
Dense 3D Reconstucion
COMS 6733 3D Photography Final Project

Austin Reiter and Hao Dang

May 6, 2010

1 Motivation

Current 3D reconstruction methods using stereo vision can produce good
results, but they tend to yield very sparse outputs and suffer from several
challenges. One of them is the well-known correspondence problem, whereby
similar features in different images are often too ambiguous to match reliably.
The problem is accentuated when the object being scanned is textureless.
Under these circumstances, methods that are widely used for correspondence
determination, such as SIFT, normalized cross-correlation of corner features,
and histogram descriptor approaches, will not be able to produce reliable
results for matching stereo features for 3D triangulation.

Our project consisted of two different approaches, each trying to alleviate
these issues. One is based on photometric stereo. The second is based on a
two-camera stereo system with a finely-controlled laser pointer. The former
did not yield the expected results, but it supplied us with useful information
to succeed with our second approach, which turned out to be much more
successful. Both methods tried to take advantage of the Staubli robot arm
for its ability to achieve fine-tuned positional accuracy. In the first case,
we used it to position the light source, and in the second case we used it
to control the motion of the laser pointer. In this report, we will discuss
the procedures for both approaches, analyze the influential factors for the
failure of the first approach, and show the experimental results of the second
approach and discuss some areas for improvement.

1

2 Photometric Stereo

The most attractive attribute of photometric stereo is that it frees us from
pixel correspondences, and thus allows us to reconstruct at the resolution
of the camera. However, this method is normally used to recover surface
normals on top of 3D data that has already been collected. We aimed to
constrain the problem further to attempt to recover the 3D geometry (i.e.,
point clouds) as well as surface normals for photorealistic reconstructions.
We used a high dynamic range camera for maximal sensitivity to changing
lighting conditions at each surface point. The Point Grey Dragonfly2 camera
sufficiently supplies 12-bits per pixel at a resolution of 1024x768, and so
detecting how lighting changes for each light location is sufficiently captured.

2.1 Theory

The theory of photometric stereo is based on a very important assumption
of the object surface, called Lambertian Reflectance. This states that rays
from a light source affects all parts of a surface equally, regardless of viewing
angle. Based on this assumption, we can formulate the image intensity at a
pixel p as follows:

Ip = ρL · np (1)

where ρ is the surface albedo, I is the image intensity at pixel p, L is the
lighting direction, and np is the surface normal of the object at pixel p. If we
continue to consider the light source as a point light, for L we have:

L =
Locp − Loclight

||Locp − Loclight||
(2)

where Locp is the 3D location of the surface point corresponding to pixel p
and Loclight is the 3D location of the point light source.

In Eqn. 1 and 2, we note the following:

1. Ip is known from the pixel intensities collected from the camera

2. Loclight is known from the robot arm position. This required a calibration
of the robot to the camera coordinate system.

3. The surface point 3D location Locp and the corresponding surface normal
np (as well as surface albedo) are unknown

2

Figure 1: A visual setup of the geometry proposed in our photometric the-
oretical idea to recover both 3D points and surface normals from changing
light sources of a static scene.

4. If we take multiple images sequentially, ρ, Locp and np will not change

Considering the constraints above, we proposed to be able to calculate
Locp and np by taking multiple images to form a system of equations and
solving it.

To constrain the problem further, we considered the imaging geometry
setup between the light source and the camera, and the goal was to triangu-
late the light ray from the light source, through the object 3D location, with
the pixel ray from the camera through that same object point location. Sim-
ply speaking, a 3D point in the space Lp when re-projected onto the camera
should agree with its camera pixel location p. If the pixel re-projection does
not agree with the original camera pixel location, chances are we obtained
a bad reconstruction result. Figure 1 shows the visual interpretation of this
proposed idea.

2.2 Reconstruction Attempts

Depending on different groupings of unknown variables, we tried two ways
for the reconstruction based on the theory we developed in Sec. 2.1. Note
that in the following, where we take several images of the same object under
different lighting conditions, when cycling through the image pixels we always
choose the top 3 (brightest) measurements per pixel to solve the system, as
suggested in the original photometric stereo description. In taking 9 images
per object, we get robustness to different lighting angles as the shape of the
object is more or less occluded.

3

2.2.1 One-Phase Reconstruction

This method worked somewhat as a black box. The entire process is described
below:

1. We kept the camera at the same position during the whole process.

2. In the environment, there is only one point light source that emits light,
per image (i.e., all ambient lighting shut off).

3. The location of the point light source is obtained in a common coordinate
system through some calibration device, e.g. Microscribe 3D digitizer.

4. Using the above setup, multiple images were taken when the light source
was placed at different locations, via the robot arm. In our experiments,
we took 9 images, each with the light source at a different location.

5. Using these images, we fed them to Eqn. 1 and 2 to form up a big
non-linear system of equations, per-pixel. We used MATLAB’s opti-
mization toolbox to try and solve this system of equations to recover
all unknown parameters at each pixel separately.

2.2.2 Two-Phase Reconstruction

By examining the equations more closely, we thought that it might be pos-
sible to first calculate the normals at each pixel by using a parallel lighting
setup, using the traditional photometric stereo approach (i.e., first solving
a simple linear system), and then using that to compute the 3D locations
of each point using point light source. The entire process differs from the
One-Phase Reconstruction in the following aspects:

1. We build a parallel light source by putting the light bulb far away from
the object.

2. Take several images by changing the lighting direction, again with the
robot arm.

3. Using this experimental data, we fed them into Eqn. 1 to solve for np

and ρ.

4. We switch from parallel lighting to point source lighting.

4

5. Multiple images were taken as in One-Phase Reconstruction.

6. Using these images, we fed them into Eqn. 2. Now the system of
equations is much simpler, with fewer degrees of freedom than before
because the surface normals and surface albedos for each surface point
at each pixel is already obtained. MATLAB was again used to solve
for the locations of the surface points.

2.3 Conclusions

We did not get reasonable reconstructions from these methods. The possible
factors that probably made this approach fail may include:

• The Lambertian assumption for the reflectance properties of the ob-
ject is not necessarily true for most real-world objects. This could be
fixed by applying some paint that better approximates the Lambertian
property, or by estimating the true BRDF of the object being scanned.

• The point light source is difficult to simulate in our experiment envi-
ronment. This problem could be relaxed with a more accurate lighting
system.

In addition, it was hard to even view if our surface normals were correct
or not (when obtained separately) because we didn’t have good 3D data to
plot on top of. We could view them in the 2D imaging plane, which helped
somewhat, but overall this indicated that we needed a new method.

3 Two-Camera Stereo

Next we describe the subsequent method using a 2-camera stereo system. In
order to solve the pixel correspondence problem, we used a laser point light
source which can be easily detected and located by thresholding the image
intensity. A Staubli Robot Arm is used to control the light source to obtain
fine pixel reconstruction density. See figure 2 for an image of our hardware
setup. We descibe the setup in more detail below.

5

Figure 2: The hardware setup of the two-camera stereo system with a laser
pointer attached to a robot arm, as it scans the bird.

3.1 Experimental Setup

The hardware system consisted of a laser pointer, a Staubli robot arm that
controlled the laser pointer with fine movements, and three cameras, two
gray scale Prosilica gigabit ethernet cameras with 25mm lenses for cam-
era triangulation, and one color camera for texturing. The color camera,
called the texture camera, is only necessary because the stereo cameras only
support gray-scale color formats. Because we wanted photorealistic 3D re-
constructions, we used an additional color camera for the texture mapping
step (described in more detail below). Our color camera was a Point Grey
Dragonfly2 camera running in 1024x768 RGB color mode, and we used it to
snap single shots in the beginning of each scan.

Although many methods use only a single camera with a laser pointer,
we chose a stereo system to simplify the calibration process. Using a checker-
board pattern, we are able to simultaneously obtain the extrinsic transforms
between all cameras in a single shot. Then we could move the laser pointer
however we wish without worrying about it’s position and orientation. Thus,
the laser pointer is simply a means to easily extract stereo correspondences
in the 2 reconstruction cameras. To ease the problem further, we dimmed
the lights so that the brightest part of each image was only the laser pointer,
and a gray-scale thresholding could pick out the laser point blob.

6

A note on the laser point in the images: because our cameras were very
high resolution (1620x1220 pixels), the laser pointer in each image was more
of a blob rather than a point. This presents a problem because each image
assumes a laser point, and so we simply took the centroid of the blob in
each image. This may not be exactly correct, and future methods could try
to discern the correct laser image position more precisely, or alternatively
try to match the entire blobs using shape matching methods, which would
also produce more points per image. In our case, we wish to simplify the
problem as much as possible and just take the blob centers as our point-of-
interest. Thus, each image frame provides a single 3D point on the object
being scanned, and we move the laser pointer to collect all surface points
that are visible to both cameras.

The laser pointer is attached to the Staubli arm. In order to take ad-
vantage of the fine-tuned motions of the robot arm, we manually positioned
the arm to a starting point, and wrote a C++ program to scan the object
in a planar motion from the starting position and orientation. We set a
pre-defined speed and scan-line spatial step in order to obtain as dense a re-
construction as possible. Limitations to this setup were due to the 15fps video
capture speed of the cameras as well as the processing time of each triangu-
lation, and so in the end the reconstruction system processed at about 12Hz.
Note that this is a limitation of our particular setup, but with a high-speed,
high-resolution camera system, the process could be sped up significantly.

3.2 Software Utilities

Three main software utilities are running at the same time while the scan is
in progress. It is worthwhile to note that multi-scan registration and fusion
is done as an independent step, and this is described in more detail later on.

Robot Controller The robot controller controls the end effector of the
Staubli arm that holds the laser pointer. It moves within the plane
that is orthogonal to the end effector’s z direction. It moves along pre-
defined lines within a rectangular region. Since the query frequency of
the cameras is the limiting factor, the speed of the laser point deter-
mines the fineness of the scanning. Generally, the slower it moves, the
denser the point cloud will be and thus the more accurate the model.

Point Cloud Generator A separate program is run on another computer
that connects with the three cameras. It queries the two gray scale

7

cameras while the laser pointer is moving on the object. The images
obtained from the two cameras are then thresholded to detect the laser
point location, and triangulation is performed to obtain the 3D location
of the corresponding pixels. At the same time, the 3D location is back-
projected to the texture camera to get the correspondence in the texture
image.

Online Viewer An online viewer is run on a third computer which moni-
tors the real-time progress of the scan. Whenever the cloud generator
program gets a new 3D point, it sends to the viewer, via UDP, the
point location, the pixel RGB value, and the corresponding pixel loca-
tion in the texture image obtained from the color camera. At the same
time, the viewer program keeps a buffer of all 3D points collected so
far, and intermittently performs a 3D Delauney Triangulation to ap-
proximate the surface mesh online. As more points are collected, the
surface mesh becomes more detailed. Finally, each triangle is texture-
mapped using the texture image, to produce photorealistic imagery in
the reconstruction scene. See figure 3 for a sample screenshot of our
online viewer.

In order to ease our experiments, we added logging capabilities to the
point cloud generator so it could write out all UDP messages to a text file
every time it was sent over the socket. This text ASCII file could then be

Figure 3: A sample screenshot of our online viewer, as it shows an online
reconstruction of the bird.

8

Figure 4: The workflow of the multi-threading structure of the real-time
scanning viewer.

loaded by the viewer, for offline purposes, to view the reconstruction. This
allowed us to post-process some data, in the case of bad points that ruined
the overall appearance of the mesh triangulations. Using simple point-to-
point distance thresholds of points that were gather consecutively, we are
able to determine which points are incorrect and ignore them so that the
mesh is more accurate.

3.2.1 Multi-threaded Viewer

A serialized version of the viewer did not work well. When the viewer was
trapped in a triangulation procedure, it simply stopped listening to the UDP
port and resulted in missing a lot of the raw points. This proved to be fatal
to the reconstruction process. Another defect of the serialized viewer was
caused by the UDP listener which constantly queries for points, and thus
consumed a lot of CPU work time. This made the viewer not promptly
responsive during user interactions.

To solve these two problems we re-designed the architecture of the viewer
and made it multi-threaded. The main window of the viewer is the parent
thread. The UDP listener is one child thread, and the routine for mesh
triangulation is another child thread. Figure 4 shows the workflow of this
multi-threading structure.

9

3.3 Camera Triangulation

As each pair of images was collected from the stereo Prosilica cameras, we
threshold both images with a pre-defined gray-scale threshold to produce a
blob in each image. For each blob, we compute the mean pixel location, and
this produces an effective stereo match. This match is fed into a stereo
triangulation procedure, which solves for the best 3D location that serves as
an intersection of the pixel rays emanating from each camera at these pixel
locations, in the least-squares sense. To reduce bad intersections, we take
the resulting 3D location, and back-project into both cameras, and compute
the pixel errors. If the pixel error back-projections exceeded a pre-defined
threshold, the 3D point was thrown away. Then, because all 3 cameras are
calibrated to each other, we can back-project from this 3D location into the
texture camera to get the corresponding 2D pixel location which will be used
for texture mapping, next.

3.4 Texture Mapping

As each 3D point (and corresponding 2D texture location) is collected by the
UDP thread listener, a buffer is filled. We set a pre-defined frequency which
tells the Delauney triangulation thread to re-triangulate what’s currently in
the point buffer to provide us with a new approximation to the surface mesh.
All of this is done so as to not interfere with each other as well as the main
window, so the user can manually inspect the object (i.e., rotate and translate
with the mouse) without missing measurements. Once the newest triangles
are created, for each triangle, we take the 3D vertices of the triangle, and
cut-out the corresponding 2D image patch from the texture image. Then,
OpenGL texture maps that image information onto that 3D triangle, and all
triangles are combined to form the full reconstruction of the object, online.

3.5 Multi-Scan Registration and Fusion

In order to have a complete model of the object, we need to be able to com-
bine multiple scans of the object by showing the object at different angles to
the cameras. Along with this comes the problem of how to find the trans-
formations between the sequential scans and merging them into a complete
model. In our work, we used a well-known algorithm, Iterative Closest Point
(ICP), to calculate the rigid transformations from two scans.

10

To prove the method, we take 2-3 scans of the same object but from
different angles. The point clouds must have some overlap. The basic steps
to find the transformation between them can be described as follows:

1. Manually select corresponding points in two scans

2. Feed these points to ICP for the calculation of the rigid transformation

3. Apply the transformation to the original point set which contains not
only the overlapped points but also those not overlapped. This step
merges the two full scans into the same coordinate system

Texture mapping, although possible, is not straightforward when com-
bining multiple scans. The reason is that the texture image is retrieved by
back-projecting from a 3D point in a calibrated camera’s coordinate system
to obtain the 2D pixel locations. However, the ICP algorithm changes the
coordinate system of some of the 3D points, and so this must be accounted
for when back-projecting into the proper texture image (i.e., there are now
several texture images).

In addition, for areas of overlap there’s the issue of which view is the best
view to use for the texture mapping. For example, you probably want the
most straight-on view as possible, but this can only be obtained by know
some information of the surface normal and comparing that to the viewing
angle of the camera with respect to each surface normal. In theory, you
want a camera who’s viewing angle is closest to the surface normal. If the
viewing angle is too close to orthogonal to any surface normal, the view from
the camera is probably a bad view. For these reasons, we only propose the
method for merging multiple scans using this system and cite possible ways
to texture map later on.

3.6 Results

3.6.1 Single Scans

We did scans on several objects, including a bird statue (Fig. 5), a sumo
wrestler (Fig. 6), a frog(Fig. 7), and a mouse (Fig. 8). There are artifacts
in the surface mesh that are visible as scan lines; these are the spatial jumps
that the laser pointer makes from one line to the next in its planar scan. The
smaller we make that jump, the less the artifacts will be present, at the cost
of a much longer scan.

11

(a) scene (b) point cloud without color

(c) point cloud with color per point (d) mesh with texture

Figure 5: The result of scanning a bird statue.

In the following, we show each experiment including the scanning scene,
the point cloud without color, the point cloud with each point colored by the
image pixel color, and the triangulated mesh with texture mapping.

3.6.2 Multi-scan Fusion

One experiment was done for multi-scan registration and fusion. Based on the
two point clouds, we manually selected the corresponding points and applied
the ICP algorithm to them. Based on the results of the ICP algorithm, we
transformed those two point clouds into the same coordinate system. Fig. 9
shows the result.

Ways this process could be improved would be to automate the correspon-
dence selection procedure. Using the texture images, it would be possible to
run a standard feature matching algorithm (i.e., SIFT) and use these to

12

(a) scene (b) point cloud

(c) point cloud with color per point (d) mesh with texture

Figure 6: The result of scanning the sumo wrestler.

look-up in the list of 3D-2D correspondences, those that were computed by
the stereo system and then used for texturing the surface mesh. If we find
a valid SIFT match for which we also have a 3D point reconstructed, we
could use this in a RANSAC-like approach to computing the best transform
through ICP. Although we didn’t have time to explore this idea, our approach
certainly leaves this open as an option to further improve this system.

13

(a) scene (b) point cloud

(c) point cloud with color per point (d) mesh with texture

Figure 7: The result of scanning a frog statue.

14

(a) scene (b) point cloud

(c) point cloud with color per point (d) mesh with texture

Figure 8: The result of scanning a computer mouse.

(a) scan 1 (b) scan 2 (c) fusion of scans 1 and 2

Figure 9: The result of the multi-scan registration and fusion.

15

