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Application: Social Media Analysis

Start-ups: Radian6, Trendr, Twendz

Want to correlate sentiment of posts to events

Sales and Marketing: want to know how a product is doing in the
market – summarize sentiment of posts along different
dimensions (area, time, gender etc.)
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Literature Survey

Paper Data Features Conclusion
Go et.
al. 2009

Distant learn-
ing, about 200
test examples

unigrams, bigrams, POS unigram
works best,
bigrams
and POS
do not help

Pak and
Paroubek
2010

Distant learn-
ing, about 200
test examples

unigrams, bigrams, POS bigrams
and POS
help

Barbosa
and
Feng
2010

Distant learn-
ing, 1000 for
development
and 1000 for
testing

meta-features, prior po-
larity of words, uni-
grams, POS

No feature
analysis
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Our Data

11,875 manually annotated tweets from a commercial source

Collect a stream of tweets; translate tweets in foreign language
using Google translator; randomly select tweets and annotate
them for {junk, +, -, o}
Ignore junk tweets. Leaves us with 8,753 tweets

Use stratified sampling to get a balanced data-set of 5127 tweets
(1709 each of +, -, o)
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Resources and Pre-processing

Resources

Emoticon→polarity dictionary: manually assign polarity to 170
emoticons from Wikipedia

Acronym dictionary (noslang.com): lol = laugh out loud

Dictionary of Affect in Language (DAL, Whissel 1989): prior
polarity lexicon

WordNet: for increasing the coverage of DAL (Agarwal et. al.
2009)

Pre-processing

Convert emoticons to polarity tags: positive emoticons = ||P||
Convert all URLS to tag ||U||
Convert all target mentions to ||T||
Convert cooooool to coool

noslang.com
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Tree kernels: represent tweets as trees encoding bag-of-words,
POS tags, prior polarity scores of words (minimal feature
engineering required)

Explicit feature engineering based model (Senti-feature model)
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Model 1: Design of Tree Kernel
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Model 2: Senti-features

Non-polar: count of POS tags, acronyms, dictionary words,
URLs, hashtags, newlines, % capitalized words, presence of
exclamation marks and capitalization

Polar POS: For each POS (JJ, RB, VB, NN)
# of +/- words with that POS
Summation of prior polarity scores of words with that POS

Polar Other: # of negation words, +/- words, +/- emoticons, +/-
hashtags, summation of prior polarity scores of all the words

(Use Stanford tokenizer and POS tagger)
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Experimental Set-up

5-fold cross-validation with SVM classifier

For selecting “c” parameter for SVM we perform
cross-validation on training set and report accuracy for the
held-out test set
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Results

Model 2-way (% Acc) 3-way (% Acc)
Majority class
baseline

50 33

Unigram 71.35 56.58
Senti-features 71.27 56.31
Kernel 73.93 60.60
Unigram +
Senti-features

75.39 60.50
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Feature Analysis

Features 2-way (% Acc) 3-way (% Acc)
Unigram baseline 71.35 56.58
+ Non-polar 70.1 56.91
+ Polar POS 74.84 59.86
+ Polar Non-POS 75.39 60.50
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Learning curve
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Figure: Learning curve for two-way classification task.
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Future Work

Study the affect of using different dictionaries (acronym,
emoticon, DAL)

Explore other linguistically rich features: dependency trees,
FrameNet, Verbnet

Tree kernels seem to encode many more features but their
performance is a little less than feature extraction methods (same
observation in relation extraction)
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Conclusion

Proposed two models for sentiment analysis of twitter

On both 2-way and 3-way classification tasks beat the baseline
model by over 4%

Make available two new resources for the task: Acronym
dictionary, Emoticon to polarity dictionary

No matter how noisy and non-standard English the data might
seem at first, there is hope for being able to use linguistically rich
resources/features
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