms of error rate reduction and were preferred by our 
participants, with Stretch being the overall performance and 
preference winner.  

Author Keywords 
Touch screens, tabletop displays, two-finger, bi-manual, 
interaction techniques, precise target acquisition. 

ACM Classification Keywords 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces — Input devices and strategies, Interaction 
styles, Evaluation/methodology. 

INTRODUCTION 
The ability to directly touch and manipulate data on the 
screen without using any intermediary devices has a very 
strong appeal to users. In particular, novices benefit most 
from the directness of touch screen displays. A fast learning 
curve and inherent robustness (no movable parts) makes 

touch screens an ideal interface for interacting with public 
installations, such as information kiosks, automated teller 
machines, ticketing machines, or gambling devices.  

While touch screen use is widespread in special purpose 
applications, the slow adoption of touch screens into more 
general computing devices has be attributed to known 
issues of relatively high error rates, arm fatigue, and lack of 
precision [2]. Due to technical restrictions, most 
commercially available touch screen devices in use today 
are only capable of tracking a single point on the surface of 
the device. However, with the recent emergence of many 
multi-touch prototype devices [1, 11, 14, 22, 25, 26], 
research on multi-finger and multi-hand touch interactions 
has increased [4, 7, 27]. In addition to dealing with the 
same issues as the single-touch machines, the underlying 
technology of multi-touch sensitive devices (such as vision-
based sensing [25, 26]) often tends to make their input more 
noisy.  

When running software developed for a normal mouse 
interface on such a touch screen, these issues become 
problematic. Today’s WIMP (windows, icons, menus and 
pointing) user interfaces require frequent selection of very 
small targets. For example, window resize handles are often 
just 4 pixels wide. Noisy input, lower tracking resolution, 
and large potential touch area of a finger now become a 
problem. Furthermore, fingertips can occlude small targets 
depriving users of visual feedback during target acquisition.   
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Figure 1. Precise dual finger selection techniques 
enable pixel-precise selections and manipulations 
on multi-touch screens. This image shows the use of 
Dual Finger X-Menu in selecting “slow 10X” mode. 



Also, the user’s hands and arms may contribute to the 
occlusion problem. Depending on screen orientation, the 
user may be forced to either look “under hand” (with 
horizontally positioned screens) or “over hand” (with 
angled or vertically positioned screens).  Finally, it is often 
difficult to decide the optimal point in the finger’s contact 
area which should anchor the cursor, leaving the usual 
choice to the center of mass. This can lead to a small but 
pervasive disconnect between the user’s expectations 
regarding cursor position and what is actually being sensed 
and computed. 

These issues have been recognized by researchers who have 
proposed several solutions: adding a fixed cursor offset 
[21], enlarging the target area [19], and providing on-screen 
widgets to aid in selection [2]. Unlike previous work, we 
explore the benefits of multi-touch capable devices to 
provide fluid dual-finger interactions for pixel-accurate 
targeting. In the techniques presented in this paper, the 
secondary (non-pointing) finger can quickly modify or 
switch cursor manipulation modes without disrupting the 
primary (pointing) finger.  

We present an iteratively designed set of five techniques 
that allow the user to simultaneously perform both cursor 
steering and selection of assistance mode (in the form of 
cursor offset, scale, speed reduction, or a combination). In 
addition to the precise selection techniques, we contribute a 
“clicking” technique, called SimPress, which reduces 
motion errors during clicking and allows us to simulate a 
hover state on devices unable to sense proximity. 

RELATED WORK 
Difficulties with precise interactions on touch screen 
devices have been addressed before, initially by Potter et al. 
[21]. Their Take-Off technique provides a cursor with a 
fixed offset above the tip of a finger when the user is 
touching the screen. Lifting the finger off the screen 
triggered selection (“click”). While this method is effective 
for most targets sizes, it has been found ineffective when 
the target size is smaller than 4 pixels. Sears and 
Shneiderman [24] explored cursor stabilization 
improvements that effectively slowed down the cursor 
movement in various regions around the initial finger 
contact point, thus allowing for pixel-precise selection. 
While this method performed well for the target acquisition 
task, a precise steering task, such as drawing, would be hard 
due to varying cursor speed.   

More recently, Albinsson and Zhai [2] explored several on-
screen widgets for increasing precision while selecting 
small targets on a touch screen. Their interactions were 
designed to be used with touch screens capable of reporting 
only a single contact point and therefore the users were 
required to execute multiple discrete steps before selecting 
the target. These steps were delimited by the user lifting 
their finger from the screen, thus impeding the overall 
interaction performance. Interestingly, they observed that 
even though their baseline zooming technique 

(ZoomPointing) performed best out of the four techniques 
compared, its main drawback of losing overview or context 
can be a significant problem in many applications.  

Increasing the relative size of screen targets has also been 
explored by scaling the display space [19] or scaling the 
motor space [3, 6]. The work of Olwal and Feiner [19] 
experimented with hand gestures that activated various 
levels of fish-eye distortion in the interface to facilitate 
target selection. Techniques that adaptively increase the 
motor space while leaving the displayed image unchanged, 
such as those by Blanch et al. [6] or Baudisch et al. [3], 
show promising results without introducing screen 
distortions, but require that the system know all target 
locations. This information might not be available in many 
of today’s applications. More importantly, such techniques 
require the use of a relative pointing device such as a 
mouse. Without such devices, they introduce an 
unpredictable cursor offset when applied directly to an 
absolute pointing device such as a touch screen. 

Buxton [8] identified that most current user interfaces 
require an interaction model consisting of at least 3 
different states (out-of-range, tracking, and dragging). 
However, many touch sensitive devices can only reliably 
sense location in one state thus making it hard to 
disambiguate between dragging and tracking (hover). 

The use of a stylus (pen) is generally preferred in many 
interfaces that require precise interactions. However, while 
a stylus has a much smaller tip, the associated issues with 
hand tremor and resolution make the selection task of small 
targets more difficult than with a mouse. Ren and Moriya 
[23] report that a limiting size for stylus targets is about 1.8 
mm, below which even the stylus interaction requires 
additional assistance. 

Much research has been performed on bimanual interaction 
in user interfaces. In their pioneering work, Buxton and 
Myers [9] demonstrated that users tend to parallelize 
interaction tasks between hands thus gaining significant 
performance improvements. Bier et al. [5], in their 
Toolglass and Magic Lenses system, allowed the user to 
control the transparent tool palette with the non-dominant 
hand, while the dominant hand controlled the primary 
cursor with the mouse. This simultaneous bimanual 
operation eliminated many inefficiencies typical of modal 
interfaces. Some research by Kabbash et al. [16] points in 
the opposite direction, claiming that requiring the user to 
coordinate actions of their hands in order to perform two-
handed interactions may complicate the overall task and 
slow performance. 

Two-finger and two-handed interactions for the activation 
of various tools, menus and widgets have been explored by 
researchers in many related fields: on tabletop surfaces [7, 
12, 22, 27], 3D volumetric displays [13], tangible user 
interfaces [15, 20], virtual reality [10], and augmented 
reality [4]. Rekimoto presented a novel capacitance-based 
sensing architecture, called SmartSkin [22], together with 



several multi-handed and multi-touch techniques for 
enabling the manipulation of objects projected on the 
surface. Cutler et al. [10] present bimanual interaction 
research where the user can perform two-handed 
interactions to manipulate both their perspective and three-
dimensional models on a 3D tabletop display. Recently, 
Malik et al. [18] explored using vision-based hand tracking 
over a tabletop surface to perform multi-finger and whole-hand 
gestures to interact with a remote display.  

DESIGN GUIDELINES 
To address the precision problem of touch screen 
interactions we developed Dual Finger Selections, two 
finger (or bi-manual) interactions that allow the user to 
improve targeting precision when necessary without 
hindering simple targeting tasks.  Dual Finger Selections 
were designed in an iterative fashion. During their 
development we followed the following guidelines:  

1) Keep simple things simple: The ability to directly touch 
an object in order to select it (without any offset or 
displacement) is probably the most appealing aspect of 
touch screens. We aim to support this direct manner of 
interaction and require that further assistance is 
invoked only when the user explicitly requests it.  

2) Provide an offset to the cursor when so desired: In 
addition to not occluding the cursor with the finger 
while pointing, a spatial offset between the finger and 
the cursor makes it possible to obtain a more 
comfortable position when pointing to hard to reach 
areas (for example: the corner of the screen). The offset 
should be user-invoked and temporary. Fixed 
permanent offsets (such as the one used in the Take-Off 
technique [21]) require the users to continuously 
compensate their targeting even in situations when the 
target is large enough to be easily selected by direct 
touch.  

3) Enable the user to modify the control-display ratio: 
Provide an increased control-display ratio when so 
desired to aid in targeting and to reduce tracking noise.  
This change of the control-display ratio should not 
involve the pointing finger. 

Before discussing the details of our dual finger selection 
techniques, it is important to outline the device 
requirements that enable our interactions. 

ENABLING TECHNOLOGIES 
Our techniques require a multi-touch screen that is capable 
of simultaneously tracking at least two independent 
contacts on the surface. We also assume that in addition to 
the location of contacts, their contact areas are reported as 
well. A brief description of our prototype multi-touch 
device can be found later in this paper.  

Since most touch screens and tabletops cannot identify 
which of the individual user’s fingers or hands is touching 
the surface without special gloves [7], we have assumed 
that the first contact with a tabletop surface is a primary 

finger, while the second contact is a secondary finger. The 
primary finger is the finger that the user normally points 
with and tends to be the index finger on the dominant hand. 
The secondary finger is a helper finger which in Dual 
Finger Selections can be any other finger on the same or 
opposite hand. In most cases we observed that users used 
the index finger on their non-dominant hand as the 
secondary finger.  With some interactions, a single-handed 
operation is desired, and then the thumb of the dominant 
hand can serve as a secondary finger. 

SimPress Clicking 
In addition to disambiguating between fingers, our 
interactions require that the device implement a clicking 
operation distinct from merely coming in contact with the 
surface. Previous techniques that address this issue, such as 
Land-On or Take-Off [21], implicitly perform a “click” 
when the contact between their finger and the surface is 
either established or broken, respectively. Such techniques 
provide a mechanism for clicking, but do not address the 
needs of current user interfaces that require at least 3 
different interaction states [8]: out-of-range, tracking (also 
known as hover or proximity), and dragging. Both tracking 
and dragging states require the contact position to be 
continuously reported; however, most current touch-
sensitive devices only sense location when the contact is 
actually touching the surface, making it difficult to 
approximate those two states. A possible solution is to use 
pressure-sensing technology and map the increased pressure 
to a dragging state, and light pressure to a tracking state.  

Since our device does not report pressure directly, we 
simulated a pressure-sensitive device by mapping the 
changes in the finger’s contact area to the changes in 
pressure. In addition to applying different finger areas to 
different pressure states (which has been implemented in 
the Synaptics touchpad devices as described by MacKenzie 
et al. [17]), we have attempted to reduce cursor noise while 
the user is changing the pressure states (clicking). The 
stabilization of the cursor movement during clicking is a 
crucial aspect of our technique, which we call SimPress 
(Simulated Pressure). SimPress requires the user to apply a 
small rocking motion with their finger in order to perform a 

Figure 2. A small rocking motion of the user’s finger 
triggers the SimPress clicking technique: a) tracking 
(hover) state, b) dragging (click) state. (The top left 
corners show the actual area of contact detected by 
our device as well as the stabilized cursor location.)

a)  b)  



“click”, as seen in Figure 2. Since the user starts pointing 
with their finger tip and then rocks the finger to click, the 
increase in area happens predominately in one direction: 
from the tip point towards the user’s wrist. We used this 
fact to stabilize the cursor position by fixing the cursor 
location to the top middle point of the contact area, rather 
then the center of mass (Figure 2). In our preliminary 
experiments, we found that this point naturally moves much 
less than the center point and therefore reduces the cursor 
noise during clicking.  

By fixing the cursor to the top-middle point, the user is also 
able to make a more drastic change in the contact area 
without significantly disturbing the cursor location, which 
aids in reduction of the unintentional clicks. Two thresholds 
on contact area were established to disable spurious 
switching between the clicking states due to noise or hand 
tremor. Crossing the high threshold activates the click-on 
state, and crossing the low threshold returns back to click-
off state. Due to the finger size differences, these high and 
low thresholds should be automatically recalibrated for 
each person. Currently, the calibration is done manually.  

SimPress only works if the user is always approaching the 
tabletop from the same direction, otherwise the orientation 
of the hand and arm has to be taken into account. A future 
improvement can potentially use the orientation of the click 
itself to track the orientation of the user’s hand. However, 
given that in our experiments, the orientation of the user 
interface was fixed, our users tended to orient themselves 
straight-ahead. In our dual finger selection techniques, all 
click events are always triggered by the primary finger. 

DUAL FINGER SELECTIONS 
Out of the five design prototypes, the first two present 
simple two-finger extensions of the current state of the art. 
However, those provide important starting points for our 
later designs and serve as baseline techniques for 
comparisons. Therefore, we include them in our discussion. 

Dual Finger Offset 
Our initial and simplest Dual Finger Selection technique, 
called Dual Finger Offset, provides a user triggered cursor 
offset. The cursor offset is not enabled by default. However, 
by placing a secondary finger anywhere on the surface, the 
cursor is subsequently offset with respect to the primary 
finger by predefined fixed amount. This offset always 
places the cursor above the primary finger. To 
accommodate both left- and right-handed users the cursor is 
placed to the left or to the right of the primary finger based 
on the relative position of the secondary finger. For 
example, by placing the secondary finger to the left of the 
secondary finger to the left of the primary, the cursor 
appears to the left of and above the primary finger.   

Dual Finger Midpoint  
To provide both variable offset and enable finer control of 
the cursor speed, we have designed the Dual Finger 
Midpoint technique. This technique is triggered by placing 

the secondary finger on the surface. The cursor is then 
offset to the midpoint between the primary and the 
secondary finger. A similar behavior occurs on any resistive 
touchpad that places the pointer at the midpoint of all 
touches (e.g., SMART Board Interactive Whiteboard [1]). 

While both fingers are in contact, moving either or both 
fingers controls the movement of the cursor. Clicking is still 
performed only by the primary finger. This technique 
allows for variable reductions in cursor speed: when both 
fingers are moving in the same direction and the same 
speed, the cursor follows with the same speed, while when 
only one finger is moving, the cursor moves with half the 
speed of that finger. 

While the Dual Finger Midpoint technique was very 
appealing to our initial testers and very simple to master, it 
did not provide enough assistance for selecting the smallest 
targets (2 pixels or less). At best, this method reduces the 
finger speed by a factor of 2 which yields good results for 
most targets; but it does not provide enough control for the 
smallest targets. An additional shortcoming of this 
technique is that not all locations on the screen are equally 
accessible. For example, screen corners are not accessible 
using midpoint selection. Consequently, the utility of this 
technique is somewhat limited by the fact that in today’s 
user interfaces small targets often are located in the corners 
of the screen. 

Dual Finger Stretch  
Inspired by the strong performance of ZoomPointing 
technique [2], we designed a Dual Finger Stretch technique 
that allows the user to adaptively scale a portion of the 
screen with the secondary finger while the primary finger 
performs the selection. To allow for simultaneous 
“stretching” and selection, the primary finger provides the 
initial anchor location around which the user interface is 
scaled, while the secondary finger identifies the corner of 
the square area which will be scaled. By moving the 
secondary finger closer or further away from the primary 
finger, the square stretching area is reduced or expanded as 
illustrated in Figure 4. Lifting the secondary finger from the 
table resets the interface to its default un-stretched state. 
Upon this reset, the cursor is offset with respect to the 
primary finger and is placed where it was located in the 
stretched state. The cursor offset is reset when all fingers 
are removed from the table. The extent of control-display 
ratio manipulation depends on two physical limits: the 

Figure 3. Dual Finger Midpoint technique positions 
the cursor at exactly the halfway point between the 
two fingers, giving the user both a cursor offset as 
well as a variable reduction of cursor speed.



closest perceptible distance between user’s fingers and the 
largest diagonal of the screen. For most common mid-
screen manipulations, Dual Finger Stretch enables control-
display ratios roughly up to 10. By allowing clutching and 
repeated zooming, it may be possible to further increase this 
ratio.  

The Dual Finger Stretch technique has several advantages 
over the ZoomPointing technique primarily due to the dual 
finger design. First, zooming and selection are not 
decoupled into two separate actions. Instead they can 
happen concurrently which results in a fluid interaction. 
Second, the interface scales in all directions from the 
original primary finger’s location. This provides an 
important advantage over traditional rectangle selection 
where the two points specify the diagonal corners of the 
zooming rectangle (also known as bounding box zoom). 
With the rectangle selection, the user tends to place the 
primary finger off target in order to “capture” the target in 
the zoomed area, while with Dual Finger Stretch, the user 
places the primary finger directly on target and the 
interfaces scales underneath in all directions. Placing the 
finger off-target requires the user’s primary finger to 
traverse an increased distance to perform final selection 
because the target will appear to move away from the finger 
as the zoom level increases. By encouraging placement of 
the primary finger as close to the target as possible, the 
eventual distance that this finger will need to traverse to 
acquire the target is minimized.  

Dual Finger X-Menu 
To allow users to adaptively adjust the control-display ratio 
as well as obtain cursor offset while looking at an un-
zoomed user interface, we have designed the Dual Finger 
X-Menu widget. This circular menu is invoked whenever 
the secondary finger establishes contact with the surface. It 
is positioned so that the finger is located at its center. The 
user can select a particular assistance mode by moving the 
secondary finger to any of the desired regions of the menu 
(Figure 5). Dual Finger X-Menu has six selection areas 

shown in Figure 6. Four areas control the relative speed of 
the cursor: normal, slow 4X, slow 10X, and freeze. Normal 
mode moves the cursor with the same speed as the primary 
finger; the two slow modes reduce the speed of the cursor 
by a factor of 4 and 10 respectively, while freeze mode 
“freezes” the cursor in place, disabling any cursor 
movement.  

In preliminary experiments, we found that the ability to 
completely stop the cursor from moving has two benefits. 
First, by freezing the cursor, the user can quickly and easily 
establish a desired cursor offset. This is accomplished by 
freezing the cursor temporarily, moving the finger to 
achieve the desired offset, and then unfreezing the cursor 
again. Second, when selecting very small targets, even 
small amounts of noise can cause an error. Such noise can 
be due to device tracking errors, tremor in the user’s hand, 
or noise due to the clicking motion. By freezing the cursor 
in place, the user can ensure that the desired selection is 
successful even in very noisy conditions.  

The left two areas on the crossing menu invoke two helper 
modes: “snap” and “magnify”. When snapping is triggered, 
the cursor offset (if any) is removed and the cursor snaps 

Figure 4. Dual Finger Stretch technique adaptively 
scales the user interface: a) The secondary finger 
specifies the square zooming area centered at the 
primary finger’s location, b) Primary finger performs 
precise selection while, simultaneously, the secondary 
finger adjusts the level of magnification. 

Figure 6. Dual Finger X-Menu contains four selection 
areas for cursor speed control (normal, slow 4x, slow 10x 
and freeze), and two toggle areas (snap and magnify). 
Magnify mode presents an integrated magnification 
widget in the middle of the menu, while Snap mode 
removes the current cursor offset.  

Figure 5. Dual Finger X-Menu enables the user to 
adjust the cursor speed by crossing over a particular 
area of the on-screen menu. Freeze mode is selected, 
making the cursor completely immobile.  



back to the current location of the primary finger. This 
mode is useful in repositioning the cursor in the slow 
movement modes because it is easy to run out of tracked 
screen space when using the slow cursor modes. Magnify 
mode presents a small magnification area in the middle of 
the crossing menu that shows the enlarged area under the 
cursor. The magnification factor is fixed at 2X. This mode 
is particularly useful when the primary finger overlaps the 
cursor. In this case the magnified image acts as a lens 
showing the portion of the interface obstructed by the 
primary finger. A simple cursor notification widget displays 
which cursor speed level is currently selected, without 
requiring the user to refer back to the menu. The behavior 
of this notification widget can be seen in Figure 7.  

Dual Finger X-Menu is not operated by clicking, but rather 
by “crossing” the finger into a particular area, which 
enables more experienced users to activate modes by 
simply performing quick strokes in a particular direction. 
With practice, this selection can be made without looking, 
and could therefore allow for an expert mode in which the 
menu could be completely hidden from the user. Removing 
the secondary finger from the surface will cause the menu 
to disappear.  

Dual Finger Slider 
Encouraged by the possibilities of the different interaction 
modes of Dual Finger X-Menu and the simplicity of Dual 
Finger Midpoint, we developed the Dual Finger Slider 
technique, which incorporates the menu’s most useful 
features, but simplifies and streamlines the overall 
interaction (Figure 8). Given that two finger interactions are 
a very natural way of specifying distance, we have designed 
this interaction using the distance between fingers to switch 
between cursor speed reduction modes. This technique does 
not present an on-screen widget to the user. Instead, it relies 
completely on the user’s ability to gauge the spatial 
relationship between their fingers. The same cursor 
notification widget (Figure 7) is used to signal the cursor 
speed to the user. 

Moving the secondary finger towards the primary finger 
reduces the cursor speed in 3 discrete steps. This allows for 
the same reductions in cursor speed that is available in Dual 
Finger X-Menu: normal, slow 4X, slow 10X, and freeze. 
Moving the secondary finger away from the primary 
increases the speed up to the normal speed. Continuing to 

move the fingers apart triggers a “snap” which warps the 
cursor back to the primary finger’s location. Snapping is 
signaled by a distinct sound effect. The distance that the 
secondary finger traverses in switching speed reduction 
modes is predefined and is not dependent on the distance 
between the fingers. The modes are remembered even after 
the user lifts the secondary finger which allows for 
clutching in the interaction.  

PROTOTYPE MULTI-TOUCH TABLETOP DISPLAY 
Our interaction techniques are designed for present and 
future multi-touch screens, and to some extent, they are 
device independent. However, we have developed them on 
a prototype multi-touch tabletop display to facilitate 
research and user studies (see Figure 9). The prototype uses 
a diffuse screen coupled with an infrared camera and 
computer vision algorithm to detect contacts on the tabletop 
surface. The screen is back-projected with the projector 
integrated in the base of the table below the screen. Our 
display uses the infra-red light spectrum for contact 
detection while all projection is done in the visible 

Figure 8. Dual Finger Slider – the right finger 
(primary) controls the cursor, the left finger 
(secondary) is invoking the invisible slider; speed 
reductions modes are achieved by moving the fingers 
closer together: a) normal, b) slow 4x, c) slow 10x, d) 
frozen cursor mode. 

d) 

a) 

b) 

c) 

a) c) b) 

Figure 7. Cursor notification widget signals the 
current amount of cursor speed reduction: a) 4x 
reduction, b) 10x reduction, and c) frozen cursor.  



spectrum. This separation allows the computer vision 
algorithms to ignore the projected display in order to see 
only surface contacts. A similar approach is used in the 
TouchLight [26] display system and elsewhere.  

The screen resolution of our prototype multi-touch device is 
1024 x 768 (pixels), which, given the screen dimensions of 
61 x 46 (cm), yields a pixel size of 0.6mm. The finger that 
is about 1.5 cm wide covers about 25 screen pixels.  

LABORATORY USER STUDY 
To evaluate the Dual Finger Selection and SimPress 
techniques, we conducted a user study that challenged the 
users to select small and large targets using the various 
techniques. Additionally, we were interested in how well 
these techniques perform on devices of very low precision. 
Such devices include touch screens based on a small 
number of sensing elements, touch screens based on noisy 
computer vision processes, and many prototype research 
systems which do not achieve the precision of the mouse 
(e.g. see [25, 26]).  Accordingly, in our experiments we 
added synthetic noise to the sensing system described 
above, and systematically varied its magnitude. 

Twelve paid participants (9 male and 3 female), ages 20–
40, participated in the experiment. All subjects were 
frequent computer users. They had varying experience with 
the touch screens, ranging from “monthly” use to “several 
times a day”, with the average corresponding to “weekly” 
use. All subjects used their right hand as their dominant 
hand. Eleven subjects identified themselves as right-
handed. The single left-handed subject preferred using their 
right hand for mouse operation and chose to use the right 
hand as the dominant pointing hand in the experiments. The 
subjects were pre-screened for color blindness. 

The subjects were asked to perform a simple reciprocal 
target selection task, with square targets of varying widths, 
separated by a fixed distance of 100 pixels. This task is 
loosely based on the Fitts’ Law target acquisition task, but 
without the variation of distance. The task involved clicking 
on a green square target that was surrounded by a green 
circle. The other (inactive) target was colored red and the 

targets alternated between trials. The users were instructed 
to click on the current green target as fast and as accurately 
as possible. We recorded both movement times and error 
rates, but we analyzed completion times only for 
successfully completed trials. We had hypothesized that the 
smallest targets might not be reliably selectable by all the 
techniques tested and therefore were more interested in the 
impact of our techniques on the reduction of error rate, than 
the completion time. 

The experiment consisted of two parts: an evaluation of the 
SimPress technique and a comparative evaluation of the 
four dual finger selection techniques under varying amounts 
of noise. Both used the same testing infrastructure to 
present targets to the user, measure user performance and 
log all experimental data. In addition, the users completed a 
post-experiment user preference questionnaire. 

Part One: SimPress Clicking 
We wanted to determine the performance of SimPress 
clicking technique to obtain a baseline measure of the 
minimal target width that is possible to select reliably 
without additional assistance. An additional motivation was 
to ensure that our subjects mastered and were comfortable 
using SimPress, since we required them to use it throughout 
later experiments. Our subjects were first given an 
introduction to the SimPress technique and then allowed to 
perform 1 practice run before the actual experiment.  

A within-subjects, repeated measures design was used 
consisting of 5 target widths (1, 2, 4, 8, and 16 pixels). The 
widths were chosen to represent the range of smallest 
available targets in a typical GUI. For example, the smaller 
toolbar buttons tend to be between 15 and 20 pixels wide, 
while the resize handles are sometimes less than 5 pixels 
wide. The experiment consisted of 5 sets (1 set per width) 
of 5 trials each, for a total of 25 trials per user. The order of 
the sets was randomized across users.  

Our hypothesis was that the users would be able to reliably 
select only the largest of our small targets (16 pixels) and 
that the finger’s occlusion of the target and the small 
amount of noise still present while clicking would make the 
selection of other target sizes difficult. 

Results 
We performed a repeated measures ANOVA on the mean 
error rate data and found the significant main effect with 
target width (F(4,44)=62.598, p<0.001). The data are 
summarized in Figure 10. Paired samples t-tests show no 
significant differences between the user’s performance with 
8 and 16 pixel targets. A significance difference in 
performance is shown between 2 and 4 pixel targets 
(t(11)=3.95, p=0.002) and 4 and 8 pixel targets (t(11)=4.16, 
p=0.002). The difference between 1 and 2 pixels is of 
borderline significance (t(11)=2.41, p=0.034).  

Contrary to our hypothesis, we found that the threshold 
target size, below which the SimPress technique is not 

Figure 9. Our multi-touch back-projected tabletop 
display prototype uses an infra-red illuminant and 
camera to detect contacts through a diffuse surface.  



reliable alone, is around 8 pixels. These results show that 
SimPress is a viable option for use for most general 
selection tasks in the current user interface. 

Part Two: Comparison of Four Dual Finger Techniques 
For the second part of the experiment, we tested the 
performance of our Dual Finger Selection by comparing the 
three most versatile techniques (Stretch, X-Menu and 
Slider) and the Offset technique. By providing no additional 
assistance other than the cursor offset, the Offset technique 
served as a baseline. Even though the Midpoint technique 
received very positive response from our initial testers, this 
technique was not included due to the relatively small 
assistance that it offered in selection (the maximum 
reduction of the cursor speed was a factor of 2) and lack of 
equal accessibility to all screen locations.  

Additionally, we were interested in how our techniques 
would perform in the presence of noisy input. We note that 
many touch screen devices provide noisier input than 
standard relative pointing devices such as a mouse. This is 
particularly true of a whole class of touch screen devices 
that depend on the video signal for their touch recognition. 
In addition to noise in the video stream, such devices often 
require that the video signal is up-sampled to match the 
screen’s resolution. This up-sampling introduces additional 
sampling noise. In order to test how our techniques deal 
with increased noise, we added Gaussian noise to the 
position of each tracked finger, creating three noise levels: 
low (no additional noise), medium (Gaussian noise with 
σ=0.5), and high (Gaussian noise with σ=2).  

While the noise can be reduced with a use of a filter 
(Kalman filter being the most commonly used), this 
solution either results in a slight cursor lag or overshoot 
when the finger's velocity abruptly changes, as is the case 
with any start or stop of the finger. We believe that there is 
a benefit to having interaction techniques that adaptively 
allow the user to reduce the noise when so desired, leaving 
the noisy, but lag-free, input otherwise. By manipulating 
the control/display ratio, Stretch, X-Menu, and Slider 
implicitly allowed the reduction of the input noise as well.  

Our study followed a within subjects design that tested 3 
noise levels, 4 techniques, and 4 target widths (1, 2, 4, and 
8 pixels) per block. Within each block, the user performed 6 

trials resulting in a total of 288 trials per user. To eliminate 
the effects of switching selection strategies (for example 
deciding to use a different cursor speed reduction for a 
different target size) we discarded the first trial in each 
block. All our techniques were modified to completely reset 
after each click in order to ensure the same starting state for 
all trials.  

Our main hypothesis was that techniques that increase the 
control/display ratio lessen the impact of the input noise. 
Therefore, Stretch, X-Menu and Slider should be less 
affected by the increase in noise, than the Offset technique. 
The second hypothesis was that Slider would perform better 
than X-Menu since the Slider is controlled by the natural bi-
manual way of specifying spatial extent (finger distance), 
rather that the independent finger actions in X-Menu.  

Results 
We performed a 3 (Noise) x 4 (Technique) x 4 (Width) 
repeated measures ANOVA on the mean error rate data and 
found the significant main effects across all conditions. As 
expected, noise had a significant main effect on the error 
rate (F(2,22)=20.24, p<0.001). This confirmed that more 
errors were committed in the higher noise levels. 
Significant main effects were also present for width 
(F(3,33)=150.4, p<0.001) and technique (F(3,33)=169.138, 
p<0.001). Paired samples t-tests show that the Offset 
technique created significantly more errors than the rest 
(t(11)=14.298, p<0.001), while Stretch was better than the X-
Menu or Slider (t(11)=2.864, p=0.015). No significant 
difference was found in the error rate between X-Menu and 
Slider techniques.  

The interaction of technique and width (F(9,99)=29.473, 
p<0.001, Figure 12) is interesting as it shows that our 
assistive techniques (Slider, X-Menu, and Stretch) all 
performed exceptionally well (less than 5% error rate) in all 
noise conditions for targets 2 pixels or larger (no statistical 
differences between techniques). For the smallest target (1 
pixel), Stretch outperformed X-Menu and Slider (with 
borderline significance t(11)=2.64, p=0.023). The interaction 
of noise and technique was also significant (F(6,66)=8.025, 
p<0.001, Figure 11). While the increase of noise greatly 
degraded performance of the Offset technique, the other 3 
techniques show no statistically significant effects to the 
various noise levels. This confirmed our main hypothesis 
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that users are able to lessen the impact of noise and low 
precision by using techniques that allow for control-display 
ratio adjustments.  

Due to the dramatically high number of errors committed 
by our users using the Offset technique, our data contains 
several blocks without a single successful trial (all in 1 
pixel width condition). While this prevented us from 
performing a repeated measures ANOVA on movement 
times, we present the informal analysis of median 
movement time values for blocks for which we have data. 
Median times were chosen to correct for the typical 
skewing due to reaction time data. This also removed the 
influence of any outliers in the data. Aggregating the 
movement times across all noise levels and all target 
widths, the Stretch technique is on average 1s faster than 
Slider (t(11)=5.011, p<0.001). There do not appear to be 
statistical differences in the performance times of Slider and 
X-Menu. This failed to confirm our second hypothesis that 
Slider would outperform X-Menu. Offset’s performance 
times were comparable to other techniques, indicating that 
users did not believe that spending more time on targeting 
would yield more precise targeting with Offset technique. 
Figure 13 shows the performance of techniques with respect 
to target width. The data shows a general trend of more 
time being spent on targeting smaller targets. 

Subjective Evaluation 
The users filled out a post-experiment questionnaire rating 
their experience with four techniques on a 5 point Likert 
scale (1 being most negative and 5 being most positive) 
They were asked to comment on the following categories: 
mental effort, learning time, hand fatigue, enjoyment, and 
performance in low, medium and high conditions.  

Overall, techniques received significantly different results 
(F(3,33)=45.9, p<0.001). X-Menu required the most mental 
effort (average score of 2.88), and the longest time to learn 
(average score of 2.09). Data shows no significant statistical 
differences between techniques with respect to hand 
fatigue. Stretching was the most enjoyable (average score 
of 4.12), followed closely by Slider technique (average 
score of 4.08). We also asked users to rate their overall 
preference for the technique for selecting small targets. 

Stretch was the most preferred (7 subjects), followed by 
Slider (4 subjects), while only one user preferred X-Menu.  

DISCUSSION AND CONCLUSIONS 
Out of the four compared techniques, the top performer and 
most preferred technique, Stretch, was the only one that did 
not provide a cursor offset. This clearly demonstrated that 
the benefit of increased target size successfully 
compensated for the fingertip occlusion factor. The data 
from this experiment is consistent with the results from a 
study by Albinsson and Zhai [2] which also showed that 
their baseline zooming technique outperformed on-screen 
widgets that provided cursor speed control.  

We feel that Dual Finger Stretch is a simple and powerful 
interaction that utilizes the distance between fingers in a 
very natural way. However, in many applications, scaling 
may have an undesired effect of losing overview of the 
interface. Therefore, we were very pleased with the strong 
performance of Slider and X-Menu, which provided 
comparable error rates with a small time penalty of about 1s 
when compared to Stretch. In addition, as our subjects’ 
written comments point out, those techniques strongly 
benefit by the ability to freeze the cursor. As one subject 
describes, freezing the cursor is a functional equivalent to 
presenting a user-controlled “are you sure?” dialogue for 
clicking which enables the user to select a particular point 
without risk of mistake, or go back and re-target. This was 
particularly useful with higher noise levels. Experience 
should also substantially improve our Slider and X-Menu 
because zooming is a very familiar interaction for most 
users. As such, it might have an unfair advantage when 
compared to other speed-controlling techniques. 

The SimPress clicking technique exceeded our performance 
expectations. This enables the novice users to reliably click 
on targets that are as small as 8 pixels. We believe that with 
practice and more thorough calibration, this threshold could 
be further reduced. Some future work on stabilization is 
needed in order to completely remove the remaining noise 
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from clicking. An additional SimPress modification was 
implemented, but not tested, permitting the user to rapidly 
click on targets without requiring the rocking motion. This 
timer solution generates a click event if the contact was 
present on the surface for less than 0.4 s. This allowed the 
simple selection of large targets to remain as direct as 
possible while more complex interactions, such as drag and 
drop, can be performed using the SimPress technique.  

Our study results show that Dual Finger Selections present 
viable solutions for increasing precision and accuracy in a 
small target selection task. They are designed to be used on 
most multi-touch screens, perform well with the increase of 
input noise, and fully utilize the benefits of dual finger 
interactions. Overall, these techniques provide a palette of 
interactions from which the user may chose depending on 
the application. 
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