So… what can’t computers do?

- (Or, can we summarize what can they do?)
- Given all that we’ve learned this semester, it’s actually pretty hard to characterize
- Focus of computation theory is to determine what is computable and what is not
 - Computable implies functions whose output values can be determined algorithmically from their input values
 - So, what’s an example of a noncomputable function?
Formalizing computability

- Several popular ways
 - (Finite) state machines
 - Turing machines
- State machines are a sort of like a flowchart
 - One starts at a “start state”, goal is to get to the “end” or “goal” state
 - State transitions specify what to do based on initial input
 - States represent the “current” computer’s state
 - States implicitly store what has happened before.
 - Problem: intermediate storage?

Example of FSM

- locate the string "abba" in a file containing "aababbbabba..."
- Input: a a b a b b b a b b a
- State: 0 1 1 2 1 2 3 0 1 2 3 4
Turing machine

- A state machine on steroids
- Idea: not only do we have state, but we have storage
- Alan Turing modeled the storage as a "paper tape" in 1936
- The tape is manipulated by a read/write head that can move left and right one space

![Turing Machine Diagram]

Turing Machine’s Computation

- A Turing machine’s computation consists of a sequence of steps that are executed by the control unit

- Each step consists of
 - Observing the symbol in the current tape cell
 - Writing a symbol in that cell
 - Possibly moving the read/write head one cell to the left or right
 - Changing states

- The exact action to be performed is determined by a program that tells the control unit what to do based on the machine’s state and the content of the current tape cell
Simple Turing example

- Add one to a number already encoded on tape
- We encode it as a binary number, and surround it with the start/end states ("*"
- Let's do this...

<table>
<thead>
<tr>
<th>Current state</th>
<th>Current cell content</th>
<th>Value to write</th>
<th>Direction to move</th>
<th>New state to enter</th>
</tr>
</thead>
<tbody>
<tr>
<td>START</td>
<td>*</td>
<td>*</td>
<td>Left</td>
<td>ADD</td>
</tr>
<tr>
<td>ADD</td>
<td>0</td>
<td>1</td>
<td>Right</td>
<td>RETURN</td>
</tr>
<tr>
<td>ADD</td>
<td>1</td>
<td>0</td>
<td>Left</td>
<td>CARRY</td>
</tr>
<tr>
<td>ADD</td>
<td>*</td>
<td>*</td>
<td>Right</td>
<td>HALT</td>
</tr>
<tr>
<td>CARRY</td>
<td>0</td>
<td>1</td>
<td>Right</td>
<td>RETURN</td>
</tr>
<tr>
<td>CARRY</td>
<td>1</td>
<td>0</td>
<td>Left</td>
<td>CARRY</td>
</tr>
<tr>
<td>CARRY</td>
<td>*</td>
<td>1</td>
<td>Left</td>
<td>OVERFLOW</td>
</tr>
<tr>
<td>OVERFLOW</td>
<td>*</td>
<td>*</td>
<td>Right</td>
<td>RETURN</td>
</tr>
<tr>
<td>RETURN</td>
<td>0</td>
<td>0</td>
<td>Right</td>
<td>RETURN</td>
</tr>
<tr>
<td>RETURN</td>
<td>1</td>
<td>1</td>
<td>Right</td>
<td>RETURN</td>
</tr>
<tr>
<td>RETURN</td>
<td>*</td>
<td>*</td>
<td>No move</td>
<td>HALT</td>
</tr>
</tbody>
</table>

A Turing Machine Example (1/2)

Machine State = START

Current Position

Machine State = ADD

Current Position

Machine State = CARRY

Current Position
A Turing Machine Example (2/2)

So why bother with Turing?

- Church-Turing thesis: the set of Turing functions is the same as the set of functions that are computable in general!
 - Although some may look really awkward in a Turing machine
- Widely accepted by computer scientists today
- A language is Turing-complete if it can encode all that a Turing machine can do
 - Both C and Java are Turing-complete
Noncomputability, redux

- So, noncomputable functions can’t be modeled as a Turing machine
- How do we demonstrate?
 - Not that trivial, beyond scope of class
- Most famous noncomputable function: *Will a specified program halt?*

Universal Programming Language

- Most features in today’s high-level languages merely enhance *convenience* rather than contribute to the fundamental *power* of the language
- Our approach here is to describe a simple imperative programming language powerful enough to express programs for computing all the computable functions
- A programming language with this power is called a *universal* programming language
- The language we present is quite simple; we call it Bare Bones in that it isolates a *minimal* set of requirements of a universal programming language
The Bare Bones Languages

- All variables are considered to be of type “bit pattern of arbitrary length”
- Variable names must begin with a letter, which can be followed by any combination of letters and digits
- Contains three assignment statements and one loop structure
 - clear name;
 - incr name;
 - decr name;
 - while name not 0 do;
 - .
 - .
 - end;

Programming in Bare Bones

```
clear Aux;
clear Tomorrow;
while Today not 0 do;
  incr Aux;
  decr Today;
end;
while Aux not 0 do;
  incr Today;
  incr Tomorrow;
  decr Aux;
end;
```

A Bare Bones program for “copy Today to Tomorrow”

```
clear Z;
while X not 0 do;
  clear W;
  while Y not 0 do;
    incr Z;
    incr X;
    decr W;
    decr Y;
    end;
  end;
end;
```

A Bare Bones program for computing X * Y
The Universality of Bare Bones

- Researchers have shown that the Bare Bones language can be used to express algorithms for computing all the Turing-computable functions.
- That is, any computable function can be computed by a program written in Bare Bones.
- Thus Bare Bones is a universal programming language; if an algorithm exists for solving a problem, then that problem can be solved by some Bare Bones program.
- Bare Bones could theoretically serve as a general-purpose programming language.

Halting Problem

- The halting problem is the problem of trying to predict in advance whether a program will terminate if started under certain conditions.
- Consider the simple Bare Bones program:

```
while X not 0 do;
    incr X;
end;
```

- If the initial value of X is 0, then the program will halt; otherwise, the loop will be executed forever.
- It is easy in the above example to predict a program’s behavior; however, this task may be more complicated or even impossible in some cases.
Self-Reference

- Whether a program ultimately halts can depend on the initial values of its variables.
- We assign a program’s variables an initial value representing the program itself; that is, we assign the encoded version of a program as the value of its variables.

Self-Termination

- A Bare Bones program is self-terminating if its execution terminates when started with itself as its input.
- The halting problem is now precisely described as the problem of determining whether Bare Bones programs are or are not self-terminating.
- There is no algorithm for answering this question in general; thus, the solution to the halting problem lies beyond the capabilities of computers.
Unsolvability of the Halting Problem (1/3)

First: Propose the existence of a program that, given any encoded version of a program, will halt with variable X equal to 1 if the input represents a self-terminating program, or with X equal to 0 otherwise.

Then: If such a program exists, we could modify it by adding a while-end structure to produce a new program.

Unsolvability of the Halting Problem (2/3)

Now: If this new program were self-terminating and we started it with its own encoding as its input, execution would reach this point with X equal to 1, so execution would become trapped in this loop forever; i.e., if the new program is self-terminating, then it is not self-terminating.
Unsolvability of the Halting Problem (3/3)

However: If this new program were not self-terminating and we started it with its own encoding as its input, execution would reach this point with \(X \) equal to 0, so this loop would be skipped and execution would halt; i.e., if the new program is not self-terminating, then it is self-terminating.

Consequently:
The existence of the proposed program would lead to the existence of a new program that is neither self-terminating nor not self-terminating.

Therefore, the halting problem is unsolvable.

Complexity of Problems (1/2)

- We are interested in the question of whether a solvable problem has a practical solution.
- The complexity of a problem is determined by the properties of the algorithms that solve that problem.
- More precisely, the complexity of the simplest algorithm for solving a problem is considered to be the complexity of the problem itself.
- We measure an algorithm’s complexity in terms of the time required for its execution, which is proportional to the number of steps that must be performed.
Complexity of Problems (2/2)

- The complexity of a problem is $\Theta(f(n))$ if there is an algorithm with complexity of $\Theta(f(n))$ for solving the problem and no other algorithm has a lower complexity.

- Finding the best solution to a problem and knowing that it is the best is often a difficult problem itself; in such situations, big O notation is used.

- The complexity of a problem is $O(f(n))$ if it has a solution whose complexity is $\Theta(f(n))$ but it could possibly have a better solution.

Polynomial vs. Nonpolynomial Problems

- “$g(n)$ is bounded by $f(n)$” means that the graph of $f(n)$ will be above the graph of $g(n)$ for “large” values of n.

- A problem is a polynomial problem if the problem is in $O(f(n))$, where the expression $f(n)$ is either a polynomial itself or bounded by a polynomial.

- The collection of all polynomial problems is denoted by P.

- Problems that are outside the class P are characterized as having extremely long execution times.

- Identifying the problems that belong to P is of major importance in computer science because it tells whether problems have practical solutions.
Classes of computable functions

- We typically break them down by the time they take to run; here are some typical values that we’ve seen:

 ![Graphs](#)

 a. n versus $\lg n$
 b. n^2 versus $n \lg n$

So...

- We call such functions for which we know no better way to be “nondeterministic polynomial”, or NP
 - Typically exponential
- We care because lots of useful problems fall into this category

![Diagram](#)
In fact, NP is “useful”

- Public-key encryption (e.g., SSL/ssh) largely works on the fact that decrypting an encrypted message takes an extraordinarily long time
 - Details beyond scope of class
- If someone were to prove that P=NP, many of today’s encryption algorithms would have to be thrown out the window
- Fortunately, no one has come close to proving it
- But no one has come close to proving the opposite either

So where do we go from here?

- Most computer scientists (except great theoreticians) focus on making new computable algorithms, hopefully in polynomial time
- With the knowledge you’ve learned in this class, you have the pieces to go ahead and build such algorithms, and code them
- Remaining CS classes introduce advanced concepts, but they still boil down to the same thing
Thank you!

- You guys have been a great audience.
- I hope you found this class rewarding.
- Good luck with the rest of your Computer Science mini-careers!
 - And with final