Sentiment Analysis of Twitter Data

Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Rambow, Rebecca Passonneau

Columbia University

June 23, 2011

・ロト ・四ト ・モト ・モト 三日

900

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Ways in v	which people	use Twitte	er				

• Posting real-time sentiments about "everything" (tweet moment)

(ロト (個) (E) (E) (E) (O)

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Ways in v	which people	use Twitte	er				

• Posting real-time sentiments about "everything" (tweet moment)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Discussion on various topics (*tweet party*)

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Ways in v	which people	use Twitte	er				

• Posting real-time sentiments about "everything" (tweet moment)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Discussion on various topics (*tweet party*)
- Real-time complaints (e.g. flight delays)

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Applicati	on: Social Me	edia Analy	ysis				

- Start-ups: Radian6, Trendr, Twendz
- Want to correlate sentiment of posts to events
- Sales and Marketing: want to know how a product is doing in the market summarize sentiment of posts along different dimensions (area, time, gender etc.)

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Sentiment	t Analysis + 7	witter Da	ıta				

• Sentiment Analysis: Find polarity (+, -, 0) of opinion in \mathcal{X} .

(ロト (個) (E) (E) (E) (O)

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Sentiment	t Analysis + T	witter Da	ıta				

• Sentiment Analysis: Find polarity (+, -, 0) of opinion in \mathcal{X} .

(ロト (個) (E) (E) (E) (O)

• $\mathcal{X} = \underline{\text{document}}$, sentence, phrase

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Sentiment	t Analysis + T	witter Da	ıta				

• Sentiment Analysis: Find polarity (+, -, 0) of opinion in \mathcal{X} .

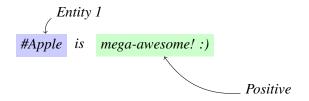
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\mathcal{X} = \underline{\text{document}}$, sentence, phrase
- Task:

#Apple is mega-awesome! :)

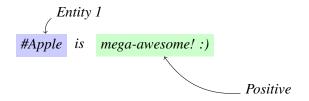
- Sentiment Analysis: Find polarity (+, -, 0) of opinion in \mathcal{X} .
- $\mathcal{X} = \underline{\text{document}}$, sentence, phrase
- Task:

- Sentiment Analysis: Find polarity (+, -, 0) of opinion in \mathcal{X} .
- $\mathcal{X} = \underline{\text{document}}$, sentence, phrase
- Task:



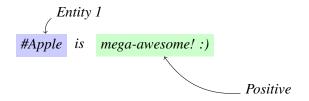
• E: set of entities in the world. T: set of tweets

- Sentiment Analysis: Find polarity (+, -, 0) of opinion in \mathcal{X} .
- $\mathcal{X} = \underline{\text{document}}$, sentence, phrase
- Task:



- E: set of entities in the world. T: set of tweets
- Ideal function: $f : \mathbf{E} \times \mathbf{T} \to \{+, -, o\}$

- Sentiment Analysis: Find polarity (+, -, 0) of opinion in \mathcal{X} .
- $\mathcal{X} = \underline{\text{document}}$, sentence, phrase
- Task:



- E: set of entities in the world. T: set of tweets
- Ideal function: $f : \mathbf{E} \times \mathbf{T} \to \{+, -, o\}$
- We (and other researchers) learn: $f : \mathbf{T} \to \{+, -, o\}$

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Literature	e Survey						

Paper	Data	Features	Conclusion
Go et.	Distant learn-	unigrams, bigrams, POS	unigram
al. 2009	ing, about 200		works best,
	test examples		bigrams
			and POS
			do not help
Pak and	Distant learn-	unigrams, bigrams, POS	bigrams
Paroubek	ing, about 200		and POS
2010	test examples		help
Barbosa	Distant learn-	meta-features, prior po-	No feature
and	ing, 1000 for	larity of words, uni-	analysis
Feng	development	grams, POS	
2010	and 1000 for		
	testing		

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Our Data							

- 11,875 manually annotated tweets from a commercial source
- Collect a stream of tweets; translate tweets in foreign language using Google translator; randomly select tweets and annotate them for {*junk*, +, -, *o*}
- Ignore *junk* tweets. Leaves us with 8,753 tweets
- Use stratified sampling to get a balanced data-set of 5127 tweets (1709 each of +, -, o)

● Emoticon→polarity dictionary: manually assign polarity to 170 emoticons from Wikipedia

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Emoticon→polarity dictionary: manually assign polarity to 170 emoticons from Wikipedia

• Acronym dictionary (noslang.com): *lol* = laugh out loud

- Emoticon→polarity dictionary: manually assign polarity to 170 emoticons from Wikipedia
- Acronym dictionary (noslang.com): *lol* = laugh out loud
- Dictionary of Affect in Language (DAL, Whissel 1989): prior polarity lexicon

- Emoticon→polarity dictionary: manually assign polarity to 170 emoticons from Wikipedia
- Acronym dictionary (noslang.com): *lol* = laugh out loud
- Dictionary of Affect in Language (DAL, Whissel 1989): prior polarity lexicon
- WordNet: for increasing the coverage of DAL (Agarwal et. al. 2009)

- Emoticon→polarity dictionary: manually assign polarity to 170 emoticons from Wikipedia
- Acronym dictionary (noslang.com): *lol* = laugh out loud
- Dictionary of Affect in Language (DAL, Whissel 1989): prior polarity lexicon
- WordNet: for increasing the coverage of DAL (Agarwal et. al. 2009)

Pre-processing

• Convert emoticons to polarity tags: positive emoticons = ||P||

- Convert all URLS to tag ||U||
- Convert all target mentions to ||T||
- Convert *cooooool* to *coool*

Introduction	Literature Survey	Our Data	Resources	Models ●○○	Results 0000	Future work	Conclusion
Models							

Two types of models:

• Tree kernels: represent tweets as trees encoding bag-of-words, POS tags, prior polarity scores of words (minimal feature engineering required)

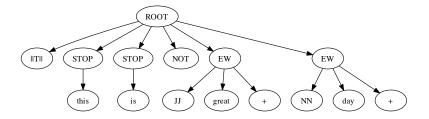
<□▶ < @ ▶ < E ▶ < E ▶ E のへぐ

Introduction	Literature Survey	Our Data	Resources	Models ●○○	Results 0000	Future work	Conclusion
Models							

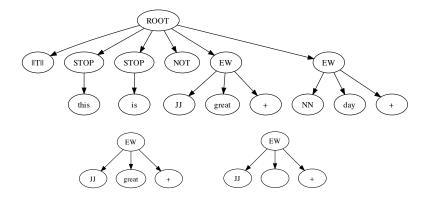
Two types of models:

- Tree kernels: represent tweets as trees encoding bag-of-words, POS tags, prior polarity scores of words (minimal feature engineering required)
- Explicit feature engineering based model (Senti-feature model)

@Fernando this isn't a great day



@Fernando this isn't a great day



• Non-polar: count of POS tags, acronyms, dictionary words, URLs, hashtags, newlines, % capitalized words, presence of exclamation marks and capitalization

- Non-polar: count of POS tags, acronyms, dictionary words, URLs, hashtags, newlines, % capitalized words, presence of exclamation marks and capitalization
- Polar POS: For each POS (JJ, RB, VB, NN)
 - # of +/- words with that POS
 - Summation of prior polarity scores of words with that POS

- Non-polar: count of POS tags, acronyms, dictionary words, URLs, hashtags, newlines, % capitalized words, presence of exclamation marks and capitalization
- Polar POS: For each POS (JJ, RB, VB, NN)
 - # of +/- words with that POS
 - Summation of prior polarity scores of words with that POS
- <u>Polar Other</u>: # of negation words, +/- words, +/- emoticons, +/- hashtags, summation of prior polarity scores of all the words

(Use Stanford tokenizer and POS tagger)

Introduction	Literature Survey	Our Data	Resources	Models 000	Results	Future work	Conclusion
Experime	ental Set-up						

- 5-fold cross-validation with SVM classifier
- For selecting "c" parameter for SVM we perform cross-validation on training set and report accuracy for the held-out test set

<□▶ < @ ▶ < E ▶ < E ▶ E のへぐ

Introduction	Literature Survey	Our Data	Resources	Models 000	Results ○●○○	Future work	Conclusion
Results							

Model	2-way (% Acc)	3-way (% Acc)
Majority class	50	33
baseline		
Unigram	71.35	56.58
Senti-features	71.27	56.31
Kernel	73.93	60.60
Unigram +	75.39	60.50
Senti-features		

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Introduction	Literature Survey	Our Data	Resources	Models 000	Results ○○●○	Future work	Conclusion
Feature A	Analysis						

Features	2-way (% Acc)	3-way (% Acc)
Unigram baseline	71.35	56.58
+ Non-polar	70.1	56.91
+ Polar POS	74.84	59.86
+ Polar Non-POS	75.39	60.50

シック 正 エル・エット 中国・エート

Introduction	Literature Survey	Our Data	Resources	Models 000	Results ○○○●	Future work	Conclusion
Learning	curve						

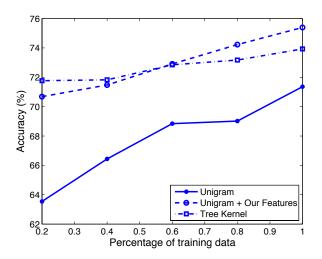


Figure: Learning curve for two-way classification task.

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Future W	ork						

• Study the affect of using different dictionaries (acronym, emoticon, DAL)

(ロト (個) (E) (E) (E) (O)

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Future W	ork						

- Study the affect of using different dictionaries (acronym, emoticon, DAL)
- Explore other linguistically rich features: dependency trees, FrameNet, Verbnet

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 < つ < ○

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Future W	ork						

- Study the affect of using different dictionaries (acronym, emoticon, DAL)
- Explore other linguistically rich features: dependency trees, FrameNet, Verbnet
- Tree kernels seem to encode many more features but their performance is a little less than feature extraction methods (same observation in relation extraction)

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Conclusio	on						

(ロト (個) (E) (E) (E) (O)

• Proposed two models for sentiment analysis of twitter

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Conclusio	on						

- Proposed two models for sentiment analysis of twitter
- On both 2-way and 3-way classification tasks beat the baseline model by over 4%

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Conclusio	on						

- Proposed two models for sentiment analysis of twitter
- On both 2-way and 3-way classification tasks beat the baseline model by over 4%

• Make available two new resources for the task: Acronym dictionary, Emoticon to polarity dictionary

Introduction	Literature Survey	Our Data	Resources	Models 000	Results 0000	Future work	Conclusion
Conclusion							

- Proposed two models for sentiment analysis of twitter
- On both 2-way and 3-way classification tasks beat the baseline model by over 4%
- Make available two new resources for the task: Acronym dictionary, Emoticon to polarity dictionary
- No matter how noisy and non-standard English the data might seem at first, there is hope for being able to use linguistically rich resources/features