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Background 
This project is part of VRGobi, a Dynamic Statistical Data Exploration project (See Appendix A), and is 
targeted for use in an immersive Virtual Reality environment supported by VRJuggler, a hardware API. The 
objective of the project is to enhance the visualization of a particular data set by tying it to a model of its real 
world representation. The classical data set that was chosen consists of six measurements on three species of 
the flea beetle (See Appendix B). The goal is to produce a complement to the three-dimensional point cloud 
that normally is used to represent the data. The idea is to project the point representation onto the floor, 
model every point as a beetle, which possess properties according to the measurements in the data set. It is 
also desirable to have the beetles move around and allow interaction with them. 

 

Figure 1. Flea beetle.
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The appl icat ion 
The application works in such a way that when VRGobi is running and all the points are being drawn in 
space, they are also projected down onto the floor, where they are modelled as beetles. These beetles have 
the same body color as their corresponding point and their physics are a mapping from the statistical data 
that is represented by the point. At each time step, a counter is increased, determining where the beetle is 
drawn next and how it is rotated. The counter is also used for the motion, the animation, of the beetle. Thus 
all beetles are moving in random paths on the floor, seemingly in disorder. As one spot a beetle of interest, it 
can be pointed at with the wand and if clicked, it will be selected. Both the selected beetle and its 
corresponding point will be emphasized. 

Research 
In order to visualize the flea beetles, the first objective was to find appropriate 
sketches of the specific species. This was a lot harder than expected, due to the 
large amount of flea beetle species and the assumingly not so significant role of 
a particular one. Several instances were consulted – Parks Library and the 
Entomology department at Iowa State University, Ames Public Library as well 
as several resources on the Internet. The best biometric image found was a 
sketch from an old French book, see figure 2. Unfortunately only the top view 
was available, and only on one of the three species. The found picture was used 
as a basis for the design.  

Overview 
P r o c e s s  
The process consisted of the following four steps: 

1) Models - Creation of 3D models in OpenGL. 
2) Integration – Integration of the models into VRGobi. 
3) Interaction - Use of VRJuggler functionality for interaction.  
4) Motion - Generation of individual motion patterns for each beetle. 

S t r u c t u r e  
For modularity the code have been divided into three categories: 

1) Code that is used from VRGobi to call the modelling library.  
2) The modelling library. 
3) The geometry library. 

The first category is simply the function calls used in VRGobi to call the modelling library. These consist of 
four short code segments and are described in more detail in “Integration”, below.  
The second category, the modelling library, deals with how the beetles are represented in VRGobi. This 
code takes care of the motion, the interaction and the uniqueness of every beetle.  
The third category is the geometry library and consists of OpenGL code that draws a beetle. This code 
draws a beetle according to the provided parameters. The size, proportions, color, etc is determined by the 
modelling library that calls this code. 
 
It felt intuitively to separate these three categories by placing them in different subdirectories: 

V R G o b i  
directory:   [VRGobi base directory] 
modified files:  wombat.C   Makefile 

Figure 2. Sketch of the         
  Chaetocnema Concinna   
  flea beetle specie. 
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M o d e l l i n g  l i b r a r y  
Directory:  [VRGobi base directory]/modelling 
files:   modelling.cpp   modelling.h   definitions.h   Makefile 

G e o m e t r y  l i b r a r y  
Directory:  [VRGobi base directory]/modelling/beetle 
files:   beetle.cpp   beetle.h   Makefile 

G l o b a l  v a r i a b l e s  a n d  c o n s t a n t s  
definitions.h and beetle.h contain most of the parameters that one may wish to change. Some parts are hard 
coded though, such as the motion and the warping of the measurement data. The global variables and 
constants of interest are listed in Appendix C. 

Models  

3 D  S t u d i o  
Creating the models directly in OpenGL is not a good approach, considering that a graphical user interface 
would provide an intuitive way of designing the beetle instead of “programming the looks”. Therefore a 
number of programs were considered for the initial design. 3D Studio (Kinetix) was chosen since it’s one of 
the best 3D modelling programs and there are a lot of plugins/tools available. Modelling the beetle in 3D 
studio was fairly easy, the model was built up with distorted spheres and cubes, as shown in figure 3.  

 

Figure 3. The 3D studio graphical user interface and different views of the modelled beetle. 

P o l y t r a n s  
Polytrans (Okino computer graphics) is a 3D format converter that converts between lots of different 3D 
formats. It announces that it will transform 3D studio files to OpenGL source code, but that didn’t quite 
work as expected. The generated code from the exported .3ds file did not have the colors, rotations or 
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positions of the different segments. Instead everything was drawn at the origin, in grey. The second 
approach of converting from an exported .dxf file resulted in a 2 MB C source file, which was highly 
undesirable. 

O p e n G L  
At this point it seemed like modelling the beetles directly in OpenGL maybe wasn’t that bad after all. It 
wasn’t too complicated, since the geometries were rather simple and the 3D studio model was helpful in 
terms of providing length, rotation and scale of the segments. With a direct representation in OpenGL, 
greater flexibility and control was achieved over the models. See figure 4. 

 

Figure 4. The final OpenGL model of the flea beetle. 

T h e  c o d e  
The geometry is all placed in beetle.cpp, with definitions in beetle.h. It is fairly straightforward with the 
following five functions:  

void drawBeetle(GLint legFactor, GLint headFactor, GLint bodyFactor, GLint angle,  
                GLint resolution); 
void proportions (GLint *width, GLint *height, GLint *depth); 
void findIntersection (GLfloat x1,GLfloat y1,GLfloat z1,GLfloat x2,GLfloat y2,  
     GLfloat z2, GLint zlevel, GLfloat *x, GLfloat *z); 
void alexSolid(GLint x, GLint y, GLint z, GLint type, GLint resolution); 
void alexJoint(GLint x, GLint y, GLint z, GLint rx, GLint ry, GLint rz, Glint     
         type, GLint resolution); 

drawBeetle, uses legFactor, headFactor and bodyFactor to create an individual geometry when drawing the 
beetle. These are set by the modelling library and are determined by the six measurements of the beetles. 
The angle is used to determine where in the motion the beetle is currently. The resolution determines the 
graphical quality of the beetles. 

proportions simply return the default width, height and depth of the model as stated in beetle.h. 

findIntersection finds the intersection in the z-plane between two points, which is used to determine when 
the wand points at a beetle.  

alexSolid and alexJoint are help functions that are used to simplify drawBeetle. 

Integrat ion 
Due to the proportions of the VRGobi project, a modular approach was chosen. This means that the models 
can be modified and replaced flexibly, affecting the VRGobi code base minimally. The whole extension is 
taken care of with four short code segments in the VRGobi code. The extension itself is placed in a 
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subdirectory called modelling and all its functions have the “modelling_”-prefix for clarity and ease of 
identification. 
The geometry is in turn placed in another subdirectory in order to show that it is possible to have different 
geometries and switch among them, although using the same modelling library. The abstraction is done at 
two levels, first to separate VRGobi from the modelling, and second, to separate the modelling from the 
geometry.  

T h e  c o d e  
To fully understand what is done at the VRGobi level, it is necessary to take a look at the four code 
segments in wombat.C that make use of the modelling library. As stated earlier, these added lines are the 
only modifications of the VRGobi source files. 

S e g m e n t  1  

//modelling_includes 
#include "modelling/modelling.h" 
#include "modelling/definitions.h" 

This segment simply includes modelling.h and definitions.h. The former consists of the required function 
prototypes and the latter contains all constants and global variables that are needed (see Appendix C and 
Appendix D). definitions.h is the file where one can experiment with different settings for the library. 

S e g m e n t  2  

//modelling_updates 
modelling_update(&pathAngle, &rotAngle, angle_inc); 

vjMatrix *actualWandMatrix; 
jugInter_->getWandMatrix(actualWandMatrix); 
modelling_wand(actualWandMatrix, intersection, FLOORLEVEL); 

This part updates the path- and rotation angles according to a predefined increment. Afterwards, the wand 
matrix is extracted and the position where the wand intersects with the floor is calculated. The coordinates 
are set in the intersection vector. 

S e g m e n t  3  

//modelling_highlightning 
modelling_highlighting(i, scale_glyphs, last_selection); 

Nothing but a call to the highlighting function, which checks if the actual glyph should be highlighted, i.e. 
checks if this glyph is the currently selected. 

S e g m e n t  4  

//modelling_geometry 
jugInter_->mButton0_->getData() == vjDigital::ON ? button[0] = 1: button[0] = 0; 
jugInter_->handPointing() ? button[1] = 1: button[1] = 0; 
//jugInter_->handTwoPointing() ? button[2] = 1: button[2] = 0;    
//jugInter_->handClosed()? button[3] = 1: button[3] = 0; 
jugInter_->handOpen()? button[4] = 1: button[4] = 0; 

vjMatrix *wandMatrix; 
jugInter_->getWandMatrix(wandMatrix); 
modelling_geometry(raw_data, pnts, X, Y, Z, i, 
      pathAngle, rotAngle, &angle_inc, 
     MAXSPEED, MINSPEED, FREEZE, 
     SPREAD, BSF, PSF, FLOORLEVEL,  
     NO_OF_BEETLES, intersection, 
     enlargement, &selected, &last_selection, 
     wandMatrix, button, resolution); 

Finally, segment 4 uses VRJuggler to see if the wand buttons are pressed and how. Then it extracts the wand 
matrix and sends all the information required to the modelling library, which will draw the geometries. 
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Interact ion 
It turned out to be fairly straightforward to use the VRJuggler functionality for interaction implementation. 
The sought information of finding the wand position and whether a button was currently pressed was not a 
very complicated problem. The interaction consists of the ability to point and click at a beetle to select it. The 
selected beetle and its corresponding point will be emphasized. 

T h e  c o d e   
The use of VRJuggler functionality takes place in wombat.C at Segment 2 and 4, as defined above. The 
essential parts are the vjMatrix class and the jugInter_ object. The vjMatrix class contains all the matrix 
functionality needed in this application and jugInter_ provides access to the current instance of VRJuggler. 
Looking in wombat.h one see that it is declared as: stJugglerInterface   *jugInter_; 
Looking in stJugglerInterface.h one find the functions for VRJuggler access that were used. 

Motion 

B o d y  m o t i o n  
The generated motion is not strictly representational but effort has been made to make the motion appear 
natural. The principle is to let each segment oscillate between two positions according to a sinusoidal 
function. A hierarchical structure of the beetle is used to manage the motion in a state-like manner. The 
beetle has a certain value for it’s “angle” at each time step, which is propagated through the structure to 
determine the actual position of the body.  

P a t h  m o t i o n  
The beetles are moving randomly in non-concentric circles with different radius and speed. The model gives 
the impression of the beetles “running around” in disorder. 

T h e  c o d e  
The body motion is implemented in beetle.cpp in the function that draws the beetle: 

void drawBeetle(GLint legFactor, GLint headFactor, GLint bodyFactor, GLint angle,   
       GLint resolution); 

All segments in drawBeetle are depending on the angle parameter. 
 
The path motion is implemented in the modelling library through two functions in modelling.cpp: 

void modelling_update(GLfloat *pathAngle, GLfloat *rotAngle, GLfloat angle_inc); 

void modelling_geometry(float **raw_data, float pnts[][3], int, int, int, int i,
   GLfloat pathAngle, GLfloat rotAngle, GLfloat *angle_inc, 
   GLint MAXSPEED, GLint MINSPEED, GLint FREEZE, 
   GLfloat SPREAD, GLfloat BSF, GLfloat PSF, GLfloat FLOORLEVEL,  
   GLint NO_OF_BEETLES, GLfloat intersection[], 
   GLint enlargement, GLint *selected, GLint *last_selection, 
   vjMatrix *wandMatrix, GLint button[], GLint resolution); 

modelling_update updates the path_angle and the rot_angle, they determine where the beetle is drawn and 
how the beetle is rotated (so that it always faces the direction of movement). 
modelling_geometry does most of the job and would be the equivalent to a main function in the library. 
Among many tasks that it has, it also generates the beetle specific movement. 
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Discuss ion 
Due to that it’s written by many different people, consists of a large and segmented code base and have a 
somewhat unclear structure, VRGobi is a project that in my opinion is fairly hard to grasp. Without the 
assistance of Dianne Cook and Manuel Suarez, the work would’ve been a lot more troublesome. The 
challenge of extending the existing program package in a modular way has been a very interesting 
experience. I believe that the final result has become a flexible and extendable solution to the problem. With 
just a few modifications in the VRGobi code, all the new functionality is obtained. The libraries are built in 
such a way that they easily can be replaced and improved thanks to a strong abstraction barrier. A positive 
side effect is that the libraries are detachable and thus can be reused without modification. They are also 
platform independent because of the use of OpenGL and can be compiled on any OpenGL supported 
platform. 
 
Obviously, there are a number of improvements that can be made. The overall code could be “cleaned up”, 
removing some hard coded parts. It would be desirable to separate the motion part from the modelling 
library, so that one, for instance, could switch between different motions patterns. Similar enhancements 
could be made with the interaction behaviours and the geometric models.  To improve performance, 
precalculation should be used instead of, as now, everything being calculated in real time. 
 
Another intention was to allow the user to change geometry and interaction properties during runtime. 
VRGobi already uses most of the input methods, such as key presses and command line arguments, which 
complicates for a third-party module to make use of them. This is the main reason why it wasn’t 
implemented, although the code is easily extendable for such functionality. That way, the parameters that 
are currently set and modified in the header files and the source code could be modified in runtime. That 
would make it a lot easier to experiment with the models and use them more efficiently as part of the 
visualization tool. 
 
The project has lead to a solution to the initial problem – although there are still some parts that can be 
improved with regard to greater flexibility. The project has hopefully provided new ideas and issues 
regarding third-party development for VRGobi and similar projects, apart from showing one way of how to 
solve the problem. 

. 
Figure 5. Screenshot from the application. 
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Appendix  A -  Dynamic  Stat is t ica l  Data  
Explorat ion 
Dynamic statistical graphics enables data analysts in all fields to carry out visual investigations leading to 
insights into relationships in complex data that consists of many different variables. The data consists of 
multiple observations taken on the same object or measured at the same place. Dynamic statistical graphics 
involves methods for viewing data in the form of point clouds or modeled surfaces. Higher dimensional 
data can be projected into 1-, 2- or 3-dimensional planes in a set of multiple views or as a continuous 
sequence of views that constitutes motion through the higher dimensional space containing the data. There 
is a strong history of statistical graphics research on developing tools for visualizing relationships between 
many variables. Much of this work is documented in videos available from the American Statistical 
Association Statistical Graphics Section Video Lending Library (contact: dfs@research.att.com). In the C2 
environment we plan to examine the familiar tools in a new technology and to use the special features of 
this virtual reality environment to develop completely new tools for the visualization of high dimensional 
data. The applications of the work will extend to almost all areas of science. In particular we will examine 
spatially dependent data, for example, data collected over geographical domains for environmental 
assessment, and agricultural applications.  

 

Figure 5. Screenshot from VRGobi. 

 
More information available at http://www.public.iastate.edu/~dicook/research/C2/statistic.html 
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Appendix  B  -  Data  set  
The data is from a paper by A. A. Lubischew, "On the Use of Discriminant Functions in 
Taxonomy", Biometrics, Dec 1962, pp.455-477. It contains data on the genus of flea beetle 
Chaetocnema, which contains three species: concinna, heikertingeri, and heptapotamica. The 
data contains six measurements on each: 

1. Width of the first joint of the first tarsus in microns (the sum of measurements for both tarsi). 

2. The same for the second joint. 

3. Maximal width of the head between the external edges of the eyes in 0.01 mm. 

4. Maximal width of the aedeagus in the forepart in microns. 

5. Front angle of the aedeagus ( 1 unit = 7.5 degrees). 

6. The aedeagus width from the side in microns. 
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Appendix  C –  Constants  and global  var iables  

C o n s t a n t s  i n  d e f i n i t i o n s . h  

FLOORLEVEL 
Determines the height at which the floor is located. 

NO_OF_BEETLES 
Limits how many beetles to draw. If NO_OF_BEETLES = n > 0, the n first beetles will be drawn. 

BSF, PSF 
Beetle- and path scale factor, determines the scale of the beetles and the path. 

SPREAD 
Sets how far apart the beetles are. 

FREEZE 
If set to 1, the beetle are “frozen”, i.e. no motion. 

MINSPEED, MAXSPEED 
The interval in which the beetle speed can vary. 

SPEEDFACTOR 
Sets the overall speed. 

C o n s t a n t s  i n  b e e t l e . h  
BODY_WIDTH, BODY_HEIGHT, BODY_DEPTH 
Defines the width, height and depth of the beetle. 

G l o b a l  v a r i a b l e s  i n  d e f i n i t i o n s . h  

intersection[3] 
Coordinates for the wand intersection with the floor. 

button[5] 
Shows if button[0..4] are pressed. Indicates pressed button with a ‘1’ at the corresponding position. 

resolution 
The resolution of the geometries. 

pathAngle, rotAngle 
Used to calculate the actual position on the path and the rotation to keep the beetle faced in the direction of 
movement. 

angle_inc 
Sets the steps for the increment of the path- and rotAngle. 

selected, last_selection 
Index of the selected and the previously selected beetle 

enlargement 
Determines if the selected beetle should be enlarged. 
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Appendix  D –  Code 

M o d e l l i n g . h  
#include "beetle/beetle.h" 
#include <vjConfig.h> 
#include <Math/vjMatrix.h> 
#include <Math/vjVec3.h> 
 
void modelling_geometry(float **raw_data, float pnts[][3], int, int, int, int i, 
   GLfloat pathAngle, GLfloat rotAngle, GLfloat *angle_inc, 
   GLint MAXSPEED, GLint MINSPEED, GLint FREEZE, 
   GLfloat SPREAD, GLfloat BSF, GLfloat PSF, GLfloat FLOORLEVEL,  
   GLint NO_OF_BEETLES, GLfloat intersection[], 
   GLint enlargement, GLint *selected, GLint *last_selection, 
   vjMatrix *wandMatrix, GLint button[], GLint resolution); 
 
void modelling_wand(vjMatrix *actualWandMatrix, GLfloat intersection[], GLfloat 
FLOORLEVEL); 
void modelling_update(GLfloat *pathAngle, GLfloat *rotAngle, GLfloat angle_inc); 
void modelling_highlighting(GLint i, GLfloat scale_glyphs, GLint last_selection); 
 

M o d e l l i n g . c p p  
#include "modelling.h" 
 
void  
modelling_update(GLfloat *pathAngle, GLfloat *rotAngle, GLfloat angle_inc) 
{    
  *pathAngle += (PI/180)*angle_inc; 
  *rotAngle += angle_inc; 
  *pathAngle >= 2*PI ? pathAngle = 0:0; //pathAngle %= 360  Cannot use 'cause of 
float; 
  *rotAngle >= 360 ? rotAngle = 0:0;     //rotAngle %= 360  Cannot use 'cause of 
float; 
} 
 
void 
modelling_wand(vjMatrix *actualWandMatrix,  
        GLfloat intersection[], GLfloat FLOORLEVEL) 
{   
  vjVec3 wp; //Wand Position 
  vjVec3 wt; //tip of pointer 
  wp.set(0,0,0); 
  wt.set(0,0,-10); 
 
  wp.xformFull(*actualWandMatrix, wp); 
  wt.xformFull(*actualWandMatrix, wt); 
 
  glColor3f(1,0.5,0); 
       
  glPushMatrix(); 
    glLoadIdentity(); 
    glBegin(GL_LINES); 
    glVertex3f(wt.vec[0],wt.vec[1],wt.vec[2]); 
    glVertex3f(wp.vec[0],wp.vec[1],wp.vec[2]); 
    glEnd(); 
  glPopMatrix();  
 
  GLfloat xIntersection; 
  GLfloat zIntersection; 
 
  if (wt.vec[2] < FLOORLEVEL) 
    findIntersection(wp.vec[0],wp.vec[1],wp.vec[2], wt.vec[0], 
       wt.vec[1],wt.vec[2], FLOORLEVEL,  
       &xIntersection, &zIntersection); 
   
  glPushMatrix(); 
     glLoadIdentity(); 
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     //Draw the "floor" 
     /*      glColor3f(0.5,0.5,0.5);     
      glBegin(GL_QUADS); 
         glVertex3f(-10,FLOORLEVEL,-10); 
  glVertex3f(10,FLOORLEVEL,-10); 
  glVertex3f(10,FLOORLEVEL,10); 
  glVertex3f(-10,FLOORLEVEL,10); 
      glEnd(); 
     */ 
 
     /* //Draws a line from the origin to the intersection point 
 glColor3f(1,0,0); 
 glLoadIdentity(); 
 glBegin(GL_LINES); 
   glVertex3f(0,0,0); 
   glVertex3f(xIntersection,FLOORLEVEL,zIntersection); 
 glEnd(); 
     */ 
 
  intersection[0] = xIntersection; 
  intersection[1] = FLOORLEVEL; 
  intersection[2] = zIntersection; 
       
  glPopMatrix(); 
 
} 
 
void 
modelling_highlighting(GLint i, GLfloat scale_glyphs, GLint last_selection) 
{ 
  if (i == last_selection) 
    { 
      glScalef(scale_glyphs * 1.2, scale_glyphs * 1.2, scale_glyphs * 1.2); 
      glColor3f(0.8, 0.8, 1); 
    } 
} 
 
void 
modelling_geometry(float **raw_data, float pnts[][3], int X, int Y, int Z, int i, 
     GLfloat pathAngle, GLfloat rotAngle, GLfloat *angle_inc, 
     GLint MAXSPEED, GLint MINSPEED, GLint FREEZE, 
     GLfloat SPREAD, GLfloat BSF, GLfloat PSF, GLfloat FLOORLEVEL,  
     GLint NO_OF_BEETLES, GLfloat intersection[], 
     GLint enlargement, GLint *selected, GLint *last_selection, 
     vjMatrix *wandMatrix, GLint button[], GLint resolution) 
{ 
  //Using the second & fifth measurement to generate an 
  //animal-specific path (without caring what they actually represent) 
  int a = raw_data[i][2] * PSF;  // x radius of path 
  int b = raw_data[i][4] * PSF;  // z radius of path 
  int c = raw_data[i][0] * PSF;  // x offset 
  int d = raw_data[i][1] * PSF;  // z offset 
       
  a %= 100; 
  b %= 100; 
       
  if (a < 50) 
    a += 50; 
 
  if (b < 50) 
    b += 50; 
 
  /*if (i > 60) 
    { 
    a = -50; 
    b = -50; 
    rotAngle = -2*rotAngle; 
    pathAngle = -2*pathAngle; 
         
    }*/ 
  
  if (i % 2 == 0) 
    { 
      a *= -1; 
      b *= -1;; 
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      //        c = i * 5 % 150; 
      //d = i * 3 % 300; 
         
      rotAngle *= -1; 
      pathAngle *= -1;         
    } 
 
  /* 
    else if (i % 3 == 0) 
    { 
    c = i * 2 % 110; 
    d = i * 6 % 30; 
     
    rotAngle *= -3; 
    pathAngle *= -3;         
    } 
    else if (i % 5 == 0) 
    { 
    c = i * 10 % 15; 
    d = i * 22 % 200; 
     
    rotAngle *= 2; 
    pathAngle *= 2;         
    }*/ 
   
  float speed; 
 
  speed = (i % (MAXSPEED - MINSPEED))* (*angle_inc) + MINSPEED; 
  rotAngle *= speed; 
  pathAngle *= speed; 
 
  float animX = a*cos(pathAngle)+c; 
  float animZ = b*sin(pathAngle)+d; 
 
  if (FREEZE == 1 ) 
    { 
      animX = 0; 
      animZ = 0; 
    } 
 
  GLfloat cx = pnts[i][X] + animX; 
  GLfloat cy = FLOORLEVEL; 
  GLfloat cz = pnts[i][Z] + animZ; 
       
  glPushMatrix(); 
     glLoadIdentity(); 
     glTranslatef(pnts[i][X] * SPREAD, FLOORLEVEL, pnts[i][Z] * SPREAD); 
     glScalef(PSF, PSF, PSF); 
     glTranslatef(animX,0,animZ); //Put the animal on it's path; 
      
     glRotatef(-rotAngle,0,1,0);     // Rotate body to be facing with direction 
     glRotatef(90,1,0,0); // Flip down the beetle 
     glScalef(BSF,BSF,BSF); 
      
 //Mapping of the statistical data to the beetles 
     GLint leg1 = raw_data[i][0]; 
     GLint leg2 = raw_data[i][1]; 
     GLint head = raw_data[i][2]; 
     GLint aedeagus1 = raw_data[i][3]; 
     GLint aedeagus2 = raw_data[i][4]; 
     GLint aedeagus3 = raw_data[i][5]; 
      
  //Warping of the of the statistical data to the beetles 
     GLfloat leg_scale = ((GLfloat)(leg1 + leg2) - 250) / 10; 
     GLfloat head_scale = ((GLfloat)(head - 50)) / 5; 
     GLfloat body_scale = (GLfloat)(aedeagus1 - 120 + aedeagus2  - 10 + aedeagus3 
- 60) / 20; 
     //button[trigger, pointing, twopointing, closed, open] 
 
      
     //     if (button[0] == 1 && button[2] == 1) 
     //  (*angle_inc) -=0.0001; 
     // else if (button[0] == 1 && button[3] == 1) 
     //  (*angle_inc) +=0.0001; 
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     if (i == *last_selection) 
       { 
  glPushMatrix(); 
  glScalef(2,2,2); 
  glColor3f(0.8, 0.8, 1); 
  if (button[4] == 1 && *last_selection != -1) 
    enlargement = 1; 
  else 
    enlargement = 0; 
 
  if (enlargement) 
    { 
      glPushMatrix(); 
         cout<<"Enlargement mode"<<endl; 
  glLoadIdentity(); 
  glMultMatrixf(wandMatrix->getFloatPtr()); 
  glScalef(BSF,BSF,BSF); 
  glScalef(PSF,PSF,PSF); 
  glTranslatef(-1,0,0); 
  glScalef(2,2,2); 
  drawBeetle(leg_scale,head_scale,body_scale,0,resolution + 4); 
      glPopMatrix(); 
    } 
       } 
 
     if (i > NO_OF_BEETLES || NO_OF_BEETLES < 0) 
       drawBeetle(leg_scale,head_scale,body_scale,pathAngle * 1000,resolution); 
     //scale of leg, head, body & angle & resolution 
 
     //  cout<<pathAngle<<endl; 
 
     if (i == *last_selection) 
       { 
  glPopMatrix(); 
       } 
 
     /* Start of bounding box */ 
     GLfloat w,h,d2; 
     GLint ab, cd, ef; 
     proportions(&ab,&cd,&ef); 
     w = (GLfloat)ab * PSF * BSF; 
     h = (GLfloat)cd * PSF * BSF; 
     d2 = (GLfloat)ef * PSF * BSF; 
 
     animX *= PSF; 
     animZ *= PSF; 
     //  
   
  
     cx = animX + (float)pnts[i][X] * SPREAD; //the world coordinate of the 
beetle 
     cz = animZ + (float)pnts[i][Z] * SPREAD; 
 
     if (button[4] == 1) 
       cout<<"open"<<endl; 
     else if (button[0] == 1) 
       cout<<"1"<<endl; 
 
     if (button[0] == 1) 
       { 
  GLfloat xi = intersection[0]; 
  GLfloat zi = intersection[2]; 
 
  if (xi > cx - w && xi < cx + w && 
      zi > cz - h && zi < cz + h) 
    { 
      *last_selection = i; 
      *selected = i; 
    
      glScalef(2,2,2); 
      glColor4f(1,1,1,1); 
      glBegin(GL_QUADS); 
      glVertex3f(w,h,d2); 
      glVertex3f(-w,h,d2); 
      glVertex3f(-w,-h,d2); 
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      glVertex3f(w,-h,d2); 
      glVertex3f(w,h,d2); 
      glEnd();   
 
      cout<<"Beetle "<<*selected<<" last_selection"<<endl; 
    } 
       } 
 
  glPopMatrix(); 
} 
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D e f i n i t i o n s . h  
#define FLOORLEVEL   0 //-1.5 
#define NO_OF_BEETLES -1 //actually how many beetles to skip, -1 = all 
#define BSF 0.01 //0.01 //beetlescalefactor 
#define PSF 0.1 //0.01 //pathscalefactor 
#define SPREAD 15 
#define FREEZE 0 
GLfloat SPEEDFACTOR = 0.05; 
GLint MAXSPEED = 10; 
GLint MINSPEED = 3; 
 
GLint resolution = 3; 
 
GLint angle = 0; 
GLfloat pathAngle = 0; 
GLfloat rotAngle = 0; 
GLint turn = 0; 
GLfloat angle_inc = SPEEDFACTOR; 
GLint last_selection = -1; 
GLint enlargement = 0; 
GLint counter = 0; 
GLint selected = -1; 
GLfloat intersection[3] = {0,0,0}; 
GLint button[5] = {0,0,0,0,0}; 
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B e e t l e . h  
#ifdef WIN32 
#include <windows.h> 
#endif 
 
#include <GL/glut.h>  
#include <iostream.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
#define SPHERE 1 
#define CUBE 2 
#define PI 3.14 //3.141592654 
#define PI_180 0.1745 
 
#define BODY_WIDTH 160 
#define BODY_HEIGHT 210 
#define BODY_DEPTH 80 
 
 
void drawBeetle(GLint legFactor, GLint headFactor, GLint bodyFactor, GLint angle, 
GLint resolution); 
void proportions (GLint *width, GLint *height, GLint *depth); 
void findIntersection (GLfloat x1,GLfloat y1,GLfloat z1,GLfloat x2,GLfloat 
y2,GLfloat z2, GLint zlevel, GLfloat *x, GLfloat *z); 
void alexSolid(GLint x, GLint y, GLint z, GLint type, GLint resolution); 
void alexJoint(GLint x, GLint y, GLint z, GLint rx, GLint ry, GLint rz, GLint 
type, GLint resolution); 
//The resolution is only used for spheres 

B e e t l e . c p p  
#include "beetle.h" 
 
void 
drawBeetle(GLint legFactor, GLint headFactor, GLint bodyFactor, GLint angle, 
GLint resolution) 
{ 
  GLfloat clj1 = 0.3; // Color leg joint 1 
  GLfloat clj2 = 0.4; 
  GLfloat clj3 = 0.5; 
  GLfloat ca = 0.35; // Color antenn 
  GLfloat cf = 0.4; // Color forehead 
  GLfloat ch = 0.3; // Color head 
  GLfloat ce[] = {1, 0.5, 0.5}; 
 
  GLint vla = 20; // Vertical leg angle 
 
  angle *= PI_180;   
  GLfloat sin_angle = sin(angle); 
  GLfloat cos_angle = cos(angle); 
 
  GLint laa1 = 60 + 3*sin_angle; //left antenna angle 1st joint 
  GLint laa2 = 10 + 2*sin_angle; 
  GLint laa3 = -10 + 6*sin_angle; 
  GLint raa1 = 60 + 3*sin(angle - PI_180 * 4);  
  GLint raa2 = 10 + 2*sin(angle - PI_180 * 4);  
  GLint raa3 = -10 + 6*sin(angle - PI_180 * 4);  
 
  GLint ll1j1a = 15*cos_angle; //left leg 1 joint 1 angle 
  GLint ll2j1a = 10*sin(angle - PI_180 * 10);  
  GLint ll3j1a = 12*sin(angle - PI_180 * 15);  
  GLint rl1j1a = 15*cos(angle - PI_180 * 30);  
  GLint rl2j1a = 10*sin(angle - PI_180 * 40);  
  GLint rl3j1a = 12*sin(angle - PI_180 * 45);  
 
  GLfloat hva = 3 * cos_angle; // head vertical angle - bounce 
  GLfloat hha = 3 * sin_angle; // head horizotal angle - lookaround 
 
  GLint al1 = 70; //antenna length, 1st segment 
  GLint al2 = 200; 
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  GLint al3 = 50; 
 
  GLint bx = BODY_WIDTH + bodyFactor; 
  GLint by = BODY_HEIGHT + bodyFactor; 
  GLint bz = BODY_DEPTH + bodyFactor; 
  GLint hx = 100 + headFactor; 
  GLint hy = 90 + headFactor; 
  GLint hz = 70 + headFactor; 
  GLint fy = 70; 
  GLint fx = 70; 
  GLint fz = 40; 
  GLfloat l = 1 + legFactor*0.1; 
 
  // Bounding box will be regarding the body. 
  GLfloat top = by; 
  GLfloat right =  bx; 
  GLfloat left =  -right;  
  GLfloat bottom =  -by; 
  GLfloat thickness = bz; 
 
  /*  glPushMatrix(); 
     glScalef(2*bx, 2*by, bz); 
     glutWireCube(1); 
  glPopMatrix(); 
  */ 
 
  glPushMatrix(); 
     //glTranslatef(0,15,0); 
 
     alexSolid(bx,by,bz,SPHERE,resolution + 2); //body 
     //(the body will be coloured with the actual opengl color 
      
     glTranslatef(0,by * 0.9,0);  
 
 
     glPushMatrix(); 
 glColor3f(ch,ch,ch); 
 glRotatef(hva,1,0,0); 
 glRotatef(hha,0,1,0); 
        alexSolid(hx,hy,hz,SPHERE,resolution); // head 
 glTranslatef(0,0.8*hy,0); 
 glColor3f(cf,cf,cf); 
 alexSolid(fx,fy,fz,SPHERE,resolution); // forehead 
  
 glPushMatrix(); // draw the eyes 
           glTranslatef(fy*0.9,hy*0.23,0); 
    glColor3f(ce[0],ce[1],ce[2]); 
    alexSolid(25,25,25,SPHERE,resolution); // right eye 
    glTranslatef(-fy*0.9*2,0,0); 
    alexSolid(25,25,25,SPHERE,resolution); // left eye 
 glPopMatrix(); 
 
 glTranslatef(0,fy*0.6,0); //  antenna position in forehead 
 
 glColor3f(ca,ca,ca); 
 //draw antennas 
 int i; 
 
 for (i = 1; i > -2; i -= 2) 
 { 
   GLint aa1 = raa1; 
   GLint aa2 = raa2; 
   GLint aa3 = raa3; 
    
   if (i > 0) 
     { 
       aa1 = laa1; 
       aa2 = laa2; 
       aa3 = laa3; 
     } 
    
 
     glPushMatrix(); 
        glTranslatef(i*-fx*0.1,0,0); 
        alexJoint(7,al1,7,0,0,i*aa1,CUBE,resolution); 
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        alexJoint(9,al2,10,0,0,i*aa2,CUBE,resolution); 
        alexJoint(13,al3,11,0,0,i*aa3,CUBE,resolution); 
     glPopMatrix(); 
 } 
    glPopMatrix(); // back at center of head 
    glPushMatrix(); 
        GLint legResolution = resolution; 
 //draw legs 
 for (i = 1; i > -2; i -= 2) 
   { 
     GLint a1 = rl1j1a; 
     GLint a2 = rl2j1a; 
     GLint a3 = rl3j1a; 
      
     if (i > 0) 
       { 
  a1 = ll1j1a; 
  a2 = ll2j1a; 
  a3 = ll3j1a; 
       } 
      
     glPushMatrix(); // Leg 1 
               glTranslatef(i*-bx*0.45,0,0); 
               glRotatef(i*vla,0,1,0); 
        glScalef(l,l,l); 
        glColor3f(clj1,clj1,clj1); 
        alexJoint(20,40,30,0,0,i*70 + a1,SPHERE,legResolution); 
        glColor3f(clj2,clj2,clj2); 
        alexJoint(20,80,30,0,0,i*-60,CUBE,legResolution); 
        glColor3f(clj3,clj3,clj3); 
        alexJoint(20,80,30,0,0,i*70,CUBE,legResolution); 
            glPopMatrix(); 
 
     glPushMatrix(); // Leg 2 
               glTranslatef(i*-bx*0.86,-by*0.38,0); 
               glRotatef(i*vla,0,1,0); 
        glScalef(l,l,l); 
        glColor3f(clj1,clj1,clj1); 
        alexJoint(30,60,30,0,0,i*100 + a2,SPHERE,legResolution); 
        glColor3f(clj2,clj2,clj2); 
        alexJoint(20,90,30,0,0,i*90,CUBE,legResolution); 
        glColor3f(clj3,clj3,clj3); 
        alexJoint(20,90,30,0,0,i*-60,CUBE,legResolution); 
            glPopMatrix(); 
 
     glPushMatrix(); // Leg 3 
        glTranslatef(i*-bx*0.95,-bx*1.7,0); 
               glRotatef(i*vla,0,1,0); 
        glScalef(l,l,l); 
        glColor3f(clj1,clj1,clj1); 
        alexJoint(40,70,40,0,0,i*140 + a3,SPHERE,legResolution); 
        glColor3f(clj2,clj2,clj2); 
        alexJoint(30,150,40,0,0,i*60,CUBE,legResolution); 
        glColor3f(clj3,clj3,clj3); 
        alexJoint(20,90,30,0,0,i*-40,CUBE,legResolution); 
            glPopMatrix(); 
 
 } 
    glPopMatrix(); 
 
  glPopMatrix(); 
} 
 
void 
proportions (GLint *width, GLint *height, GLint *depth) 
{ 
  *width = BODY_WIDTH; 
  *height = BODY_HEIGHT; 
  *depth = BODY_DEPTH; 
 
} 
 
void alexJoint(GLint x, GLint y, GLint z, GLint rx, GLint ry, GLint rz, GLint 
type, GLint resolution) 
{ 
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  GLfloat offset = (GLfloat)y/2; 
 
  glRotatef(rx, 1, 0, 0);      // rotate around the joint 
  glRotatef(ry, 0, 1, 0); 
  glRotatef(rz, 0, 0, 1); 
   
  glTranslatef(0, offset, 0);  // move so that we draw at previous joint 
  alexSolid(x,y,z,type, resolution); 
   
  glTranslatef(0, offset, 0);  // ends up at the end of this joint 
} 
 
void alexSolid(GLint x, GLint y, GLint z, GLint type, GLint resolution) 
{ 
  glPushMatrix(); 
     glScalef(x,y,z); 
     if (type != SPHERE) 
       glutSolidCube(1); 
     else 
       glutSolidSphere(1,resolution,resolution); 
  glPopMatrix(); 
} 
 
void 
findIntersection (GLfloat x1,GLfloat y1,GLfloat z1,GLfloat x2,GLfloat y2,GLfloat 
z2, GLint zlevel, GLfloat *x, GLfloat *z) 
{ 
  //y = y2*u + y1*(1-u) = zlevel = u*(y2-y1) + y1 
  //u = (zlevel - y1) / (y2 - y1) 
 
  GLfloat u = (zlevel - y1) / (y2 - y1); 
  *x = x2*u + x1*(1-u); 
  *z = z2*u + z1*(1-u); 
 
  /*  glPushMatrix(); 
    glTranslatef(x, zlevel, z);*/ 
    //cout << x << " " << zlevel << " " << z << endl; 
  //glutSolidCube(1); 
  //glPopMatrix(); 
} 

 


