
Reducing Third Parties in the Network
through Client-Side Intelligence

Georgios Kontaxis

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2018

c©2017

Georgios Kontaxis

All Rights Reserved

ABSTRACT

Reducing Third Parties in the Network
through Client-Side Intelligence

Georgios Kontaxis

The end-to-end argument describes the communication between a client and server using

functionality that is located at the end points of a distributed system. From a security and

privacy perspective, clients only need to trust the server they are trying to reach instead

of intermediate system nodes and other third-party entities. Clients accessing the Inter-

net today and more specifically the World Wide Web have to interact with a plethora of

network entities for name resolution, traffic routing and content delivery. While individual

communications with those entities may some times be end to end, from the user’s perspec-

tive they are intermediaries the user has to trust in order to access the website behind a

domain name. This complex interaction lacks transparency and control and expands the

attack surface beyond the server clients are trying to reach directly. In this dissertation,

we develop a set of novel design principles and architectures to reduce the number of third-

party services and networks a client’s traffic is exposed to when browsing the web. Our

proposals bring additional intelligence to the client and can be adopted without changes to

the third parties.

Websites can include content, such as images and iframes, located on third-party servers.

Browsers loading an HTML page will contact these additional servers to satisfy external

content dependencies. Such interaction has privacy implications because it includes context

related to the user’s browsing history. For example, the widespread adoption of “social

plugins” enables the respective social networking services to track a growing part of its

members’ online activity. These plugins are commonly implemented as HTML iframes

originating from the domain of the respective social network. They are embedded in sites

users might visit, for instance to read the news or do shopping. Facebook’s Like button

is an example of a social plugin. While one could prevent the browser from connecting to

third-party servers, it would break existing functionality and thus be unlikely to be widely

adopted. We propose a novel design for privacy-preserving social plugins that decouples

the retrieval of user-specific content from the loading of third-party content. Our approach

can be adopted by web browsers without the need for server-side changes. Our design has

the benefit of avoiding the transmission of user-identifying information to the third-party

server while preserving the original functionality of the plugins.

In addition, we propose an architecture which reduces the networks involved when rout-

ing traffic to a website. Users then have to trust fewer organizations with their traffic.

Such trust is necessary today because for example we observe that only 30% of popular web

servers offer HTTPS. At the same time there is evidence that network adversaries carry

out active and passive attacks against users. We argue that if end-to-end security with a

server is not available the next best thing is a secure link to a network that is close to the

server and will act as a gateway. Our approach identifies network vantage points in the

cloud, enables a client to establish secure tunnels to them and intelligently routes traffic

based on its destination. The proliferation of infrastructure-as-a-service platforms makes it

practical for users to benefit from the cloud. We determine that our architecture is practical

because our proposed use of the cloud aligns with existing ways end-user devices leverage it

today. Users control both endpoints of the tunnel and do not depend on the cooperation of

individual websites. We are thus able to eliminate third-party networks for 20% of popular

web servers, reduce network paths to 1 hop for an additional 20% and shorten the rest.

We hypothesize that user privacy on the web can be improved in terms of transparency

and control by reducing the systems and services that are indirectly and automatically

involved. We also hypothesize that such reduction can be achieved unilaterally through

client-side initiatives and without affecting the operation of individual websites.

Table of Contents

List of Figures iii

List of Tables vi

1 Introduction 1

1.1 Hypothesis . 4

1.2 Thesis Statement . 4

1.3 Contributions . 5

2 Related Work 7

2.1 Preventing Third-party Tracking on the Web 7

2.2 Preventing Third-party Tracking on the Network 11

3 Privacy-Preserving Social Plugins 15

3.1 Overview . 15

3.2 Design . 16

3.3 Implementation . 19

3.4 Experimental Evaluation . 23

3.4.1 Supported Facebook Plugins . 23

3.4.2 Space Requirements . 26

3.4.3 Speed . 29

3.4.4 Effectiveness . 30

3.4.5 Revisiting Social Plugins . 31

3.5 Privacy-Preserving Social Plugins as a Service: A Pure JavaScript Design . 32

i

3.6 Discussion . 37

4 Topology-Aware Network Tunnels 41

4.1 Overview . 41

4.2 Threat Model . 41

4.3 Design . 43

4.3.1 Topology-Aware Network Overlay 43

4.3.2 The TNT Router . 44

4.4 Understanding the Landscape of Web Services 45

4.4.1 HTTPS Adoption . 46

4.4.2 Web Service Collocation . 48

4.5 Implementation . 49

4.5.1 Deployment . 50

4.5.2 Operation . 51

4.5.3 Transparent Routing Updates . 53

4.5.4 Application-Specific Routing . 55

4.6 Evaluation . 56

4.6.1 Network Proximity . 56

4.6.2 Operating a TNT router . 59

4.6.3 Web Browsing over TNT . 61

4.7 Security Discussion . 62

4.8 Limitations . 65

4.9 Production . 67

5 Conclusion 68

5.1 Summary . 68

5.2 Future Directions . 69

5.2.1 Decentralizing User Data . 69

5.2.2 Revisiting the Security Model of Client-Server Interactions 70

Bibliography 72

ii

List of Figures

1.1 A plethora of third-party entities are involved when users visit a website.

From a privacy perspective, they have to trust networks and services beyond

their intended destination. 6

1.2 This dissertation proposes a privacy-preserving design for personalized third-

party content as well as a secure transport overlay that effectively reduces

the trusted networks involved. 6

2.1 The privacy-functionality tradeoff when addressing third-party tracking. . . 8

3.1 The loading phase of privacy-preserving social plugins. When a social plugin

is encountered (1), the Social Plugin Agent intervenes between the plugin and

the SNS (2). The agent requests (3) and receives (4) only publicly accessible

content, e.g., the page’s total number of “likes,” without revealing any user-

identifying information to the SNS. The agent then combines this data with

personalized information that is maintained locally, and presents the unified

content to the user (5). 18

3.2 Overall architecture of SafeButton. A Request Handler (1) intercepts the

HTTP requests of social plugins. Privacy-preserving implementations of the

supported plugins (2) combine public remote data (3b), which can be cached

in the X-Cache for improving network performance (3a), and private data

from the user’s social circle, which is maintained locally in the DataStore

(4), and deliver the same personalized content (5) as the original plugins. . 19

iii

3.3 Local space consumption for the required information from a user’s social

circle as a function of the number of friends. For the average case of a user

with 190 friends, SafeButton needs just 5.4MB. 28

3.4 CDF of the number of “likes” of each user. 29

3.5 Loading time for a Like button with and without SafeButton. Even when

the total number of “likes” is not available in the X-Cache, SafeButton is 2.8

times faster. 31

3.6 Privacy-preserving social plugins serviced by a SNS. Here: the loading of a

social plugin in a third-party page. The code of the social plugin agent is

always fetched from a secondary domain to avoid leaking cookies set by the

primary domain of the SNS. The URL of the target page is passed via a frag-

ment identifier so it is never transmitted to the SNS. The agent synthesizes

and renders the personalized content of the social plugin. 33

3.7 Privacy-preserving social plugins serviced by a SNS. Here: securely commu-

nicating the user’s session identifier to the social plugin agent when logging

into the SNS. Although the agent is hosted on a secondary domain, it receives

and stores the identifier from the primary domain through the postMessage

API, allowing it to place asynchronous authenticated requests for accessing

the user’s profile information. 34

4.1 In the TNT architecture an overlay of secure topology-aware tunnels is estab-

lished between the client and a set of network vantage points. The number

and placement of secure tunnels is strategically selected to minimize the

network distance packets need to travel outside the overlay to reach their

destination. Individual network packets are intelligently routed through the

tunnel exiting closest to their destination. Tunnel exits within the same net-

work as the destination of a packet (Servers A, B) eliminate the exposure of

traffic to network adversaries. 42

4.2 Example of a network path on the Internet. For insecure protocols, such

as HTTP, data is exposed across the path to operators of the underlying

infrastructure. 43

iv

4.3 Operation of the TNT router when serving client requests towards network

destination a.b.c.d. Initially it updates the system’s routing table (1) to

route all network packets through one of the tunnels by default (2). A client’s

request for which there is no explicit route will go through the default tunnel

(3). Subsequently the TNT router will task the probes at each tunnel’s exit

with determining their distance from that destination so that future requests

can be better routed (4). Following the path announcements from the probes,

an explicit routing entry is created for that destination (5). The operating

system will use that entry for future client requests (6). 45

4.4 CDF of the number of ASes on the network path to each web service. TNT

outperforms ISPs by exposing zero traffic to the Internet for 18.5% as well

as achieving one-hop paths for an additional 19.5%. 56

4.5 CDF of the reduction in ASes on a network path when using TNT as opposed

to an ISP. TNT offers at least 33% in 70% of the cases. 57

4.6 Ratio of optimal versus suboptimal TNT routing over time. Initially the ratio

is low causing forward probes to map network paths. Later on it quickly rises

indicating that few popular destinations have been mapped. 60

4.7 Number of entries in the system’s effective routing table. The TNT router

creates explicit entries per AS as part of its operation. In practice memory

consumption is negligible and processing time near constant. 61

4.8 Number of routing tables concurrently active. Following an update, existing

connections keep using the previous version of the table to avoid disruptions.

In practice memory and processing overhead are negligible. 62

4.9 RTT of packets routed either through a fast academic network or a TNT link

to AWS. 63

4.10 Load time of sessions routed either through a fast academic network or a

TNT link to AWS. 64

v

List of Tables

2.1 Our proposal encrypts the entire path between the client and the destination

network by optimizing tunnel placement and traffic routing. The same logic

in Tor would compromise its anonymity properties. 12

3.1 Public vs. Personalized content in Facebook’s social plugins [19]. 24

3.2 For 7 out of the 9 Facebook social plugins, SafeButton provides exactly the

same personalized content without exposing any user-identifying information. 25

3.3 Storage space requirements for the average case of 190 friends and the edge

case of 5,000 friends. 27

4.1 HTTPS capability of 10K popular domains. While the percentage of sites

offering TLS has increased in recent years, users still access 45% of popular

domains without encryption. Moreover, with the majority of HTTPS do-

mains lacking an HSTS policy, users are vulnerable to TLS stripping attacks

and may fall back to plain-text HTTP. 47

4.2 Top 10 most frequent ASes hosting sites. 48

4.3 Updating the operating system’s routing table so as not to disrupt existing

TCP connections. The TNT router transitions the system from the current

table to an updated version by cloning the table, modifying the new table

and setting it as effective only for new connections. 54

vi

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Distributed systems are better served when high level functionality is implemented at their

endpoints rather than the middle [95]. From a security and privacy perspective, clients only

need to trust the server they are trying to reach instead of intermediate system nodes and

other third-party entities. Clients accessing the Internet today and more specifically the

World Wide Web have to interact with a plethora of network entities for name resolution,

traffic routing and content delivery. While individual communications with those entities

may some times be end to end, from the user’s perspective they are intermediaries the user

has to trust in order to access the website behind a domain name. This complex interaction

lacks transparency and control and expands the attack surface beyond the server clients

are trying to reach directly. We draw the distinction between second and third parties

where the former operate under the authority of the primary service users are trying to

reach. For example, when a website delegates part of its content or functionality to a

service operating under that website’s domain the service is considered a second party and

the users’ trust towards the website extends to that service. Content delivery networks

and same-site analytics services can be instances of second parties. On the other hand,

services under their own distinct domains with symbiotic relationships to the website are

third parties and users need to trust them separately. Routing networks on the Internet

and cross-site social or advertising services are instances of third parties.

A client communicating with a web server exchanges traffic over a series of distinctly

owned networks spanning organizational and national borders. Unless the client agrees on

CHAPTER 1. INTRODUCTION 2

an end-to-end encrypted transport protocol with the server, all intermediate networks are

effectively part of the conversation between the two endpoints as they have the ability to

monitor and alter the information exchanged. End-user Internet service providers (ISPs),

including popular ones such as AT&T and Verizon, inject advertisements [93] and tracking

headers [10] [4] in the unencrypted HTTP traffic of their customers. They also tamper

with SMTP traffic [27] to disable its opportunistic encryption. Intelligence agencies eaves-

drop [47] on unencrypted traffic to piggyback on HTTP cookies for the purpose of tracking

individual users. In addition, they impersonate popular Internet services through man-

on-the-side attacks on unencrypted network paths for user exploitation and surveillance.

Finally, network adversaries [90] inject JavaScript code into unencrypted HTTP traffic in

transit to launch denial of service attacks.

Secure protocols, such as HTTPS, make the information exchanged inaccessible by in-

termediate nodes. This effectively abstracts a multi-party traffic exchange to a two-party

conversation. Recent efforts to make HTTPS more affordable [6] and easy to deploy [1]

are steps towards the right direction. Unfortunately a significant portion of web traffic still

traverses the network without any security. In this dissertation we evaluate the security

of 10,000 popular websites and find that only 30% support HTTPS. Translating HTTPS

support to user impact is an open challenge given different browsing patterns among users

and the subjective nature of private content served from individual sites. We therefore focus

on service configurations rather than the amount of traffic or distinct users to understand

how developers are building and maintaining the ecosystem. A similar study [91] focusing

on connections finds that 50% are done over HTTPS. We examine HTTPS-capable sites

and discover that 53% let their visitors default to plain-text HTTP. Overall only 56 of the

10,000 sites fully protect their users through a combination of HTTPS and HSTS preload-

ing. Even when HTTPS is available implementation vulnerabilities threaten its security.

Recent attacks such as FREAK [60], POODLE [85], Heartbleed [54], the work of AlFardan

et al. [58] and BEAST [64] have impacted hundreds of thousands of Internet services. To

make matters worse many of these services remain vulnerable months after the disclosure

of the attack and some of them will never be patched. In the case of FREAK, 45% of the

affected servers remained vulnerable 9 months post disclosure [50].

CHAPTER 1. INTRODUCTION 3

The functionality offered by modern websites introduces additional privacy concerns

that cannot be addressed by the use of encryption between clients and servers. Websites

often include content, such as images and iframes, located on third-party servers. Browsers

loading an HTML page will contact these additional servers to satisfy external content

dependencies. Such interaction has privacy implications because it includes context related

to the user’s browsing history. It also lacks transparency since the browser’s address bar only

displays the address of the website visited directly. “Social plugins” enable websites to offer

personalized content by leveraging the social graph, and allow their visitors to seamlessly

share, comment, and interact with their social circles [19]. These plugins are provided by

services such as Facebook and are embedded by developers in the form of iframes in websites

users might visit, for instance to read the news or do shopping. Indicatively, as of June 2012,

more than two million websites had incorporated some of Facebook’s social plugins, while

more than 35% of the top 10,000 websites include Like buttons—a percentage three times

higher than just one year before [53]. Roesner et al. [94] show that in 2012 30% of the 100

most popular domains embed Facebook plugins. Englehardt et al. [69] show that in 2016

35% of 1 million popular websites feature Facebook plugins. Their findings demonstrate

that the presence of social plugins in popular websites has been consistent for almost a

decade. [8] They also show that social and advertising networks are the only third parties

with a large presence on the web. When visiting a web page, the browser will load such

third-party content by connecting to Facebook and in the process will transmit the URL

of the visited page along with any cookies available for the third-party domains. Facebook

cookies uniquely identify a user by name and the ubiquity of these plugins enables the social

network to learn a growing part of the user’s browsing history. In recent years Facebook has

started [32] taking advantage of social plugins to covertly profile its users. To make matters

worse, users lack adequate control since browsers interact with third parties automatically

when loading a page. Users could prevent the browser from connecting to these third-party

servers. Such practice has already been studied in the context of advertising networks by

the research community [71, 102] and millions of users have adopted browser add-ons that

employ blacklists to prevent contact with such servers. [2] However social plugins are a

unique case. Given that they bundle functionality with user tracking, preventing them

CHAPTER 1. INTRODUCTION 4

from loading would break the functionality they offer and thus any such solution would be

unlikely to be widely adopted by users.

1.1 Hypothesis

Given current studies [69, 94] advertising and social networking services are the primary

third party content providers privy to the user’s browsing history. Given the existing

mitigations [71,102] against online advertisers we hypothesize that by addressing the privacy

concerns of social plugins user browsing history won’t leak to any third party found in

more than 10% of popular websites. Subsequently for third parties to reconstruct the view

social networks have of the user’s browsing activity they would have to collude among

themselves. Additionally, domain name resolution, traffic routing and content delivery are

the three essential services users have to rely on to browse the web. We hypothesize that

by protecting vulnerable traffic, such as plaintext TCP, from routing intermediaries users

will only need to trust DNS services and the website offering the content they are trying

to access. We also hypothesize that such reduction can be achieved unilaterally through

client-side initiatives and without requiring changes to the third-party services or networks.

We draw the distinction between second and third parties where the former are delegates

of the website’s content or functionality and operate under its authority. Content delivery

networks and same-site analytics services can be instances of second parties. The origin of

same-site analytics services is the website’s domain in contrast to social plugins which use

the origin of the social networking service and can extend their user tracking state across

sites. Similarly, a website’s domain name may resolve to the IP addresses of a content

delivery network which may also carry a TLS certificate for that website.

1.2 Thesis Statement

This thesis argues that the third parties involved when clients access the web can be ef-

fectively reduced by moving their functionality to the endpoints. Specifically clients can

leverage infrastructure-as-a-service platforms to deploy a secure network overlay that en-

ables them to reach a web server in a way that reduces the networks involved. We consider

CHAPTER 1. INTRODUCTION 5

that by routing vulnerable traffic through the network overlay and therefore not exposing it

to the respective transit networks we are effectively removing them from the path. Ideally

the edges of the network overlay are the client and the web server and thus all network

intermediaries are effectively removed. Additionally we argue that clients have the techni-

cal capability to locally implement the content personalization offered by third-party social

plugins thereby eliminating the communication with the social network when loading a web

page. By eliminating communication with the social network when loading a page the user’s

browsing history is not leaked.

1.3 Contributions

• We identify the clustering of Internet services inside cloud providers and propose

strategically establishing encrypted tunnels to their networks to avoid exposing plain-

text traffic to the Internet.

• We define the following security-oriented metrics for routing traffic through our ar-

chitecture; (a) Number of autonomous systems (AS) plain-text traffic must traverse

to reach an Internet service. Ideally zero because the service is in the same network

as a tunnel exit. (b) Involvement of a particular trusted or untrusted AS.

• We implement and evaluate Topology-aware Network Tunnels (TNT) as IP routing

software. We address challenges in network measurements and system integration.

• We propose a novel design for privacy-preserving social plugins that i) prevents the

social network from tracking its members’ web activity, and ii) provides the same

functionality as existing plugins with no compromises in content personalization.

• We implement and evaluate SafeButton, a Firefox extension that provides privacy-

preserving versions of Facebook’s social plugins.

• We describe in detail a pure JavaScript implementation of our design that can be

offered by existing social networking services as a transparent service to their members.

CHAPTER 1. INTRODUCTION 6

Traffic routing DNS

Web serverClient

Social
network

Ads

ISP
Backbone AS

Third-party web content

Figure 1.1: A plethora of third-party entities are involved when users visit a website. From

a privacy perspective, they have to trust networks and services beyond their intended des-

tination.

Traffic routing DNS

Web serverClient

Social
network

Ads

ISP
Backbone AS

Third-party web content

TNT [CCS '16]

Safebutton
[Sec '12]

Figure 1.2: This dissertation proposes a privacy-preserving design for personalized third-

party content as well as a secure transport overlay that effectively reduces the trusted

networks involved.

CHAPTER 2. RELATED WORK 7

Chapter 2

Related Work

2.1 Preventing Third-party Tracking on the Web

The privacy implications of third-party content when users browse the web have been iden-

tified early on [20, 21, 75]. Subsequent studies have tried to quantify the pervasiveness of

tracking in general or among special groups of third parties including social networking ser-

vices. Mayer et al. [83] highlight the threats against user privacy by the cross-site tracking

capabilities of third-party web services. The authors detail a plethora of tracking tech-

nologies used by the embedded pages of advertisement, analytics, and social networking

services. Their work demonstrates the high level of sophistication in web tracking tech-

nologies. Krishnamurthy et al. [79] study privacy leaks in online social networking services.

They identify the presence of embedded content from third-party domains in the interac-

tions of a user with the social network itself and stress that the combination with personal

information inside a social network could pose a significant threat to user privacy. Roesner

et al. [94] study the tracking ecosystem of third-party web services and discuss current de-

fenses, including third-party cookie blocking. They identify cases where tracking services

actively try to evade such restrictions by bringing themselves in a first party position, e.g.,

by spawning pop-up windows. Moreover, the authors present cases in which services are

treated as first parties when visited directly and intentionally by the users, and at the same

time appear embedded as third parties in websites, as is the case with social networking

services and their social plugins. Overall, they conclude that current restrictions imposed

CHAPTER 2. RELATED WORK 8

Privacy

F
un

ct
io

na
lit

y

Ephemeral
Browsing

Cookie etc
Blocking

Blocking
Third Parties

DNT

Privacy-preserving
Social Plugins

Figure 2.1: The privacy-functionality tradeoff when addressing third-party tracking.

by browsers against third-party tracking are not foolproof, and at the same time find more

than 500 tracking services, some with the capability to capture more than 20% of a user’s

browsing behavior. Libert [80] carries out a large-scale study of the HTTP requests made

when visiting a website and finds that in the majority of cases third-party services are in-

volved. The author highlights that users lack visibility into the involvement of those third

parties, points out that few large companies are responsible for most of the services and

calls for additional scrutiny of their practices. Interestingly the most popular third parties

are analytics and social networking services, which bundle user-facing functionality with

invisible activity tracking.

From a privacy perspective, when third-party content providers do not have the ability

to track users on the web, they are no longer involved in the user’s browsing activity.

Existing work tries to achieve that in three ways: 1) communicating the user’s decision to

opt out of tracking, 2) preventing the browser from sending user-identifying information to

third-parties and 3) preventing the browser from connecting to them.

The W3C Platform for Privacy Preferences Project (P3P) [44] enables websites to

express their privacy policy in a standardized format that is easy to parse by web browsers

that later are supposed to communicate this information to users. Unfortunately it has

not gained support due to the complexity involved in developers expressing their privacy

policy and the effort required from users in understanding it. Moreover there is currently

CHAPTER 2. RELATED WORK 9

no way to force the adoption of P3P or enforce a website’s P3P policy. Most web browsers

no longer support P3P.

Do Not Track [7] is a browser technology which enables users to signal, via an HTTP

header, that they do not wish to be tracked by websites they do not explicitly visit. Unfor-

tunately there are no guarantees that such a request will be honored by the receiving site

or not.

Given the limitations of policy-based privacy initiatives, existing research focuses on

technical measures that attempt to identify and prevent tracking. Web browsers provide

the option of preventing third parties from storing client-side state using HTTP cookies.

Unfortunately there is no consistent behavior across browsers with some only preventing

third parties from writing cookies. Third parties can work around such weak isolation by

temporarily becoming first parties using a pop-up window or redirecting the entire page to

their domain and back. Furthermore cookies are not the only method for storing client-side

state which is why Jackson et al. [75] propose extending the same-origin isolation to the

content cache, DNS cache and browsing history.

The plethora of ways to explicitly or implicitly store client-side state [76] has lead to

an arms race. In response, a holistic approach to managing client-side state describes

containerized browser instances either specific to a particular site [61] or in the form of an

ephemeral browsing session [56]. In private or “incognito” windows the browser does not

preserve any client-side state in an attempt to prevent long-term user tracking as opposed

to addressing individual state-keeping mechanisms. Because of the rigid nature of this

browsing mode it is an opt-in feature in all browsers that implement it.

In certain cases third parties are able to track users by merely being present on the

pages they visit and without the need to set cookies or other state. Information available

to them through the JavaScript API can result in a uniquely identifying set of values, a

fingerprint, that is based not only on the software [67] but also the hardware [55,86].

Tracking protection offered by Firefox [33] along with privacy-oriented browser exten-

sions such as EFF’s Privacy Badger [9] use a block list of known third-party trackers to

prevent the browser from connecting to the respective domains. While stopping traffic ex-

change with tracking domains addresses even the most resilient forms of fingerprint-based

CHAPTER 2. RELATED WORK 10

tracking it creates a tradeoff between privacy and functionality.

Social networking services and other third-party providers of personalized content com-

bine functionality users enjoy with the tracking of their browsing activity. Services such as

Facebook that users visit both directly and by interacting with their content on other pages

present challenges to the first and third-party isolation logic discussed above. Moreover they

point out the usability issues with ephemeral browsing sessions when users have to log in

to Facebook every time. Finally they highlight the need for privacy-preserving technologies

that do not negatively impact functionality.

There has been significant work towards user control over the data provided to social

networking services. The privacy implications of third-party applications installed in a user’s

profile within the social networking service are similar to the service being embedded in web

pages. Existing research [68, 70, 99] tries to provide user control through a combination of

encrypted data uploaded to the service for which the user has the key and information flow

tracking to regulate access. Facecloak [82] shields a user’s personal information from a social

network and any third-party interaction by providing fake information to the social network

and storing actual sensitive information in an encrypted form on a separate server. The

authors in FlyByNight [81] propose the use of public key cryptography among friends in a

social networking service so as to protect their information from a curious social provider

and potential data leaks.

When social networking services are embedded in web pages they provide personalized

content using information about the page they are embedded in and the user’s social data.

Privacy-preserving personalized content has been researched in the context of advertising.

Recent work has focused on how to support personalized advertisements without reveal-

ing the user’s personal information to the providing party. Adnostic [102] offers targeted

advertising while preserving the user’s privacy by having the web browser profile the user,

through the monitoring of his browsing history, and inferring his interests. It then down-

loads diverse content from the advertising server and selects which part of it to display to

the user. Similarly, RePriv [71] enables the browser to mine a user’s web behavior to in-

fer guidelines for content personalization, which are ultimately communicated to interested

sites. Content personalized in the context of social networking services is a unique challenge.

CHAPTER 2. RELATED WORK 11

Privacy research focusing on advertising prevents a website from building a profile for the

user. In this thesis we focus on the nature of social networking services where the user al-

ready has a profile because of their direct interaction with the service. We then identify the

need to decouple the identification step the user undergoes, to access their already existing

social profile, from their subsequent requests for content personalization on pages the social

networking service is embedded in.

Existing attempts to preserve user privacy are aligned with the general approach de-

scribed above where browsers refrain from connecting to social networking services embed-

ded as third parties. A series of browser add-ons exist [15,35] that block social plugins from

the web pages a user visits by removing them or preventing them from loading, in a manner

similar to what Adblock [2] does for advertisements. ShareMeNot [40,94] is a Firefox add-on

that strips user cookies from a series of HTTP requests that the web browser issues to load

social plugins. As a result, no user-identifying information is sent to the social network-

ing service until the user explicitly interacts with the social plugin. The downside of this

approach is that users are deprived of any personalized information offered by the plugin,

e.g., the number and names of any of their friends that might have already interacted with

a page. In other words, users view these social plugins as if they were logged out from the

respective social network (or browsing in “incognito” mode).

In this dissertation we argue that any privacy mitigation should not come at the cost

of the functionality third parties offer. Therefore we focus on providing the full content

personalization of existing social plugins while protecting user privacy.

2.2 Preventing Third-party Tracking on the Network

Two hosts exchanging traffic over the Internet have to rely on a plethora of intermediate

nodes and networks to forward their data. When the data is readable by anyone, interme-

diate nodes can observe and modify the data exchanged. Both client and server have to

trust all intermediate parties as they are effectively communicating with all of them at the

application level. Reis et al. [93] downloaded known HTML pages over HTTP and detected

ISPs injecting advertisements in the page. Weaver et al. [104] using a client-server testbed

CHAPTER 2. RELATED WORK 12

Architecture Content Security Anonymity

TNT Complete No

Tor Partial Yes

VPN Partial No

Table 2.1: Our proposal encrypts the entire path between the client and the destination

network by optimizing tunnel placement and traffic routing. The same logic in Tor would

compromise its anonymity properties.

found out that 14% of the measurements conducted showed evidence of a middlebox pro-

cessing the traffic. They identified such proxies in all four major U.S. mobile carriers. Using

the same testbed they discovered [5] that network operators, including a major U.S. ISP,

inject erroneous DNS replies for non-existent domains to redirect users to pages featuring

advertisements. Durumeric et al. [65] observed ISPs tampering with SMTP traffic to disable

its opportunistic encryption. Nakibly et al. [87] identified content injection that cannot be

attributed to edge ISPs and is more likely taking place at the Internet’s backbone.

End-to-end encrypted protocols such as TLS [45] reduce the capability of intermediate

parties to simple traffic forwarding and effectively offer a two-party interaction. When end-

to-end encryption is not available alternative approaches attempt to mitigate the privacy

implications.

To limit the exposure of their plain-text traffic some users connect to Virtual Private

Network (VPN) servers offering encrypted tunnels between the client’s device and some fixed

point in the Internet beyond which traffic is unencrypted. While such services protect from

a local network attacker, exposure to network adversaries might even increase as opposed to

a direct route without the VPN service. Since VPN gateways are not optimized to be close

to web servers user traffic might traverse more autonomous systems or even cross national

borders, e.g., from a US gateway to a European server. Even VPNs with diverse gateways

employ them without considering the destination of traffic.

Tor [63] is an anonymity network where traffic is encapsulated in layers of encryption

and usually travels between three nodes before the original TCP/UDP packet exits to the

CHAPTER 2. RELATED WORK 13

Internet. By design Tor attempts no correlation between the exit of an encrypted circuit

and the destination of traffic. Sherr et al. [97] propose the introduction of performance

metrics in anonymous routing systems to affect circuit selection. Even though their work

focuses within the anonymity network one could propose extending it so that exit nodes

consider the destination of traffic. That would compromise the anonymity Tor offers. Even

if someone were to give up anonymity we argue that the Tor network cannot carry user

traffic close to Internet services. Using the Tor network status protocol we studied 1010

exit nodes with the highest bandwidth consensus weight and found that only 1% of them

was located within major cloud networks. Meek [49] and domain fronting in general set

up HTTPS tunnels to the cloud and CDNs and use them as gateways to masquerade the

client’s connection to a blocked website or Tor bridge. The placement of gateways ignores

the location of the website and prefers networks an adversary is unlikely to unblock. As

a result, Tor serves a different purpose than this dissertation and the two architectures

complement each other. Table 2.1 summarizes their differences. Compared to the work

of Sherr et al. we offer a complete implementation, evaluate it end-to-end, and introduce

security metrics for routing decisions.

Overlay networks have been used in the past to recover from link failures in the under-

lying infrastructure and achieve better end-to-end performance. Savage et al. [96] propose

Detour, an overlay where its members periodically exchange performance metrics such as

RTT and packet loss and base their routing decisions on them thereby bypassing the Inter-

net’s native algorithms. LASTor [57] is a similar idea for Tor. Andersen et al. [59] in RON

use a similar architecture to quickly route around link failures. Both designs limit their

scope to members of the overlay and cannot be used for availability or performance guaran-

tees for the rest of the Internet. Participating nodes evaluate each other on a regular basis

which is something that does not scale well to the number of Internet services. Gummadi

et. al [74] use one-hop source routing (SOSR) to recover from link failures in well-connected

parts of the Internet. They maintain an overlay of virtual routers and clients use them as

proxies to probe and connect to arbitrary network destinations when their default route is

unable to deliver traffic. Our work differs from SOSR in two fundamental ways. In SOSR

the placement of routers is selected at random since this is more likely to offer alternative

CHAPTER 2. RELATED WORK 14

links to most network destinations. In contrast, this dissertation optimizes the placement

of TNT routers on the edges of the Internet, inside cloud networks where Internet services

form clusters. We also make routing decisions so as to carry encrypted traffic as close to the

destination as possible while SOSR prioritizes finding any available path around a failed

link. In terms of implementation we solve engineering challenges such as routing updates

in the presence of active client flows while SOSR reroutes traffic that is already failing.

LASTor is a modified Tor client which uses a static AS-level map of the Internet to predict

network paths and avoid circuits with the same AS at its edges. Astoria [88] follows a

similar approach. In this dissertation we carry out data plane measurements to reliably

construct the network path to a destination and reevaluate the path over time to account

for routing changes. Moreover both LASTor and Astoria focus on diversifying the ASes

involved in the edges of a Tor path. We minimize the length of the Internet path from a

client to a server which is a different objective, optionally avoiding specific ASes.

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 15

Chapter 3

Privacy-Preserving Social Plugins

3.1 Overview

The design of privacy-preserving social plugins is driven by two key requirements: i) provide

identical functionality to existing social plugins in terms of content personalization and

user interaction, and ii) avoid the transmission of user-identifying information to the social

networking service before any user interaction takes place. The first requirement is necessary

for ensuring that users receive the full experience of social plugins, as currently offered by

the major social networking services. (SNS) Existing solutions against user tracking do

not provide support for content personalization, and thus are unlikely to be embraced by

SNSes and content providers. The second requirement is necessary for preventing SNSes

from receiving user-identifying information whenever users merely view a page and do not

interact with a social plugin.

We consider as user-identifying information any piece of information that can be used

to directly associate a social plugin instance with a user profile on the SNS, such as a cookie

containing a unique user identifier. The IP address of a device or a browser fingerprint can

also be considered personally identifying information, and could be used by a shady provider

for user tracking. However, the accuracy of such signals cannot be compared to the ability

of directly associating a visit to a page with the actual person that visits the page, due to

factors that introduce uncertainty [92] such as DHCP churn, NAT, proxies, multiple users

using the same browser, and other aspects that obscure the association of a device with

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 16

the actual person behind it. Users can mitigate the effect of these signals to their privacy

by browsing through an anonymous communication network [63], and ensuring that their

browser has a non-unique fingerprint [67].

When viewed in conjunction, the two requirements seem contradicting. Content per-

sonalization presumes knowledge of the person for whom the content will be personalized.

Nevertheless, the approach we propose satisfies both requirements, and enables a social

plugin instance to render personalized content without revealing any user-identifying infor-

mation to the SNS.

3.2 Design

We examine the nature of current plugins and define it as the intersection of the user’s

social data, public data from the social graph and the content of the website the plugins are

embedded in. We define user data as any data contributed by the user to the social network

as well as additional data available to the user, for example, when a friend uploads content

on the social graph that is accessible by the user. Specifically we focus on social plugins

offered by Facebook and verify that their operation aligns with the above definition. We

empirically confirm that social plugins offered by other popular social networks, specifically

Twitter and Google+, also follow this design. We present our analysis on Facebook plugins

in Section 3.4.

Social plugins present the user with two different types of content: private information,

such as the names and pictures of friends who like a page, and public information, such as

the total number of “likes.” The main idea behind our approach is to maintain a local copy

of all private information that can possibly be needed for rendering any personalized content

for a particular user, and query the social networking service only for public information

that can be requested anonymously.

This approach satisfies our first requirement, since all the required private information

for synthesizing and presenting personalized content is still available to the social plugin

locally, while any missing public information can be fetched on demand. User interaction

is not hindered in any way, as user actions are handled in the same way as in existing

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 17

social plugins. Our second requirement is also satisfied because all communication of a

privacy-preserving social plugin with the SNS for loading its content does not include any

user-identifying information. Only public information about the page might be requested,

which can be retrieved anonymously.

The whole process is coordinated by the Social Plugin Agent, which runs in the context

of the browser and has three main tasks: i) upon first run, gathers all private data that

might be needed through the user’s profile and social circle, and stores it in a local Data-

Store, ii) periodically, synchronizes the DataStore with the information available online by

adding or deleting any new or stale entries, and iii) whenever a social plugin is encountered,

synthesizes and presents the appropriate content by combining private, personalized infor-

mation from the local DataStore and public, non-personalized information through the SNS.

Maintaining a local copy of the user’s social information is a continuous process, and takes

place transparently in the background. Once all necessary information has been mirrored

during the bootstrapping phase, the DataStore is kept up to date periodically.

Using the Facebook Like button as a example, the private information that must be

stored locally for its privacy-preserving version should suffice for properly rendering any

possible instance of its personalized content for any third-party page the user might en-

counter. This can be achieved by storing locally all the “likes” that all of the user’s friends

have ever made, as well as the names and thumbnail pictures of the user’s friends. Note

that all the above information is available through the profile history of the user’s friends,

which is always accessible while the user is logged in.

Although keeping all this state locally might seem daunting at first, as we demonstrate

in Sec. 3.4.2, the required space for storing all the necessary private information for privacy-

preserving versions of all Facebook’s existing social plugins is just 5.4MB for the typical

case of a user with 190 friends, and 145MB for an extreme case of a user with 5,000 friends.

No information that is not accessible under the user’s credentials is ever needed, and daily

synchronization typically requires the transmission of a few kilobytes of data. We consider

the need to distribute viral content an atypical case and defer work towards an adaptive

synchronization policy to the future. From a design perspective our proposal could model

the user’s behavior by performing state synchronization as frequently as necessary while

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 18

Social Plugin

Non-authenticated Request
3

site: www.example.com

user: John Doe

site: www.example.com

Social Network

http://www.example.com

1
Page

Content

Third-party Website

Public Data
4

Social Plugin
Agent

Request
2

5
Personalized
Content

Local
DataStore

Private Data

Figure 3.1: The loading phase of privacy-preserving social plugins. When a social plugin

is encountered (1), the Social Plugin Agent intervenes between the plugin and the SNS (2).

The agent requests (3) and receives (4) only publicly accessible content, e.g., the page’s

total number of “likes,” without revealing any user-identifying information to the SNS. The

agent then combines this data with personalized information that is maintained locally, and

presents the unified content to the user (5).

prioritizing data from friends the user is more likely to interact with.

Continuing with the Like button as an example, Fig. 3.1 illustrates the process of ren-

dering its privacy-preserving version. Upon visiting a third-party page, the Social Plugin

Agent requests from the SNS the total number of “likes” for that particular page, without

providing any user-identifying information (step 3). In parallel, it looks up the URL of the

page in the DataStore and retrieves the names and pictures of the friends that have liked

the page (if any). Once the total number of “likes” arrives (step 4), it is combined with the

local information and the unified personalized content is presented to the user (5).

Further optimizations are possible to avoid querying for non-personalized content at load

time. Depending on the plugin and the kind of information it provides, public information

for frequently visited pages can be cached, while public information for highly popular

pages can be prefetched. For example, information such as the total number of “likes”

for a page the user visits several times within a day can be updated only once per day to

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 19

Social Plugin

http://www.example.com

X-CacheDataStore

Request Handler

Social Plugin Provider Interface

Social Network

. . .
2

1

5

3a

3b

4

Figure 3.2: Overall architecture of SafeButton. A Request Handler (1) intercepts the HTTP

requests of social plugins. Privacy-preserving implementations of the supported plugins (2)

combine public remote data (3b), which can be cached in the X-Cache for improving network

performance (3a), and private data from the user’s social circle, which is maintained locally

in the DataStore (4), and deliver the same personalized content (5) as the original plugins.

give an approximation of the page’s popularity among people the user is not friends with.

This allows the Social Plugin Agent to occasionally serve the Like button using solely local

information. Similarly, the SNS could regularly push to the agent the total number of

“likes” for the top 10K most “liked” pages. In both cases, the elimination of any network

communication on every cache hit not only reduces the rendering time, but also protects

the user’s browsing pattern even further.

3.3 Implementation

To explore the feasibility of our approach we have implemented SafeButton, an add-on for

Firefox (version 7.0.1) that provides privacy-preserving versions of existing social plugins.

SafeButton is written in JavaScript and XUL [31], and relies on the XPCOM interfaces of

Firefox to interact with the internals of the browser. Figure 3.2 provides an overview of

SafeButton’s main components, which are described below. A detailed description of how

the components are put together to handle a Like button is provided at the end of this

section.

Request Handler The main task of the Request Handler is to intercept the HTTP

requests of a social plugin at load time, and hand off the event to an appropriate callback

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 20

handler function. The requests are intercepted using a set of filters based on signatures that

capture the target URL of each plugin. These signatures are received from the Social Plugin

Provider Interface, along with the callback handlers that should be invoked whenever a filter

is triggered. The Request Handler provides as an argument to these callbacks a reference

to the DOM of the page that contains the social plugin that triggered the filter.

We have implemented the Request Handler by registering an observer for HTTP requests

(httpon-modify-request notification) using XPCOM’s nsIObserverService. This allows

the inspection code to lie inline in the HTTP request creation process, and either intercept

and modify requests (e.g., by stripping HTTP cookies or other sensitive headers), or drop

them entirely when necessary.

Social Plugin Provider Interface The Social Plugin Provider Interface serves as an

abstraction between the Request Handler and different Provider Modules that support

the social plugins offered by different social networking services. This extensible design

enables more networks and plugins to be supported in the future. In the current version

of SafeButton, we have implemented a Provider Module for the social plugins offered by

Facebook. We take advantage of the Graph API [17] to download the user’s private social

information that needs to be stored locally, and access any other public content on demand.

Other social networks, for example Twitter and Google+, that offer similar plugins also

provide API for developer’s to access user data and interact with the service. Note that our

proposal does not depend on the presence of an API as our design leverages data already

available to users when they interact with the service. We should stress that, although an

option, we do not employ any kind of scraping to extract information available to users

through Facebook’s web interface. We argue that any effort from a social network to

terminate all avenues for users to access their own data would reduce transparency and

counter any claims it has made in favor of user privacy.

A Provider Module for a SNS consists of: i) the signatures that will be used by the

Request Handler for intercepting the HTTP requests of the platform’s social plugins, ii)

the callback handler functions that implement the core functionality of each social plugin

based on local and remote social information, and iii) the necessary logic for initializing the

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 21

DataStore and keeping it up to date with the information that is available online.

Each callback function implements the core functionality for rendering a particular social

plugin. Its main task is to retrieve the appropriate private social data from the DataStore,

request any missing public data from the SNS (without revealing any user-identifying in-

formation), and compile the two into the personalized content that will be displayed. The

function then updates the DOM of the web page through the page reference that was passed

by the Request Handler.

DataStore The DataStore keeps locally all the private social data that might be required

for rendering personalized versions of any of the supported social plugins. All information

is organized in a SQLite database that is stored in the browser’s profile folder for the user

that has installed SafeButton. Upon first invocation, SafeButton begins the process of

prefetching the necessary data. This process takes place in the background, and relies on

the detection of browser idle time and event scheduling to operate opportunistically without

interfering with the user’s browsing activity.

In our implementation for Facebook, data retrieval begins with information about the

user’s friends, including each friend’s name, thumbnail picture, and unique identifier in

Facebook’s social graph. Then, for each friend, SafeButton retrieves events of social activity

such as the pages that a friend has liked or shared, starting with the oldest available event

and moving onward. In case the download process is interrupted, e.g., if the users turns off

the computer, it continues from where it left off the next time the browser is started.

Updating the DataStore is an incremental process that takes place periodically. Fortu-

nately, the current version of the Graph API offers support for incremental updates. As we

need to query for any new activity using a separate request for each friend (a Graph API

function for multiple user updates would be welcome), we do so gracefully for each friend

every two hours, or, if the browser is not idle, in the next idle period. We have empirically

found the above interval to strike a good balance between the timeliness of the locally stored

information and the incurred network overhead. In our future work, we plan to employ a

more elaborate approach based on an adaptive update interval with exponential backoff

so that a separate adaptive update interval can be maintained for different friend groups

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 22

according to the frequency of their updates.

Note that we also need to address the consistency of the locally stored data with the

corresponding data that is available online. For instance, friends may “like” a page and later

on “unlike” it, thereby deleting this activity from their profile. Unfortunately, the Graph

API currently does not offer support for retrieving any kind of removal events. Nevertheless,

SafeButton periodically fetches the entire set of activities for each friend (at a much slower

pace than the incremental updates), and removes any stale entries from the DataStore.

X-Cache The X-Cache holds frequently used public information and meta-information,

such as the total number of “likes” for a page or the mapping between page URLs and

objects in the Facebook graph. A hit in the X-Cache means that no request towards

the social networking service is necessary for rendering a social plugin. This improves

significantly the time it takes for the rendering process to complete, and at the same time

does not reveal the IP address of the user to the SNS.

Use Case: Facebook Like Button Here we enrich the running case of the Facebook

Like button from Sec. 3.2 with the technical details of the behavior of SafeButton’s compo-

nents, as shown by the relevant steps in Fig. 3.2.

Upon visiting a web page with an embedded Like button in the form of an iframe, the

browser will issue an HTTP request towards Facebook to load and subsequently render

the contents of that iframe. The Request Handler intercepts this request and attempts to

match its URL against the set of signatures of the supported social plugins, which will trig-

ger a match for the regular expression http[s]?:\/\/www\.facebook\.com\/plugins\/

like\.php. Subsequently, the handler invokes the callback associated with this signature

and passes as an argument the plugin’s URL and a reference to the DOM of the page that

contains the social plugin (step 1).

The first action of the callback function is to query X-Cache for any cached non-

personalized information about the button and the page it is referring to. This includes

the mapping between the page’s URL and its ID in the Facebook graph, along with the

global count of users who have “liked” the page (step 3a). In case of a miss, a request made

through the Graph API retrieves that information (step 3b). The request is stripped from

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 23

any Facebook cookies that the browser unavoidably appends to it. The response is then

added to X-Cache for future reference. After retrieving the global count of users, the names

(and if the developer has chosen so, the thumbnail pictures) of the user’s friends that have

liked the page are retrieved from the LocalStore (step 4).

Finally, the reference to the DOM of the embedding page (passed by the handler in

step 1), is used to update the iframe where the original Like button would have been with

exactly the same content (step 5).

3.4 Experimental Evaluation

3.4.1 Supported Facebook Plugins

In this section we discuss the social plugins offered by Facebook and evaluate the extend

to which SafeButton can support them in respect to two requirements: i) user privacy, and

ii) support for personalized content. Table 3.1 lists the nine social plugins currently offered

by Facebook. For each plugin, we provide a brief categorization of its “view” functionality,

i.e., the content presented to the user according to whether it is based on public (non-

personalized) or private (personalized) information, as well as its “on-click” functionality,

i.e., the type of action that a user can take.

Although SafeButton interferes with the “view” functionality of existing social plugins,

it does not affect their “on-click” functionality, allowing users to interact normally as with

the original plugins. As shown in Table 3.2, SafeButton currently provides complete support

for seven out of the nine social plugins currently offered by Facebook.

The Like button and its variation, the Like Box, are fully functional; the count, names,

and pictures of the user’s friends are retrieved from the DataStore, while the total number

of “likes” is requested on demand anonymously. The Recommendations plugin presents a

list of recommendations for pages from the same site, with those made by friends appearing

first. Recommendations from the user’s friends are stored locally, so SafeButton can render

those that are relevant to the visited site on top. The list is then completed with public

recommendations by others, which are retrieved on demand. Similarly to the Like button,

Facepile presents pictures of friends who have liked a page, and that information is already

C
H

A
P

T
E

R
3
.

P
R

IV
A

C
Y

-P
R

E
S

E
R

V
IN

G
S

O
C

IA
L

P
L

U
G

IN
S

24

Facebook Public Personalized User

Social Plugin Content Content Action 2012 2017

Like Button Total number of people that have liked the

page

Names and pictures of friends that

have liked the page

Like page 3 3

Send Button - - Send content/page URL 3 3

Comments List of user comments Friends’ comments appear on top Post comment 3 3

Activity Feed List of user activities (likes, comments,

shared pages)

Friends’ activities appear on top - 3 7

Recommendations List of user recommendations (likes) Friends’ recommendations appear on

top

- 3 7

Like Box Total number of people that have liked the

Facebook Page, names and pictures of

some of them, list of recent posts from the

Page

Names and pictures of friends that

have liked the page are shown first

Like page 3 7

Registration - User’s name, picture, birthday, gender,

location, email (prefilled in registration

form)

Register 3 7

Facepile - Names and pictures of friends that

have liked the page

- 3 7

Live Stream User messages - Post message 3 7

Embedded content Embed public posts, videos, etc. from

Facebook in other websites

- - 7 3

Follow Button Total number of people that are following

that person

Names and pictures of friends that are

following that person

Subscribe to public updates 7 3

Quote - - Select text on the website and share it

on Facebook

7 3

Save - - Save an external link in Facebook 7 3

Send - - Send an external link to a friend in

Facebook

7 3

Share - - Post an external link and its preview on

a friend’s profile in Facebook

7 3

Table 3.1: Public vs. Personalized content in Facebook’s social plugins [19].

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 25

Exposed information Personalized

Facebook during loading Content with

Social Plugin Original SafeButton SafeButton

Like Button IP addr. + cookies IP addr. Complete

Send Button IP addr. + cookies None Complete

Comments IP addr. + cookies IP addr. Partial1

Activity Feed IP addr. + cookies IP addr. Partial2

Recommendations IP addr. + cookies IP addr. Complete

Like Box IP addr. + cookies IP addr. Complete

Registration IP addr. + cookies None Complete

Facepile IP addr. + cookies IP addr. Complete

Live Stream IP addr. + cookies IP addr. Complete

1 When all comments are loaded at once, all personalized content is

complete. In case they are loaded in a paginated form, some of the

friends’ comments (if any) might not be shown in the first page.

2 Some of the friends’ comments (if any) might be omitted (access to

comments is currently not supported by Facebook’s APIs).

Table 3.2: For 7 out of the 9 Facebook social plugins, SafeButton provides exactly the same

personalized content without exposing any user-identifying information.

present in the DataStore. The Send, Register, and Login buttons do not present any kind

of dynamic information, and thus can be rendered instantly without issuing any network

request.

Similarly to the Recommendations plugin, content personalization in the Comments

plugin consists of giving priority to comments made by friends. SafeButton retrieves the

non-personalized version of the plugin, and reorders the received comments so that friends’

comments are placed on top. When all comments for a page are fetched at once, the per-

sonalized information presented by SafeButton is fully consistent with the original version

of the plugin. However, when comments are presented in a paginated form, only the first

sub-page is loaded. The current version of the Graph API does not support the retrieval of

comments (e.g., in contrast to “likes”), and thus in case friends’ comments appear deeper

than the first sub-page, SafeButton will not show them on top (a workaround would be to

download all subsequent comment sub-pages, but for popular pages this would result in a

prohibitive amount of data).

The Activity Feed plugin is essentially a wrapper for showing a mix of “likes” and

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 26

comments by friends, and thus again SafeButton’s output lacks any friends’ comments.

Note that our implementation is based solely on the functionality provided by the Graph

API [17], and we refrain from scraping web content for any missing information. Ideally,

future extensions of the Graph API will allow SafeButton to fully support the personalized

content of all plugins. We discuss this and other missing functionality that would facilitate

SafeButton in Sec. 3.6.

In recent years Facebook has retired plugins such as the Activity Feed and added new

ones all of which can be fully supported by SafeButton as they are aligned with the existing

plugins in the way they operate and the data they utilize to do so. For example the Follow

button is another iteration of the Like button. The majority of the new plugins operate

on public non-personalized content that is either presented to the user or is brought into

the social network following some user action such as sharing the content. Retrieving

non-personalized content without revealing the user’s identity to Facebook is supported

by SafeButton with the caveat of revealing the user’s IP address. As discussed in Section

3.6 additional privacy mechanisms to anonymize the IP address can be combined with

SafeButton.

3.4.2 Space Requirements

To explore the local space requirements of SafeButton, we gathered a data set that simulates

the friends a user may have. Starting with a set of friends from the authors’ Facebook

profiles, we crawled the social graph and identified about 300,000 profiles with relaxed

privacy settings that allow unrestricted access to all profile information, including the pages

that person has liked or shared in the past. From these profiles, we randomly selected a set

of 5,000—the maximum number of friends a person can have on Facebook [14].

To quantify the space needed for storing the required data from a user’s social circle,

we initialized SafeButton using the above 5,000 profiles. In detail, SafeButton prefetches

the names, IDs, and photos of all friends, and the URLs of all pages they have liked or

shared. Although we have employed a slow-paced data retrieval process (5sec delay between

consecutive requests), the entire process for all 5,000 friends took less than 10 hours. For

typical users with a few hundred friends, bootstrapping completes in less than a hour. As

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 27

Data 190 Friends 5,000 Friends

Names, IDs of Friends 10.5KB 204.8KB

Photos of Friends 463.4KB 11.8MB

Likes of Friends 4.6MB 126.7MB

Shares of Friends 318.4KB 7.0MB

Total 5.4MB 145.7MB

Average (per friend) 29.2KB 29.7KB

Table 3.3: Storage space requirements for the average case of 190 friends and the edge case

of 5,000 friends.

already mentioned, users are free to use the browser during that time or shut it down and

resume the process later.

Table 3.3 shows a breakdown of the consumed space for the average case of a user with

190 friends [103] and the extreme case of a user with 5,000 friends, which totals 5.4MB and

145.7MB, respectively. Evidently, consumed space is dominated by “likes,” an observation

consistent with the prevailing popularity of the Like button compared to the other social

plugins. To gain a better understanding of storage requirements for different users, Fig. 3.3

shows the consumed space as a function of the number of friends, which as expected increases

linearly.

We should note that the above results are specific for the particular data set, and the

storage space might increase for users with more “verbose” friends. Furthermore, the profile

history of current members will only continue to grow as time passes by, and the storage

space for older users in the future will probably be larger. Nevertheless, these results

are indicative for the overall magnitude of SafeButton’s storage requirements, which can

be considered reasonable even for current smartphones, while the storage space of future

devices can only be expected to increase.

To further investigate the distribution of “likes,” the factor that dominates local space,

we plot in Fig. 3.4 the CDF of the number of “likes” of each user in our data set. The

median user has 122 “likes,” while there are some users with much heavier interaction: about

10% of the users have more than 504 “likes.” The total number of “likes” was 1,110,000,

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 28

Figure 3.3: Local space consumption for the required information from a user’s social circle

as a function of the number of friends. For the average case of a user with 190 friends,

SafeButton needs just 5.4MB.

i.e., 222 per user on average. This number falls within the same order of magnitude as

previously reported statistics, which suggest that there are about 381,861 “likes” per minute

on Facebook [48]. With a total population of about 901 million active users [16] at the

time of the original measurement in 2012, this results in about 217 “likes” per user per

year. These results indicate that our data set is not particularly biased towards excessively

active or inactive profiles. We repeat the experiment in 2017 for a random population of

users using the authors’ profile as a starting point. Because of the high churn of online

social connections as well as people deactivating their profiles there is little overlap with the

population tested in 2012. Even though the two data sets cannot be compared directly data

shows that the use of social plugins and consequently SafeButton’s storage requirements

remain similar.

Besides the storage of social data, SafeButton maintains the X-Cache for quick access

to frequently used non-personalized data about a social plugin. To get an estimate about

its size requirements, we visited the home pages of the top 1,000 websites according to

alexa.com that contained at least one Facebook social plugin. About 82.4% of the identified

plugins corresponded to a Like Button or Like Box, 14% to Facebook Connect, 3% to

Recommendations, 0.5% to Send Button, and 0.1% to Facepile and Activity Box. After

alexa.com

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 29

Number of Likes
0 1 10 100 1000 4500

%
 o

f U
se

rs

0
10
20
30
40
50
60
70
80
90

100

Median: 122 Likes

90th Percentile: 504 Likes

2012
2017

Figure 3.4: CDF of the number of “likes” of each user.

visiting all above sites, X-Cache grew to no more than 850KB, for more than 2,500 entries.

3.4.3 Speed

In this experiment, we explore the rendering time of social plugins with and without

SafeButton. Specifically, we measured the time from the moment the HTTP request for

loading the iframe of a Like button is sent by the browser, until its content is fully ren-

dered in the browser window. To do so, we instrumented Firefox with measurement code

triggered by http-on-modify-request notifications [28] and pageshow events [29]. We

chose to measure the rendering time for the iframe instead of the entire page to eliminate

measurement variations due to other remote elements in the page. This is consistent with

the way a browser renders a page, since iframes are loaded in parallel with the rest of its

elements.

We consider the following three scenarios: i) Firefox rendering a Like button unob-

structed, and Firefox with SafeButton rendering a Like button when there is ii) an X-Cache

miss or iii) an X-Cache hit. For the original Like button, we used a hot browser cache to

cancel out loading times for any required external elements, such as CSS and JavaScipt files.

Using SafeButton, visiting a newly or infrequently accessed web page will result in a miss

in the X-Cache. For a Like button, this means that besides looking up the relevant infor-

mation in the local DataStore, SafeButton must (anonymously) query Facebook to retrieve

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 30

the total number of “likes.” For frequently accessed pages, such personalized information

will likely already exist in the X-Cache, and thus SafeButton does not place any network

request at all.

Using a set of the first 100 among the top websites according to alexa.com that contain

a Like button, we measured the loading time of the Like button’s iframe for each site (each

measurement was repeated 1,000 times). Figure 3.5 shows the median loading time across

all sites for each scenario, as well as its breakdown according to the events that take place

during loading. The rendering time for the original Like button is 351ms, most of which is

spent for communication with Facebook. In particular, it takes 130ms from the moment the

browser issues the request for the iframe until the first byte of the response is received, and

another 204ms for the completion of the transfer. In contrast, SafeButton is much faster,

as it needs 127ms for rendering the Like button in case of an X-Cache miss (2.8 times faster

than the original), and just 24ms in case of an X-Cache hit (14.6 times faster), due to the

absence of any network communication.

The difference in the response times for the network requests placed by the original Like

button and SafeButton in case of an X-Cache miss can be attributed to the different API

used and amount of data returned in each case. SafeButton uses the Graph API to retrieve

just the total number of “likes,” which is returned as a raw ASCII value that is just a few

bytes long. In contrast, the original plugin communicates with a different endpoint from

the side of Facebook, and fetches a full HTML page with embedded CSS and JavaScript

content. While these two requests need a similar amount of time from the moment they

are placed until the first response byte is received from the server, they differ by two orders

of magnitude in terms of the time required to complete the transfer. Even if Facebook

optimizes its own plugins in the future, we expect the rendering speed of SafeButton to be

comparable in case of an X-Cache miss, and still much faster in case of an X-Cache hit.

3.4.4 Effectiveness

As presented in Sec. 3.2, we rely on a set of heuristics that match the target URL of

each supported social plugin to intercept and treat them accordingly so as to protect the

user’s privacy. To evaluate the effectiveness and accuracy of our approach, we carried out

alexa.com

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 31

Figure 3.5: Loading time for a Like button with and without SafeButton. Even when the

total number of “likes” is not available in the X-Cache, SafeButton is 2.8 times faster.

the following experiment. Using tcpdump, we captured a network trace of all outgoing

communication of a test PC in our lab while surfing the web for a week through Firefox

equipped with SafeButton. We then inspected the trace and found that no cookie was ever

transmitted in any HTTP communication with facebook.com or any of its sub-domains.

This was a result of the following “fail-safe” approach. Besides the signatures of the sup-

ported social plugins, SafeButton inspects all communication with facebook.com and strips

any cookies from requests initiated by third-party pages. Next, we performed the reverse

experiment: using the same browser equipped with SafeButton, we surfed www.facebook.com

and interacted with the site’s functionality without any issues for a long period. Careful

inspection of the log generated by SafeButton proved that no in-Facebook communication

was hindered at any time.

3.4.5 Revisiting Social Plugins

We revisit social plugins in 2017 and find that both their nature and types of information

stored in a user’s social graph remain unchanged. The most prevalent data type is a

www.facebook.com

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 32

numeric graph ID pointing to other objects. Objects can be simple items such as URLs or

complex, such as user profiles, pointing to other objects. From the perspective of content

personalization SafeButton still needs to store numeric IDs and URLs. We find that our

storage requirements haven’t changed.

While one might expect that the user population is 2017 has significantly greater storage

needs because of additional data in their social profiles, from the perspective of personalizing

external content this might be explained by Facebook’s shift in strategy to bring content

into Facebook rather than letting users interact with it on other websites. Indicative of

this strategy is the fact that in the Facebook developer’s page the Share button, which

creates a copy of external content in Facebook, is now listed first, above the Like button.

Further evidence to support this trend is the deprecation of plugins that exposed social

data to external websites and the introduction of plugins that expose non-personalized data

or bring external data into the social network. We argue that even though Facebook is

steering users towards an in-network social experience SafeButton continues to benefit user

privacy because Facebook in the last few years has openly discussed using social plugins

as a way to profile users. In other words, even though it hasn’t extended the personalized

functionality of plugins it is increasingly depending on their presence to learn the browsing

history of its users.

3.5 Privacy-Preserving Social Plugins as a Service: A Pure

JavaScript Design

As many users are typically not aware of the privacy issues of social plugins, they are not

likely to install any browser extension for their protection. For instance, NoScript [36], a

Firefox add-on which blocks untrusted JavaScript code from being executed, has roughly

just 2 million users based on 2017 data, and AdBlock [2], an add-on which prevents adver-

tisement domains from loading as third parties in a web page, has about 14 million users.

At the same time, Firefox has 500 million active users [34], which brings the adoption rate

of the above security add-ons to 0.4% and 2.8%, respectively. For this reason, in this section

we present a pure JavaScript implementation of privacy-preserving social plugins that could

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 33

4

http://www.example.com

Authenticated
Communication

socialnetwork-cdn.net

socialnetwork.com

sp-agent.js

GET /sp-agent.js

Local
DataStore

main.postMessage(”userID”, “http://socialnetwork-cdn.net”);

Hidden IFRAME

userID

1
Profile

Private Data

userID

3

2

Figure 3.6: Privacy-preserving social plugins serviced by a SNS. Here: the loading of a

social plugin in a third-party page. The code of the social plugin agent is always fetched

from a secondary domain to avoid leaking cookies set by the primary domain of the SNS.

The URL of the target page is passed via a fragment identifier so it is never transmitted to

the SNS. The agent synthesizes and renders the personalized content of the social plugin.

be employed by social networking services themselves for the protection of their members.

This design requires adoption and thus cooperation from social networks. By design, the

same origin policy prevents unintended communication across domains. While a JavaScript

implementation that can be hosted by websites embedding social plugins would obviate the

need for users to manually install SafeButton, Facebook and other social networks will need

to extend support so that it aligns with the same origin policy.

SafeButton has been motivated by the privacy concerns around the current implemen-

tation of social plugins. In 2010 Facebook claimed [38] that despite the leakage of browsing

history it was not using plugins for tracking. The following proposal assumes an honest

and not curious social network as Facebook claimed to be. Facebook has since reversed [13]

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 34

2

socialnetwork-cdn.net

http://www.example.com

1
Page

Content

www.example.com

Local
DataStore

sp-agent.js

Social Plugin

GET /sp-agent.js#url=
www.example.com

Non-authenticated
Request

3

www.example.com Public Data
4

Private Data

5
Personalized
Content

userID

Figure 3.7: Privacy-preserving social plugins serviced by a SNS. Here: securely communi-

cating the user’s session identifier to the social plugin agent when logging into the SNS.

Although the agent is hosted on a secondary domain, it receives and stores the identifier

from the primary domain through the postMessage API, allowing it to place asynchronous

authenticated requests for accessing the user’s profile information.

its statements but still claims that users will be able to opt out from tracking. Our pro-

posal still remains relevant as proof that privacy-preserving social plugins can be adopted

by websites without the need for browser add-ons. In theory Facebook could offer our

privacy-preserving version to users who opt out under their latest policy.

The use case would not be much different from now: web developers would still embed

an iframe element that loads the social plugin from the SNS. However, instead of serving

a traditional social plugin, the SNS serves a JavaScript implementation of a social plugin

agent in respect to the design presented in Sec. 3.2. The agent then fetches personalized in-

formation from the browser’s local storage, requests non-personalized information from the

SNS, and renders the synthesized content according to the specified social plugin. The feasi-

bility of the above design is supported by existing web technologies such as IndexedDB [26],

which provide a JavaScript API for managing a local database, similar to the DataStore

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 35

used in SafeButton.

The most challenging aspect of this implementation is to prevent the leakage of user-

identifying information during the loading of a social plugin. If the iframe of the social plugin

agent is hosted on the same (sub)domain as the SNS itself (e.g., socialnetwork.com), then

the request for fetching its JavaScript code would also transmit the user’s cookies for the

SNS. At the same time, the agent would need to know the URL of the embedding page to

personalize the social plugin’s content. If the URL is passed as a parameter to that initial

request, the situation is obviously as problematic as in current social plugins.

A solution would be to leave out the URL of the page from the request for loading the

social plugin agent. However, there should be a way to communicate this information to

the agent once its JavaScript code has been loaded by the browser. This can be achieved

through a fragment identifier [52] in the URL from which the agent is loaded. Fragment

identifiers come as the last part of a URL, and begin with a hash mark (#) character.

According to the HTTP specification [24], fragment identifiers are never transmitted as

part of a request to a server. Thus, during the loading of a social plugin in a third-party

page, instead of passing an explicit parameter with the URL of the embedding page, as in

www.socialnetwork.com/sp-agent.js?url=<URL>, it can be passed through a fragment identifier,

as in www.socialnetwork.com/sp-agent.js#<URL>. The information about the URL of the visited

page never leaves the browser, and remains accessible to the JavaScript code of the agent,

which can then parse the hypertext reference of its container and extract the fragment

identifier.

Unfortunately, this approach is still not secure in practice. The URL of the embedding

page is usually also transmitted as part of the HTTP Referer [sic] header by most browsers.

Therefore, even if we omit the target URL from the HTTP parameters of the request, the

server will receive it anyway, allowing the SNS to correlate this information with the user’s

cookies that are transmitted as part of the same request.

To overcome this issue, the social plugin agent can be hosted on a secondary domain,

different than the primary domain of the SNS, as also proposed by Do Not Track [7]. For

instance, in this design the agent could be hosted under socialnetwork-cdn.net instead of

socialnetwork.com, as shown in Fig. 3.6. This prevents the browser from appending the

www.socialnetwork.com/sp-agent.js?url=<URL>
www.socialnetwork.com/sp-agent.js
<URL>
socialnetwork-cdn.net
socialnetwork.com

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 36

user’s cookies whenever a social plugin is encountered (step 2), since its iframe will be

served from a different domain than the one for which the cookies were set. The rest of the

steps are analogous to Fig. 3.1.

Still, the social plugin agent must be able to issue authenticated requests towards the

SNS for accessing the user’s profile and retrieving the necessary private social information

that must be maintained locally. This requires access to the user’s cookies, and specifically

to the identifier of the authenticated session that the user has with the SNS.

This challenge can be addressed through the window.postMessage() [30] JavaScript

API which allows two different origins to communicate. When the user logs in on the SNS,

the login page contains a hidden iframe loaded through HTTPS from the secondary domain

on which the social plugin agent is hosted, as shown in Fig. 3.7 (step 2). The login page then

communicates to the agent’s iframe the session identifier of the user through postMessage

(step 3). The iframe executes JavaScript code that stores locally the user identifier under its

own domain, making it accessible to the plugin agent. The agent can then read the session

identifier from its own local storage, and place authenticated requests towards the SNS for

accessing the user’s profile (step 4) and synchronizing the required information with the

locally stored data. When the user explicitly logs out from the social networking site, the

log out page follows a similar process to erase the identifier from the local storage of the

agent.

In respect to supporting multiple users per browser instance and protecting the personal

information stored locally, encryption can be employed to shield any sensitive information,

such as the names or identifiers of a user’s friends. In accordance with the communication

of the session identifier described above, a user-specific cryptographic key can be communi-

cated from the SNS to the social plugin agent. The plugin can then use this key to encrypt

sensitive information locally. The key is kept only in memory. Each time the plugin agent

loads, it spawns a child iframe towards the social networking site. The request for the child

iframe will normally have the user’s cookies appended. Finally, that child iframe, once

loaded, can communicate via postMessage the encryption key back to the plugin agent.

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 37

3.6 Discussion

Strict Mode of Operation Although SafeButton does not send any cookies to the social

networking service, it still needs to make non-authenticated requests towards the SNS to

fetch public information for some social plugins (e.g., for Facebook plugins, the information

shown in column “Public Content” in Table 3.1). These requests unavoidably expose the

user’s IP address to the SNS.

Some users might not feel comfortable with exposing their IP address to the SNS (even

when no cookies are sent), as this information could be correlated by the SNS with other

sources of information, and could eventually lead to the exposure of the users’ true iden-

tity. For such privacy-savvy users, we consider a “paranoid” mode of operation in which

SafeButton does not reveal the user’s IP address to the social networking service when

encountering a social plugin in a third-party page, by simply not retrieving any public in-

formation about the page. Unavoidably, some social plugins are then rendered using solely

the locally available personalized information, e.g., for the Like button, the total number

of “likes” for the page will be missing.

Alternatively, given the very low traffic incurred by SafeButton’s non-authenticated

queries to the SNS, these can be carried out transparently by SafeButton through an anony-

mous communication network such as Tor [63]. Given that social plugins are loaded in

parallel with the rest of the page’s elements, this would minimally affect the browsing ex-

perience (compared to browsing solely through Tor). Moreover, as users would first need to

consume the page’s content before attempting to use a social plugin they might not notice

any delay in its rendering. We defer the evaluation of SafeButton utilizing Tor to the future.

Potential Challenges with Future Social Plugins. Although SafeButton currently

supports all social plugins offered by Facebook, and our approach is extensible so as to

handle the plugins of other social networking services, we consider two potential challenges

with future plugins [78]. First, future personalization functionality could include social

information from a user’s second degree friends, i.e., the friends of his friends, or rely on the

analysis of data from the entire user population of the social network. Second, this type of

personalization could involve proprietary algorithms not available to the client at run-time.

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 38

Fundamentally SafeButton supports social plugins that leverage the intersection of user

data with website content to enable personalized interaction with the website. We consider

user data to be provided by the user to the social network or available to them. Examples of

the latter is content uploaded by their friends that the user can access through their social

profile. Future plugins that follow this data model will be supported by SafeButton. Even if

future plugins rely on processing using proprietary algorithms or benefit from extended data

sets they may do so offline while storing an intermediate or final product for real-time use

by social plugins. In that case, as long as that product is part of the user’s data SafeButton

will be able to utilize it to support those plugins. We acknowledge that supporting future

social plugins of a different nature than the above model is an open challenge and part of

future work around SafeButton and privacy-preserving social plugins in general.

Profile Management As users may access the web via more than one devices, it rea-

sonable to assume that they will require a practical way to use SafeButton in all of them.

Although installing SafeButton on each browser should be enough, this will result in the

synchronization of the locally stored information with the SNS for each instance separately.

In our future work we will consider the use of cloud storage for keeping fully-encrypted

copies of the local DataStore and X-Cache, and synchronizing them across all the user’s

browser instances in the same spirit as existing settings and bookmark synchronization

features of popular browsers [22,42].

Keeping a local copy of private information that is normally accessible only through the

social networking service might be considered a security risk as it would be made readily

available to an attacker that gains unauthorized access to the user’s system. At that point

though the attacker would already have access to the user’s credentials (or could steal them

by installing a keylogger on the compromised host) and could easily gather this information

from the SNS anyway.

In any case, users could opt-in for keeping the DataStore encrypted, although this would

require them to provide a password to SafeButton (similarly to the above mentioned settings

synchronization features). For the pure JavaScript implementation though, as discussed in

Section 3.5, the cryptographic key can be supplied by the SNS upon user login, making the

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 39

process completely transparent to the user.

Security in Multi-user Environments We now consider the operation of SafeButton

in a multi-user environment where more than one users share the same browser instance. In

general, sharing the same browser instance is a bad security practice, because after users are

done with a browsing session they may leave sensitive information behind, such as stored

passwords, cookies, and browsing history. Ideally, users should maintain their own browser

instance or accounts in the operating system.

SafeButton retrieves private information when users are logged in the SNS, and stores

it locally even after they log out, as it would be inefficient to erase it every single time.

Multiple users are supported by monitoring the current cookies for that domain of the

SNS, and serving personalized content only for the user that is currently logged in. Local

entries that belong to a user ID that does not match the one currently logged in are never

returned. Obviously, users that share the same OS account can access each other’s locally

stored data, since they are contained in the same DataStore instance, unless they have

opted in for keeping their data encrypted, as discussed earlier.

Shortcomings of the Graph API We have briefly mentioned some obstacles we have

encountered, namely shortcomings in the developer API provided by Facebook, in respect

to our objective of protecting the user’s privacy while maintaining full functionality for

the social plugins. We summarize these issues here and discuss how the social networks in

general could support us.

User Activity Updates through the API. Currently the Facebook API [17] offers access to

the social graph but there is no way to receive updates or “diffs” when something changes.

For instance, we retrieve a friend’s “likes” through the API, we are also able to fetch only new

“likes” from a point forward, but are unable to receive notice when that friend “unlikes.” A

friend “activity” or “history” function could significantly aid our implementation in keeping

an accurate local store.

Accuracy of the Provided Information. Sometimes, the API calls and documentation

offered to developers differ slightly from the actual behavior of a plugin when it is offered

by the SNS itself [18]. This creates a predicament for developers wishing to replicate the

CHAPTER 3. PRIVACY-PRESERVING SOCIAL PLUGINS 40

functionality.

Support for All Social Information that is Otherwise Accessible. We consider it reason-

able for the API to provide access to information that is accessible via the social plugins

offered by the SNS itself or via the profile pages of its users. For instance, there is no API

call to access the comments of a specific user, although they appear in the user’s profile

page. Scrapping could retrieve them, but this practice is not ideal. Therefore, in our case,

we have to resort to practices that result in reduced accuracy, such as anonymously retriev-

ing a sample of the comments of a page and placing the comments of a user’s friends at the

top, if present in the sample. Retrieving the entire set of comments could be inefficient for

pages with too many comments.

Alternatively, if Facebook did offer a more elaborate API around comment retrieval we

could fetch the user IDs of all the commenters and subsequently specify a set of IDs to

retrieve comments for. In that way we could hide the IDs of a user’s friends among a group

of k strangers and request their comments for that page [101].

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 41

Chapter 4

Topology-Aware Network Tunnels

4.1 Overview

We present an architecture called Topology-aware Network Tunnels (TNT) which reduces

insecure network paths to Internet services without their participation. An insecure path

is a set of links over the Internet carrying traffic vulnerable to a network adversary. We

use unencrypted and unauthenticated protocols such as HTTP or SMTP as our use case.

Shorter insecure paths limit the exposure of the vulnerable, e.g., plain-text, traffic to passive

and active network adversaries. At a high level, TNT establishes a network overlay of secure

tunnels between the client and a set of vantage points. TNT evaluates the network path from

each vantage point towards each packet’s destination. It then selects the tunnel minimizing

exposure to adversaries.

The TNT architecture addresses two key challenges: (1) optimize the placement of

secure tunnels across the Internet and (2) determine the optimal tunnel to route each

network packet through.

4.2 Threat Model

In our threat model the adversary can both passively monitor and actively alter network

traffic at some point between a client and a server. This includes end-user ISPs as well as

Internet backbone operators. Backbone networks, especially Tier 1 providers, are able to

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 42

Server ACloud
Provider 1

Server B

Cloud
Provider 2

AS x

AS y

AS 1Client

Topology-aware
Tunnel 1

Topology-aware
Tunnel 2

AS z Server C

Figure 4.1: In the TNT architecture an overlay of secure topology-aware tunnels is estab-

lished between the client and a set of network vantage points. The number and placement

of secure tunnels is strategically selected to minimize the network distance packets need to

travel outside the overlay to reach their destination. Individual network packets are intel-

ligently routed through the tunnel exiting closest to their destination. Tunnel exits within

the same network as the destination of a packet (Servers A, B) eliminate the exposure of

traffic to network adversaries.

eavesdrop and tamper with traffic from multiple ISPs as it passes through.

Clients on a public network, e.g., WiFi hotspot, run TNT locally on their system.

Alternatively, in a trusted private network such as a residential setup TNT can run on the

home router. We also consider the networks hosting Internet services as trusted. Hosting

providers have a clear incentive to keep their network secure from external threats and

honor their agreement with customers. These threats include individuals or organizations

passively eavesdropping on or actively manipulating traffic. Cloud networks where customer

traffic may travel between data centers are assumed to secure their links. As a matter of

fact Google has responded to evidence that intelligence agencies were eavesdropping [46] on

its data centers by encrypting [37] the connections between them. Microsoft [43] has done

the same. An adversary able to gain access to the trusted networks or systems of the client

or the server is out of scope.

TNT creates encrypted tunnels between a client and key networks where Internet ser-

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 43

AS 1Client Server AAS 2 AS n

Figure 4.2: Example of a network path on the Internet. For insecure protocols, such as

HTTP, data is exposed across the path to operators of the underlying infrastructure.

vices form clusters, namely in the cloud. As a result, adversaries not able to compromise the

services or their hosting providers are presented with encrypted and authenticated traffic as

opposed to plain text. This includes end-user ISPs and Internet backbone operators which

are presently a threat because of their position in the network. It might seem that TNT

exits create appealing targets where Internet traffic is funneled through a few networks.

However, an adversary able to monitor tunnel exits is already able to monitor the networks

hosting the servers and gains no advantage by the presence of TNT.

4.3 Design

4.3.1 Topology-Aware Network Overlay

The key intuition behind our proposal is that Internet services are clustered in few cloud and

other infrastructure-as-a-service (IaaS) providers. Therefore we can optimize the number

and placement of secure tunnels by collocating them with these infrastructure providers.

This addresses the first challenge from above. That way we can shorten the insecure network

path and essentially bring the client as close to these servers as possible, ideally within the

same network. As a result, the traffic of insecure protocols will have minimal or zero

exposure on the Internet. Apart from minimizing the overall path length, we also define

metrics rewarding or penalizing the presence of a trusted or untrusted intermediate network

in the path. The trustworthiness of a network is context specific so we focus on path length.

Figure 4.2 presents an example of a network path today. The set of links and routers a

client’s packets must traverse to reach a server is grouped into autonomous systems (ASes)

and controlled by distinct organizations. Note that such path might span different countries

or continents. This translates to potential passive and active attacks against the user’s web

browsing or e-mail.

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 44

Figure 4.1 presents the TNT architecture as an overlay on the existing Internet infras-

tructure. TNT has established secure tunnels between the client and two cloud networks

that exhibit high clustering of Internet services. Server A is hosted by Cloud Provider 1

and we can reach it through Topology-aware Tunnel 1 without exposing plain-text traffic

to the Internet. Packets towards Server A enter the tunnel before leaving the user’s net-

work and are encrypted and signed. Internet routers operated by AS 1 and AS x observe

an encrypted flow from the user to Server A. Without TNT these ASes have access to

plain-text traffic. Packets exit the tunnel inside the trusted network of Cloud Provider

1 and are authenticated and decrypted. Subsequently packets transit the cloud provider’s

network and reach Server A which is unaware of the process. To reach Server C without

TNT the user’s packets will travel in plain text through AS 1, AS y and AS z. With a

TNT link to Cloud Provider 2 they travel encrypted and signed through AS 1 and AS y.

Server C is an outlier not hosted in a cluster of Internet services. In this case TNT is able

to minimize the length of the insecure network path so instead of 3 ASes only AS z will

be able to observe plain-text traffic. Next we describe how the TNT router determines the

optimal tunnel to route traffic through so as to minimize insecure network paths.

4.3.2 The TNT Router

The TNT router is a routing software suite managing topology-aware tunnels and directing

traffic through them. It is located on the client’s system or local network gateway, for

instance a home router, and maintains topology-aware tunnels with remote networks based

on the placement strategy described earlier. It has a network-mapping and a decision-

making component. Given the available tunnels and a specific destination address the

mapping component employs a set of probes to discover the network path between each

tunnel’s exit on the remote network and the destination. The discovery process involves

active and passive network measurements described in section 4.6. The information is

passed on to the decision-making component which evaluates it and assigns metrics on

each tunnel based on its suitability to carry traffic to the specific destination. Based on

the metric the TNT router directs outgoing traffic through the tunnel which minimizes its

value. This satisfies the second challenge from the beginning of this section. To account for

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 45

TNT
Router

Kernel IP routing table
Destination Gateway Genmask M IF
0.0.0.0 192.168.0.1 0.0.0.0 0 eth0
192.168.0.0 0.0.0.0 255.255.255.0 0 eth0

a.b.c.d

Kernel IP routing table
Destination Gateway Genmask M IF
0.0.0.0 10.0.0.1 0.0.0.0 0 tun0

a.m.z.n 192.168.0.1 255.255.255.255 0 eth0
a.z.u.r 192.168.0.1 255.255.255.255 0 eth0
192.168.0.0 0.0.0.0 255.255.255.0 0 eth0

10.0.0.1 0.0.0.0 255.255.255.255 0 tun0
10.0.1.1 0.0.0.0 255.255.255.255 0 tun1

a.b.c.d 10.0.1.1 255.255.255.255 1 tun1

(1)

(2)

(3)

(5)

Amazon cloud (a.m.z.n)

Azure cloud (a.z.u.r)

tun0

tun1

(3)

(3)

(3)

(4)

(4)

(4)

(4)

(4)

(6)

(6)

(6)

AS x

Figure 4.3: Operation of the TNT router when serving client requests towards network

destination a.b.c.d. Initially it updates the system’s routing table (1) to route all network

packets through one of the tunnels by default (2). A client’s request for which there is no

explicit route will go through the default tunnel (3). Subsequently the TNT router will task

the probes at each tunnel’s exit with determining their distance from that destination so

that future requests can be better routed (4). Following the path announcements from the

probes, an explicit routing entry is created for that destination (5). The operating system

will use that entry for future client requests (6).

the dynamicity of Internet routing the TNT router periodically reevaluates these metrics.

4.4 Understanding the Landscape of Web Services

We are motivated by the limited presence of encrypted and authenticated communication

protocols on the Internet. We focus on HTTPS and 10,000 popular web services according

to Alexa. In 2015 we found that only 30% offer HTTP over TLS. In practice 15% redirect

to HTTPS. Just 4% of the sites have an HSTS policy that prevents an active network

attacker from downgrading clients to plain HTTP. Repeated measurements the following

years show an increase in services capable of HTTPS. With just half of popular web services

using HTTPS, under the most optimistic interpretation of the data, our motivation remains

relevant. Services available over TLS can also benefit from our proposal. As we are reducing

the networks traffic is exposed to, we can mitigate cases of insecure TLS implementations

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 46

or leaking of the SNI [51] when that is a privacy concern. At the same time we observe that

popular web services are collocated in a small set of networks with 10 autonomous systems

hosting 66% of the traffic generated by a web browser when visiting the home page of 10,000

popular web servers. We argue that if clients can reach these few networks securely they are

able to connect to the hosted web services without exposing their plain-text HTTP traffic

to the Internet.

4.4.1 HTTPS Adoption

To quantify the extent to which HTTPS has been adopted by Internet sites we evaluated

10,000 popular web domains according to Alexa. We focused on the .com, .org and .net

top-level domains that resolved to US ASes. We verified the TLS certificates presented by

these domains using the certificate authorities trusted by Mozilla. Table 4.1 presents our

findings. Our HTTPS connection attempts were refused by 21.4% of the servers. Even

worse, 21.5% redirected our HTTPS requests to HTTP. Additionally, 22.1% of the servers

returned a TLS certificate which failed verification. Overall we failed to contact almost 70%

over HTTPS.

The few sites supporting both HTTP and HTTPS need to make sure their visitors

reach their secure endpoint. Search engine results and links from other sites might steer

users towards the insecure HTTP. Also, if users omit the https:// scheme when typing in

the address bar, their browser will default to the insecure http://. Unfortunately for the

majority of HTTPS-capable sites users will continue to visit them over HTTP. To make

matters worse, an active network attacker can prevent the redirection to HTTPS from

taking place by replacing https:// URLs with http:// in the server’s responses in flight.

Some ISPs are known to remove the STARTTLS string from SMTP responses, which serves

a similar purpose for e-mail. The use of the Strict-Transport-Security HTTP header

can mitigate this by instructing the user agent to place future requests exclusively over

HTTPS. We evaluated the use of HSTS among servers redirecting visitors to HTTPS and

found that only 25% return a valid policy. Overall out of 10,000 popular web servers we

find that only 3,207 (32.1%) support HTTPS and just 420 (4.2%) support HTTPS with an

HSTS policy. Note that just 56 domains are found in the hard-coded HSTS preload list of

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 47

2015 2016 2017

HTTPS response HTTPS? % % %

1 Error (Conn. refused) No 21.4 19.8 16.0

2 Error (Invalid cert.) No 22.1 19.2 10.8

3 Error (HTTP 4xx 5xx) No 2.9 2.0 1.4

4 HTTPS downgraded No 21.5 22.1 16.7

Total No 67.9 63.1 44.9

5 OK Yes 17.0 16.6 15.1

6 OK (HTTP upgraded) Yes 10.9 15.0 29.9

7 OK (HSTS) Yes 4.2 5.3 10.1

Total Yes 32.1 36.9 55.1

Table 4.1: HTTPS capability of 10K popular domains. While the percentage of sites offer-

ing TLS has increased in recent years, users still access 45% of popular domains without

encryption. Moreover, with the majority of HTTPS domains lacking an HSTS policy, users

are vulnerable to TLS stripping attacks and may fall back to plain-text HTTP.

Chrome and Firefox.

Our most recent findings are consistent with a similar study [91] which highlights the

lack of encryption in the web when moving away from few popular sites such as search

engines and social networks. It also predicts that it will take more than 5 years for sites in

the long tail of the web to adopt HTTPS in their majority. Moreover, the evaluation [39] of

the TLS implementations of popular domains in 2017 found 13% to be inadequate. (Grade

F) SSL 3.0 and TLS 1.0, which are considered insecure implementations, were found in 15%

and 93% of domains respectively and a non-trivial number of domains were vulnerable to

to known attacks such as DROWN, POODLE, CRIME and protocol downgrade.

HTTP/2 [25] is the latest version of the HTTP protocol. While web browsers, such as

Chrome and Firefox, currently implement it only over TLS to motivate websites to adopt

encryption the RFC does not make that practice mandatory. On the contrary, HTTP/2

over cleartext TCP (h2c) is described as a possible implementation. Even if web vendors

refrain from supporting such an insecure option, HTTP/2 will not only have to become

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 48

% Autonomous System Name

17.1 Akamai Technologies, Inc.

13.9 Amazon.com, Inc.

11.4 CloudFlare, Inc.

9.9 Google Inc.

3.7 EdgeCast Networks, Inc.

2.9 SoftLayer Technologies Inc.

2.1 Fastly

1.7 Tinet SpA

1.6 Internap Network Services Corp.

1.5 Rackspace Hosting

65.8 Total

Table 4.2: Top 10 most frequent ASes hosting sites.

widely adopted but domains will need to deprecate HTTP/1.0 and HTTP/1.1 currently

offered over unencrypted connections. Based on the deployment history of TLS, the need

to support older clients as well as the resources for updating the configuration of a web

service will likely make deprecating insecure HTTP a long process.

4.4.2 Web Service Collocation

To study the geography of Internet services we mapped the websites from our data set to

their respective ASes. A site may depend on more than one domain for resources such as

scripts and images so we used a web browser to fully render the home page of each domain

in our data set and recorded the destinations involved. We did not log HTTPS requests.

We consider the home page of a domain to be the content received when visiting the exact

domain or the standard www subdomain.

We visited the home pages of 9,944 domains from out data set. We excluded the 56

HTTPS-capable domains found in the HSTS preload list of Chrome. Ultimately we made

701,929 HTTP requests towards 34,893 unique domains to fully render the home pages. We

subsequently resolved the domain names to their respective IP addresses and mapped them

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 49

to ASes based on BGP prefix announcements collected by APNIC. Table 4.2 presents the

top 10 most frequent ASes hosting the web servers involved in our 701,929 HTTP requests.

The top 10 most frequent ASes host servers that receive 65.8% of all HTTP requests made.

Web servers hosted by Google present an interesting case. 22% of the HTTP requests

made to Google servers target the google-analytics.com and 13% the doubleclick.net domain.

As evidence has shown [47] passive network adversaries colluding with Internet backbone

providers collect identifiers involved in requests to these domains to track users. It is

also interesting that to reach Google our requests had to travel through two different tier 1

Internet backbone providers. The requests were made from a residential ISP and a university

network in the US. In contrast, using our proposal (TNT) we can reach Google in a single

network hop without exposing traffic to backbone providers.

To summarize, web services are clustered in few networks owned by cloud and other

infrastructure-as-a-service (IaaS) providers. If end-to-end security with these services is not

available, the next best thing is for users to establish a secure link to these networks and

route traffic through it. Cloud providers make this approach practical as users can deploy

their own virtual machines in the same networks.

4.5 Implementation

We have implemented the TNT router as an IPv4 routing software suite and tested it

in Linux. An Internet-layer implementation is more flexible since it is transport and

application-layer agnostic. While the core of the router operates at the IP layer, peripheral

components implement high-level logic that enables traffic handling based on transport and

application-layer heuristics. By default the router focuses on HTTP (TCP port 80) and

SMTP (TCP port 25) traffic while all other traffic, including HTTPS, is routed as if TNT

is not in place. The TNT router presents its tunnels as network interfaces to the operating

system. The router determines the optimal tunnel to route outgoing traffic through and

communicates its decision to the operating system. It does so by interacting with the un-

derlying routing structures. Updating the operating systems routing structures affects how

IP packets are transmitted through the available network interfaces. The operating system

google-analytics.com
doubleclick.net

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 50

ultimately writes outgoing packets to the appropriate interface.

The TNT router reacts to outgoing traffic but instead of preventing its transmission until

it makes a routing decision it applies its decision to future flows to the same destination.

This way it does not disrupt the user’s activity or impact network performance. While this

means that the first flow to a new destination is not routed optimally in section 4.6 we show

that the routing state quickly becomes optimal following the router’s initialization phase.

The routing state persists across system restarts.

Realizing the TNT router addresses the following challenges: (1) Be practical to de-

ploy, use and maintain. (2) Reliably discover the network topology between tunnel exits

and Internet destinations to make routing decisions. (3) Dynamically update the system’s

routing table without disrupting existing connections. Any naive routing update will reset

connection-oriented protocols such as TCP.

4.5.1 Deployment

We use OpenVPN to establish TLS-based tunnels with virtual machines in the cloud. Tun-

nels appear as network interfaces to the operating system with a standard 1500-byte MTU.

IP packets entering the tunnel are handled by OpenVPN which fragments them if necessary,

encrypts them, appends its signature and sends them to the other end of the tunnel which

reverses the steps. OpenVPN supports a variety of ciphersuites from OpenSSL. Our design

is not specific to a tunneling technology or ciphersuites.

The deployment of the TNT overlay is automated including installing the TNT router

locally and launching the necessary virtual machines in the cloud. We use a combination

of Unix shell scripts and the command-line interfaces offered by cloud providers. At the

moment we prompt the user for their cloud account credentials however we envisage a

deployment process without any user involvement. We do not depend on specific cloud

providers but deploying a virtual machine is a provider-specific process which we need

to implement. We launch Linux virtual machines in the cloud and configure OpenVPN

on both ends of each tunnel. Once the tunnels are established the deployment phase is

complete and the TNT router begins running on the user’s system without the need for

further interaction. Signing up for a new cloud account can be streamlined as part of the

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 51

deployment script. Users do not share their virtual machines with others but they do share

the underlying physical hardware. Attacks from a collocated virtual instance are beyond

the scope of our threat model. Cloud operators could offer TNT links to their network as

a service so that users do not need their own virtual machines.

4.5.2 Operation

The TNT router has three components; (a) a TNT traffic selection program running on

the client, (b) the TNT routing daemon also running on the client and (c) probes running

on the remote end of each tunnel, which in our case are virtual machines in the cloud.

Figure 4.3 depicts the operation of TNT. Initially the TNT daemon brings up the tunnels

as distinct network interfaces. One of them at random is set to be the default interface

meaning that all traffic TNT is configured to handle goes through it. The system’s routing

table is updated from step 1 to 2 in the figure. Traffic TNT is not configured to handle gets

routed as if TNT is not in place, i.e., still gets routed based on step 1 in the figure. So far

all tunnels but the default remain unused by the operating system since it has no reason

to prefer them over the default. As a result the client’s initial requests to the Internet host

a.b.c.d will go over the default tunnel (step 3). Delaying outgoing traffic until the TNT

router calculates the metrics for a destination would impact performance. Setting up a

default TNT route instead protects traffic from end-user ISPs without the need to wait for

a routing decision. In section 4.6 we show that the router quickly makes an optimal decision

applied to subsequent flows.

The TNT traffic selection program inspects outgoing traffic for the purpose of identifying

destinations that the TNT router must handle. It uses libpcap and is able to identify traffic

flows. To select traffic it uses BPF expressions and by default focuses on outgoing TCP

flows to port 80 so as to select HTTP traffic. For each new flow matching the selection

filter it extracts the destination IP address and queries the TNT routing daemon for an

optimal route. If not found it tasks the forward probes with mapping their network path

to the destination (step 4). The forward probes subsequently communicate their findings

to the routing daemon directly. To facilitate the network measurements the traffic selection

program supplies not only the target IP address but additional context such as the transport

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 52

protocol and destination port used. The forward probes listen on their end of the tunnel

interface for control commands. They use active network measurements to discover the

path to a destination on demand and announce it back to the router. We describe the

measurement methodology in section 4.6.

The routing daemon interacts with the other components in two ways; it looks up IP

addresses in the current routing table on behalf of the traffic selection program and evaluates

network path vectors received from the forward probes. The traffic selection program queries

the daemon with the IP addresses of destination in outgoing traffic flows. An IP address

found in the routing table associated with a metric value means the optimal tunnel to reach

that particular destination has been determined in the past. Otherwise the traffic selection

program receives a negative response. The forward probes, tasked with discovering their

network path to a destination, announce it back to the daemon. When evaluating the

network path from a particular tunnel exit the daemon calculates a metric value based

on the tunnel’s suitability to carry traffic to that destination. We focus on path length

as our metric and count the number of ASes involved. The daemon subsequently decides

to route traffic through the tunnel which minimizes the metric and updates the operating

system’s routing structures to direct packets for that destination through a particular tunnel

interface rather than the default. In Linux the daemon uses the Netlink1 interface to access

and alter the necessary operating system structures. In figure 4.3 the probes announce

paths with distance 2 and 1 respectively for a.b.c.d so a decision is made to route the

destination through tun1. Future requests for that host will go through tun1. This is

done with an explicit entry in the operating system’s routing table (step 5). Note that

the newly introduced route will only be applied to flows matching the context this route

was generated. So a route generated because of an outgoing TCP port 80 flow will only

be applied to flows to that port. Flows to 443 or some other port to the same destination

will not be affected. Applying a route only to specific transport or application-layer flows

is discussed later in this section.

The TNT router performs a series of optimizations to its routing table. To avoid stale

routing entries it implements a decaying system where entries that have not been used

1 http://lxr.linux.no/linux+v3.19/net/core/rtnetlink.c

http://lxr.linux.no/linux+v3.19/net/core/rtnetlink.c

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 53

for routing recently are pruned from the routing table. Similarly, for frequently used des-

tinations it schedules lazy reassessments of the optimal path with exponential backoff to

stay current with Internet routing changes. TNT routing entries actually describe entire

AS prefixes rather than individual hosts. When the forward probes respond to a mapping

query for a particular destination host they lookup and return the related BPG prefix the

destination’s AS is responsible for. This eliminates additional queries for addresses in the

same prefix. Finally the router aggregates routes by grouping adjacent route prefixes to

form shorter prefixes and reduce the number of entries in the table.

4.5.3 Transparent Routing Updates

Updating the routing table of a live end-user system to essentially implement multihoming

is not a trivial task. Network routers dynamically change their routing table on a frequent

basis without the same challenge because they simply forward IP packets without altering

their header. However, packets exiting an interface in an end-user system adopt2 that

interface’s IP address as their source. A routing update directing packets of an existing

TCP connection through a different interface will change their source IP address. Packets

with the new source IP address will be dropped or met with packets with the RST flag

set since from the remote endpoint’s perspective do not match any existing connection.

Ultimately the TCP connection will close unexpectedly.

To ensure non-disruptive updates to the operating system’s routing table we implement

a transitioning process which guarantees the continuity of existing sessions in TCP as well

as UDP and ICMP logical sessions. We utilize the support for multiple routing tables in the

Linux kernel as well as the functionality offered by its Netfilter framework. The key idea is

to split a routing update into two phases. Initially a new route is taken into consideration

only for new connections while existing ones are routed as if the update never took place.

This guarantees continuity. Eventually connections predating the update will terminate

naturally and the system will reach a stable state where all connections use the updated

2 While there are ways around that, upstream providers usually implement egress filtering to block

outgoing packets with spoofed IP addresses. In TNT different tunnel interfaces are expected to exit in

disjoint network prefixes.

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 54

Effective Routing Table

by Connection Status1

t TNT Event Routing State Existing2 New

0 Stable Main Main

1 Start Converging Main TNT0

2 Stable TNT0 TNT0

3 Update route X Converging TNT0 TNT1

4 Stable TNT1 TNT1

5 Terminate Converging TNT1 Main

6 Stable Main Main

1 Connection status is independent of the transport protocol used.

It is logical, applies to TCP as well as UDP and ICMP and is based

on timers and bi-directional IP packet exchange.

2 Existing connections are in a logically-assured state.

For TCP this is either the Related or Established state.

Table 4.3: Updating the operating system’s routing table so as not to disrupt existing TCP

connections. The TNT router transitions the system from the current table to an updated

version by cloning the table, modifying the new table and setting it as effective only for

new connections.

route and the old one is deleted.

To implement this two-phase routing we clone the currently effective routing table into a

new routing table and instruct the operating system to look up new connections in the new

table while keep reusing the old one for existing connections. Initially we clone the default,

main routing table into a new table TNT0. (Time t0 in Table 4.3) The system transitions

into a state where any already established TCP connections, as well as logically-assured

UDP and ICMP connections, keep using the main routing table whereas the destinations of

new connections are looked up in the TNT0 table. (t1) Eventually all connections predating

the update (t1) will naturally terminate and the system will reach a state where all current

and future connections will use table TNT0 exclusively. (t2) Subsequently any updates

after time t2 will clone TNT0 into TNT1, enter a converging state t3 and eventually reach

a stable state t4.

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 55

If we need to update the effective routing table while the system is still converging from

a previous update we must allocate an additional table instead of recycling an existing one.

For example a new update during time t3 will cause the effective table TNT1 to be copied

to a new table TNT2 which will then be updated and marked as the effective table. We

cannot reuse table TNT0 at this time since it is still being used by connections predating the

last routing update. We try to carry out updates in batches to avoid the need for more than

two tables at a time. However traffic scenarios such as web browsing might cause bursts of

updates that do not fit in a single batch. Under reasonable conditions Linux does not limit3

us in the number of tables we can maintain. As soon as all connections associated with an

old routing table are terminated that table becomes eligible for reuse in a future routing

update. In section 4.6 we quantify the amount of routing tables necessary under realistic

network activity. A routing cache would eliminate the need for the above technique. Since

version 3.6 [84] the Linux kernel no longer supports such a cache for efficiency reasons.

Windows 7 implements a routing cache but the same reasons might justify its removal from

future versions.

To advise the operating system which routing table to use for each destination lookup

we use kernel routing policies. Each routing table is associated with a mark and we use

Netfilter’s connection tracking to label new connections with the mark corresponding to the

new table. Policies match the mark individual packets carry to specific routing tables.

4.5.4 Application-Specific Routing

As mentioned earlier both the operating system’s core routing functions and the core of the

TNT router make IP-based routing decisions. At the same time it makes sense to configure

traffic routing preferences based on high-level context coming from the transport and appli-

cation layer. For instance by default TNT must only handle IP packets belonging to TCP

port 80 flows (HTTP) while HTTPS and any other traffic must not be affected. By default

Linux uses a global routing table which affects all packets and is not suitable to our needs.

To achieve the necessary flexibility we use routing policies which are combined with multiple

3 Since version 2.6.19 the Linux kernel supports up to 232 routing tables and efficiently addresses them

using a hash table. Previous versions supported up to 255 routing tables.

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 56

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5

C
D

F

Autonomous systems making up the network path to a web service

TNT-cloud

ISP-US-E

Uni-US-E

ISP-EU-W

Figure 4.4: CDF of the number of ASes on the network path to each web service. TNT

outperforms ISPs by exposing zero traffic to the Internet for 18.5% as well as achieving

one-hop paths for an additional 19.5%.

routing tables and the Netfilter framework. Using the latter we mark specific connections

or packets based on heuristics such as destination port. Marked packets subsequently are

matched to specific routing policies leading to corresponding routing tables. For example

we have a IP routing table that is only used for TCP flows to port 80. The system’s default

table is never modified and, unless we explicitly mark outgoing packets, traffic is routed as

if TNT is not present.

4.6 Evaluation

4.6.1 Network Proximity

We quantify the exposure of plain-text traffic to adversaries by mapping the network paths

to popular websites using a series of Internet vantage points. We then compare the results to

a TNT deployment in the AWS and Azure cloud networks to evaluate the ability of TNT to

minimize traffic exposure. For our measurements we used a total of 7 vantage points spread

across the US and western Europe; 4 virtual machines in the Amazon Web Services (AWS)

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 57

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

Reduction in the autonomous systems when using TNT (%)

ISP-US-E

Uni-US-E

ISP-EU-W

Figure 4.5: CDF of the reduction in ASes on a network path when using TNT as opposed

to an ISP. TNT offers at least 33% in 70% of the cases.

and Microsoft Azure (Azure) cloud, 2 end-user lines in ISPs and access to a fast academic

network. Our set of hosts was compiled by visiting the home page of 9,944 popular web

domains according to Alexa with phantomJS, a Webkit-based, Javascript-capable headless

web browser, and collecting HTTP requests. Our final list, including the initial domains,

contains 34,893 unique domains resolved to 20,026 distinct IP addresses.

Our network mapping process correlates active network measurements with BGP routing

views [72]. This is the same process followed by the forward probes of the TNT router to

discover network paths. To measure the actual flow of packets between one of our vantage

points and each web server in our data set we sent ICMP type 8 as well as TCP+SYN

port 80 packets to the destination host and elicited ICMP type 11 responses packets from

all intermediate network devices using varying TTL values in the header. Some network

policies drop ICMP packets and firewalls at the destination might drop all packets but the

ones the service is expecting. By using port 80 for web services we guarantee minimal

disturbance for our measurements. In section 4.5 we discussed how forward probes of the

TNT routing receive the same information so as to conduct their measurements with packets

that are guaranteed to reach their destination undisturbed. Nevertheless some network

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 58

policies silently drop TTL-expired packets so we only considered complete network paths

for which we had identified all their hops ending up with data for 15,020 of the original 20,026

hosts. We subsequently resolved the IP addresses of each hop in the network paths to their

respective AS using BGP prefix announcements collected by APNIC. Finally we verified the

accuracy of our measurements by correlating the derived AS paths with BGP views 4 from

looking glass platforms. Our methodology guarantees an accurate picture in the case of

transit, i.e., customer-provider, relationships between ASes while leaving a margin of error

in the case of peering agreements where BGP announcements are not available outside the

participating ASes. In production the TNT router will ignore AS paths produced by active

measurements that cannot be verified through BGP announcements.

Figure 4.4 presents the CDF of proximity, in terms of ASes involved, of each vantage

point to the web hosts in our data set. We define this as our exposure metric, indicating

the number of potential network adversaries, which the TNT architecture aims to eliminate

or minimize. A distance of zero ASes in the figure translates to the server being in the

same AS as our TNT link. Similarly a distance of one AS indicates a direct, peering

relationship between our trusted AS and the AS of the server. One may observe that the

TNT architecture outperforms end-user ISP and university networks by routing packets to

18.5% of destinations through ideal, adversary-free, paths. Note that TNT also outperforms

the individual cloud networks we used. Zero hop network paths in the case of ISPs are

attributed to CDNs hosted in their networks and occurs in less than 0% and 5% of the

cases respectively. Since end-user ISPs are part of our threat model we do not consider

these paths adversary-free. We have also calculated the average proximity of TNT to the

home page of each domain as a whole, including all subresources. The results are consistent

with figure 4.4. Similar results describe the proximity of TNT to advertisement networks.

Additionally, TNT offers consistently shorter paths to almost all destinations tested. Figure

4.5 shows that we achieve at least 33% and 50% shorter paths in 70% and 40% of the cases.

From a privacy perspective one might be skeptical about funneling their traffic to a

few large cloud providers. Note that this traffic is already transiting the public Internet in

plain text. As TNT scales, traffic is distributed closer to its destination and user privacy

4http://as-rank.caida.org, http://lg.he.net/

http://as-rank.caida.org
http://lg.he.net/

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 59

improves. Nevertheless one could use TNT to only access destinations that are hosted in

the clouds it maintains tunnels with, which is almost 20%.

4.6.2 Operating a TNT router

The TNT router is our implementation of topology-aware tunneling for clients to use. To

quantify its impact on the end user’s system or other network gateway we carried out a web

browsing session that generated realistic network traffic patterns for the router to handle.

We instrumented Firefox to visit in succession the home pages of 1,000 popular web domains

according to Alexa. Firefox waited for each page to fully load before moving on to the next

and we cleared its cache between sessions. HTTPS traffic was unaffected by TNT and was

routed through the default interface. Plain-text HTTP was dominant as shown in section

4.4.

Our evaluation focuses on the impact the router has on the system’s resources and is

expressed in hits in the routing table, the number of concurrently active routing tables as

described in section 4.5 and the number of entries found in the effective routing table over

time. The first measure determines the amount of active network measurements necessary.

The second and third measures determine the stress on the system’s CPU and memory.

Initially we measured how quickly the operating system’s routing table converged to

its optimal configuration so that each IP packet is routed through the tunnel that exits

closest to its destination. An IP packet with a destination address for which we do not

yet have an explicit route is classified as a lookup miss and results in forward probes

mapping and assessing the path to that destination. On the other hand, a destination

address for which TNT knows the best way to reach it has an entry in the routing table and

constitutes a lookup hit. Figure 4.6 presents the hit ratio over time. One may observe that

approximately for the first 500 connections TNT has enough optimal routes to satisfy 50%

of the destinations involved. This indicates a fast bootstrap phase. Over time the hit ratio

increases and by the end of the browsing session we see that TNT was able to satisfy almost

80% of the destination lookups. For subsequent browsing sessions the hit ratio remains

between 100% and 98%. The slight drop is attributed to sites with dynamic content.

The TNT router adds a network-specific route, associated with a metric, for every

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 60

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

H
it

R
at

io

Time measured in New Outgoing Connections

Initial Browsing
Subsequent Browsing

Figure 4.6: Ratio of optimal versus suboptimal TNT routing over time. Initially the ratio

is low causing forward probes to map network paths. Later on it quickly rises indicating

that few popular destinations have been mapped.

destination the distance to which has been determined by the forward probes. As the user

visits more and more unique Internet destinations the routing table grows. Web browsing is

a representative example of this scenario as it involves a plethora of different servers. Figure

4.7 presents the number of routing entries in the effective routing table over time. Note that

the effective routing table is the one the operating system will use to look up the destinations

of new connections. During the initial browsing session the size of the routing tables reaches

approximately 1,400 entries. That might seem daunting compared to the initial 2 entries for

most systems with a single network interface. However the implementation of the routing

table (fib table) in Linux is highly efficient5. It uses hash tables to lookup destinations

in near constant time. The only way the number of entries impacts the system is in terms

of memory consumption. However the way route information is stored in data structures

is also efficient as it groups common parameters between routes to a single data structure

(fib info) that is shared by all routes. In practice the memory overhead for the number

of routes TNT introduces is negligible even for embedded systems such as home routers.

5 http://lxr.linux.no/linux+v3.19/include/net/ip fib.h

http://lxr.linux.no/linux+v3.19/include/net/ip_fib.h

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 61

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350 400 450

R
ou

tin
g

Ta
bl

e
P

re
fix

es

Time measured in Route Updates

Initial Browsing
Subsequent Browsing

Figure 4.7: Number of entries in the system’s effective routing table. The TNT router

creates explicit entries per AS as part of its operation. In practice memory consumption is

negligible and processing time near constant.

Note that we periodically expire routes that have not been recently involved in lookups.

In order to ensure a smooth transition when updating the routing table the TNT router

uses auxiliary tables as described in section 4.5. Visiting a page causes multiple connections

to be created in an asynchronous bursty manner which may result in an equally bursty set

of routing table updates. Figure 4.8 shows how the system converges from multiple routing

tables to a single one. Multiple tables are used only during routing updates which are

infrequent. We argue that web browsing models the worst case scenario in terms of traffic

patterns and so this figure sets an empirical upper bound on multiple routing policies and

tables.

4.6.3 Web Browsing over TNT

To quantify the effect TNT has on the web browsing experience we studied the round-trip

time (RTT) of packets towards the respective servers along with the overall load time for

each page. Note that we measured RTT from the client’s perspective. Her packets had to

traverse a TNT link, reach the cloud network and then proceed to their final destination.

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 62

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450

A
ct

iv
e

R
ou

tin
g

Ta
bl

es

Time measured in Route Updates

Initial Browsing
Subsequent Browsing

Figure 4.8: Number of routing tables concurrently active. Following an update, existing

connections keep using the previous version of the table to avoid disruptions. In practice

memory and processing overhead are negligible.

Our baseline was an academic network with a fast Internet connection in the east coast of

the US. In terms of network latency, as figure 4.9 shows, TNT offers comparable times to

our baseline. We sent TCP packets to destination port 80. In terms of page load time figure

4.10 shows consistent results between TNT and the baseline.

4.7 Security Discussion

For destinations hosted in the cloud a passive Internet adversary sees an end-to-end en-

crypted connection. Examples are servers A and B in figure 4.1. Such destinations are the

primary use case for TNT so clients can reach them without exposing plain-text traffic to

the Internet. Optionally, TNT may also leverage the cloud as a gateway to reach arbitrary

Internet destinations over shorter unencrypted paths. Such example is server C in figure

4.1 where only the path between the cloud and the server is unencrypted. We have shown

that in such cases TNT always creates shorter paths. There is however a tradeoff between

reducing the number of ASes observing plain-text traffic and routing it through networks

that may not have originally observed it. Especially ASes adjacent to the cloud may seem

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 63

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000

R
ou

nd
-tr

ip
 T

im
e

(m
s)

Web servers

Baseline routing
TNT routing

Figure 4.9: RTT of packets routed either through a fast academic network or a TNT link

to AWS.

at an advantageous position to monitor the browsing behavior of TNT users. However we

do not observe any notable deviation in the shape of the frequency distribution of ASes

involved when TNT is present. Without TNT the most frequent AS is found in 22.5% of

the paths and with TNT the most frequent AS is found in 19% of the paths. These are

two different ASes and naturally, because of our routing decisions, some ASes see more and

others less traffic. However, as far as users are concerned there is no single AS that can

observe more of their browsing history than without TNT. This can be explained by cloud

providers having multiple upstream providers for redundancy and load balancing reasons.

In fact, the diversity of ASes involved actually increases.

When the cloud is used as a gateway by TNT it appears to be the source of clients’ traffic

at the IP level. This facilitates TNT routing. We do not attempt to hide or anonymize the

source or destination of traffic. ASes observing encrypted client traffic entering the cloud

and unencrypted traffic exiting the cloud can attribute cloud-originating traffic back to a

particular client. An adversary can use the timing and size of packets to match encrypted

flows between clients and the cloud to plain-text traffic between the cloud and external sites.

Cover traffic and shaping techniques may obfuscate such heuristics. However, we argue that

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 64

 1000
 1100
 1200
 1300
 1400
 1500
 1600
 1700
 1800
 1900
 2000

 0 100 200 300 400 500 600 700 800 900 1000

P
ag

e
Lo

ad
 ti

m
e

(m
s)

Web pages

Baseline routing
TNT routing

Figure 4.10: Load time of sessions routed either through a fast academic network or a TNT

link to AWS.

the actual content of plain-text traffic carries a plethora of information that can identify

users. For instance HTTP cookies, referrers and search terms are much more reliable in

tracking users than the IP address of the device originating the traffic.

One might observe that the measurements in Section 4.4 identify content delivery net-

works (CDNs) as popular locations for hosting web services. While they may not be the

true origin of web services, from the client’s perspective these are the networks it needs to

contact to fetch content. By reducing the exposure of traffic to those networks we are able

to benefit the security of individual clients that may be targeted or profiled by a network

adversary. It is possible that an adversary targets traffic between the CDN and its original

server. We expect such traffic to be user-agnostic as the nature of CDNs describes optimiz-

ing the delivery of the same content to a large audience. Thus monitoring such traffic is

unlikely to enable profiling an individual client and altering that traffic is more likely to be

noticed because of the delivery scale.

An active adversary could try to either block our ability to map network paths or falsify

the data we receive. It could also try to block TNT links. To make TNT network measure-

ments resistant to blocking we tailor our probes to the packets a specific service is expecting

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 65

to receive. For HTTP we transmit IP packets with a TCP header indicating destination

port 80. An adversary blocking such packets would also stop actual user traffic towards a

service. Fingerprinting traffic generated by TNT measurements is possible though. Instead

of blocking our network measurements an adversary could tamper with the data we receive

by spoofing responses from upstream routers. However in section 4.6 we describe how we

correlate network paths resulting from data plane measurements with AS paths from BGP

announcements. A measured path that is infeasible is not taken into consideration by TNT.

Attacks against BGP are beyond the scope of this work and any solution is orthogonal. An

active adversary situated between the client and the cloud could try to prevent TNT links

from being established. Our threat model does not include censorship and failure to run

TNT in a network should warn users about the operator’s intentions.

Finally it might seem that TNT centralizes traffic flows within a few cloud networks

which become appealing targets. However our threat model focuses on adversaries that are

not powerful enough to attack the cloud but can carry out passive and active attacks today

because of their location on the Internet. This includes ISPs and other infrastructure oper-

ators. Moreover the key idea behind TNT is to utilize cloud networks to reach destinations

already hosted within them. Therefore adversaries powerful enough to attack the cloud

gain no advantage from the presence of TNT. As an additional, entirely optional, use for

TNT we propose routing traffic to Internet destinations outside the cloud so as to minimize

the network path to them. While this makes such traffic available to adversaries capable of

compromising cloud networks we argue that the benefit of shielding plain text traffic from

every other adversary on the Internet presents an appealing tradeoff. At the same time the

TNT architecture benefits from and encourages scaling to more cloud networks. We thus

expect that individual clouds will see a decrease in the traffic going through.

4.8 Limitations

TNT maps network paths using IP-based measurements. It cannot identify hops operating

below OSI layer 3 such as in the case of MPLS tunnels. As a result it will misrepresent

the length of network paths featuring such traffic encapsulation. This is not a limitation

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 66

of the TNT architecture but a constraint imposed by our implementation of network mea-

surements. Gueye et al. [73] can approximate the geographical location of an IP host in the

presence of loaded links. They use a set of known landmarks to compare the perceived end-

to-end network delay to expected propagation time of the underlying physical links. Using

the existing TNT distributed architecture we could approximate the location of network

hops on the Internet and highlight hops that appear adjacent at layer 3 but are separated

by a great physical distance such as in the case of an overseas or cross-country link.

TNT relies on active measurements which it correlates with BGP announcements pas-

sively collected from looking glass platforms. While BGP policies are complex and based

on confidential agreements between networks we do not depend on the need to interpret

them. Instead, our active measurements, such as traceroute, provide the actual path of

packets based on those policies which we treat as a black box. By design the measurements

approximate the actual client traffic that will follow so for instance we use TCP packets

sent to destination port 80. We use BGP announcements to validate our measurements

and complement them in the case of hops which are incompatible with our methodology,

e.g., routers which do not return ICMP type 11 responses when the TTL of an IP packet

expires on them. We also view BGP hijacking as an orthogonal problem. Hijacking routes

combined with interfering with active measurements to hide network hops is a threat we

consider out of scope.

TNT gives clients the network perspective of the tunnels they are using. This might

affect how they experience systems that depend on the client’s network location. For exam-

ple, DNS replies for load balancing or geo-location purposes will be based off the tunnel’s IP

address instead of the client’s. Because of the inherently inaccurate nature of IP address-

based geo-location systems there are existing mitigations to improve the user experience.

For example, search engines allow users to set their preferred language if they are misiden-

tified as coming from a different country. The nature of the cloud itself is to expand with

additional data centers close to services and their clients. Given this, we expect a gradual

reduction of split network views between the client’s original network and the vantage point

offered by TNT.

CHAPTER 4. TOPOLOGY-AWARE NETWORK TUNNELS 67

4.9 Production

Modern clients are already taking advantage of the infrastructure-as-a-service platforms

and the cloud specifically to expand their capabilities in terms of processing power, storage

and network access. For example, users are able to sync data between devices, exceed their

device’s storage capacity by offloading excessive data to networks disks and render content

using CPU as well as network resources available on remote machines [3]. We envision that

TNT is the next step in accessing network services securely. Clients that are already using

the cloud [23] to reduce their data usage when surfing the web can adopt TNT in a similar

manner.

TNT will be transparent to end users who will not have to maintain it or be aware of

its presence. Software updates can deliver TNT to their devices and home routers. Using

any kind of resource of course carries a financial cost. How that financial cost is absorbed

is an open question for many of the existing uses of the cloud. For example, most of

Google services are not directly billed to end users. The cost of services deploying and

maintaining TLS and other security features is handled by the Internet services themselves

as the community is trying to promote awareness of good security practices and implicitly

rewards services which apply them. In other words, the cost of TLS is part of doing business.

There is the expectation that users will not make purchases from sites that do not offer TLS.

Perhaps the next step is avoiding sites with poor TLS implementations or sites that the

security community has identified as high risk in terms of traffic exposure. Cloud networks

could also deploy TNT themselves to protect services that choose their networks for hosting

instead of their competition. Such practices are not without precedent. [6]

Overall we think TNT is a tool which acknowledges and leverages the nature of modern

networks. Given its security benefits we are excited to see in what shape or form the

industry will deploy it in practice.

CHAPTER 5. CONCLUSION 68

Chapter 5

Conclusion

5.1 Summary

In this dissertation we investigated the hypothesis that user privacy on the web can be

improved by reducing the third parties involved. Towards this goal we presented a design

for privacy-preserving social plugins. Our design effectively removes third parties that are

embedded on websites by decoupling the loading of their content from the user’s visit to

a site. At the same time we are preserving their original functionality which in turn does

not affect usability and acts as an incentive for the adoption of our proposal. Additionally

we presented a network architecture which effectively reduces the networks involved when

routing traffic to a website. By routing otherwise plain-text traffic over our encrypted

overlay we are reducing the intermediate nodes clients and servers have to trust when

exchanging traffic.

We also investigated the hypothesis that such privacy benefits could be accomplished

unilaterally through client-side initiatives and without affecting the operation of individ-

ual websites. We demonstrated that browsers have the technical capability to offer lo-

cally the personalized content and functionality of social plugins and implemented our

proposal without the need for cooperation from social networks. We also demonstrated

that infrastructure-as-a-service has expanded the network access of clients. Specifically it

has made it possible for them to deploy a secure overlay that allows them to reach a web

server without the need to trust intermediate networks with their traffic.

CHAPTER 5. CONCLUSION 69

5.2 Future Directions

As an increasing part of daily life is moving to the Internet, preserving user privacy becomes

an issue of utmost importance. From third parties accumulating user data in exchange

for personalized web content to more and more everyday devices being connected to the

Internet, there are significant challenges to ensuring transparency and control for users.

To this end we introduced novel designs for privacy-preserving content personalization in

online social networking platforms as well as reducing third parties privy to the user’s

network activity. However there are interesting challenges ahead. The following research

directions capture our vision towards user privacy in respect to the evolution of the Internet.

We argue that user data should effectively reside on the client and that the client should

interact only with the user’s intended destination when explicitly sharing this data. Given

the evidence presented in this thesis such requirements are aligned with the nature, function

and evolution of the web.

5.2.1 Decentralizing User Data

There are open issues towards addressing the privacy concerns behind social networking

services and other ubiquitous third parties around the web storing user data. The former

receive user data in exchange for some functionality users enjoy while the latter amasses

data about the users based on their web browsing activity. Existing research has focused

on blocking the interaction between users and those parties, an approach appealing only

to those users willing to trade functionality for privacy. Work that tries to prevent third

parties from holding on to user data, based on whether such data retention is beneficial

or expected from the user’s perspective, ends up participating in an arms race with those

services. For example Google and Facebook are both first-party services users visit and

third-party trackers profiling the users’ web browsing, thus making the separation non-

trivial. At the same time third-party trackers are actively trying to detect and evade such

black-listing technologies, e.g., third-party cookie blocking, ad-blocking software and private

browsing windows.

We argue that future research should focus towards ways to empower users by giving

CHAPTER 5. CONCLUSION 70

them control over their data while defining transparent ways for data sharing. The existing

monolithic system of web services interweaves the functionality they offer, e.g., an online

social graph, with the user-generated content overlaid on top of it. In this thesis we have

demonstrated a practical design principle for online social networks that addresses the

simultaneous first and third-party nature of Facebook and prevents user tracking from

widgets embedded in websites the user visits while preserving the functionality of those

widgets including their personalized content. A key aspect of our design is avoiding direct

interaction with Facebook when user-owned data can be placed on their devices and used

to render personalized content locally. We have proven that user agents are capable of

implementing such design and we argue that the next step is to focus on making clients the

sole carriers of user-generated content. Towards this direction we should explore moving all

user data away from such monolithic services in favor of peer-to-peer user interactions. A

limitation of our current work is that if users choose to interact with social widgets, e.g.,

“Like” a page, that information is written back to Facebook and thus reveals their visit to a

particular site. The fundamental principle of making user devices the only place their data

lives gives users better control by default and promotes transparency as Facebook will have

to make explicit data requests towards clients and justify them.

While one could argue that clients are unequipped to handle their data we have demon-

strated the practicality of such approach by implementing our design. The next step is to

leverage the cloud as a private syncing medium across devices, a privacy-preserving process-

ing environment and a privacy-friendly facilitator of user-to-user data sharing. We argue

that the growth of infrastructure-as-a-service technologies has extended the concept of a

client beyond the physical confines of a device. Future research should revisit the privacy

of user data given the evolution in the nature of clients that involves multiple user-owned

devices, private off-device storage, processing and networking capabilities in the cloud.

5.2.2 Revisiting the Security Model of Client-Server Interactions

Given that TNT redefines a client’s proximity to services in the cloud, it can benefit current

work in Internet measurements and security as well as drive new research. At the same

time Sherry et al. [98] describe how the cloud can offer middleboxes as a service. The cloud

CHAPTER 5. CONCLUSION 71

becomes the point of ingress and egress for enterprise networks and implements proxies,

firewalls and load balancers. Going forward this makes the cloud the rendezvous point for

clients interacting with servers over the Internet. As a result, new research can focus on

intra-cloud traffic under a more simplified threat model and improved network conditions.

For example routing attacks [100] in the Internet’s backbone are less likely inside a

cloud network which is controlled by a single operator. TNT transforms reliable routing

into two orthogonal problems; reliably routing to the cloud and reliably routing within

the cloud. Factoring in the implicit trust placed by users to the cloud networks hosting

the services they are trying to access creates an interesting research space that can yield

practical solutions.

As the industry, represented by AT&T and Google, is trying to standardize middle-

boxes [11,12], being able to reliably detect their presence is an interesting and crucial area

of research. TNT assumes cloud networks are trusted and therefore does not consider at-

tacks against plain text traffic between a TNT endpoint and its destination while in those

networks. In practice, cloud providers may themselves employ middleboxes internally that

process, cache or alter traffic. For example a legitimate IDS could cache the plain text

user data it processes. We argue that the presence of such IDS should be transparent to

users. While existing research [62,66,87,104] has identified middleboxes based on implemen-

tations that make their traffic distinguishable from actual clients, a motivated adversary

can implement a middlebox that mimics the network stack of end-user systems. We ar-

gue that middlebox detection has to rely on fundamental aspects of their nature. Until

now research towards this direction has been hindered by the volatile geography of the

Internet’s backbone. However, as the attack surface has shifted from the backbone to the

cloud, existing security research can be revisited and new research may be enabled. For

example, accurately determining the geographic location of a server can highlight an ad-

versarial network tampering with traceroute. Because constraint-based geolocation [73,89]

uses delay measurements to estimate the location of Internet hosts it does not perform well

when the targets are not close to the landmarks. Topology-based geolocation [77] lever-

ages the network topology to improve on delay-based measurements but it introduces the

additional challenge of accurately mapping the data plane. Volatile network latency and

CHAPTER 5. CONCLUSION 72

packet loss rates could become more reliable [74] in the smaller core of a cloud network. In

other words, TNT narrows the search area from the backbone to cloud networks and IP

geolocation appears to benefit from the nature of the cloud.

Going forward, detecting middleboxes in low-latency cloud networks may be possible by

identifying the delay added by those middleboxes as a fundamental result of their processing.

In contrast to a typical router, such devices use a high-level function to process network

packets prior to forwarding them to their intended destination. Such processing, usually

deep packet inspection, increases the round-trip time between the client and the server.

Intelligently created packets the processing of which exacerbates the delay introduced by

the middlebox but does not affect the operation of the legitimate the server can highlight

the presence of a middlebox. If the client observes timing discrepancies between regular

packets and tripwires it can conclude that a middlebox is interfering with the traffic. For

instance, sslstrip [41] rewrites a server’s HTML response to replace all https:// links

with the insecure http:// scheme so it can monitor the client’s future traffic. This may

result in passwords and other sensitive information being transmitted in plain text. An

sslstrip tripwire can be a pair of pages, one with a large number of https:// links to

be stripped and one without. Tripwires have to generate timing discrepancies above the

natural network noise. Therefore they are most effective in low-latency networks involving

few hops. Rethinking client-server interactions over the Internet in the context of the local

network inside the cloud is an interesting direction.

BIBLIOGRAPHY 73

Bibliography

[1] A Certificate Authority to Encrypt the Entire Web. https://www.eff.org/deeplinks/

2014/11/certificate-authority-encrypt-entire-web.

[2] AdBlock Plus. http://adblockplus.org/.

[3] Amazon Silk - Split Browser Architecture. http://docs.aws.amazon.com/silk/latest/

developerguide/split-arch.html.

[4] AT&T charges $29 more for gigabit fiber that doesn’t watch your web brows-

ing. http://arstechnica.com/business/2015/02/att-charges-29-more-for-gigabit-fiber-

that-doesnt-watch-your-web-browsing/.

[5] CERT: Multiple DNS implementations vulnerable to cache poisoning. http://www.kb.

cert.org/vuls/id/800113.

[6] Cloudflare - Introducing Universal SSL. https://blog.cloudflare.com/introducing-

universal-ssl/.

[7] Do Not Track - Universal Web Tracking Opt Out. http://donottrack.us/.

[8] EFF - An Open Letter to Facebook CEO Mark Zuckerberg. https://www.eff.org/files/

filenode/social_networks/openlettertofacebook.pdf.

[9] EFF - Privacy Badger. https://www.eff.org/privacybadger.

[10] Electronic Frontier Foundation - Verizon Injecting Perma-Cookies to Track Mo-

bile Customers, Bypassing Privacy Controls. https://www.eff.org/deeplinks/2014/11/

verizon-x-uidh.

https://www.eff.org/deeplinks/2014/11/certificate-authority-encrypt-entire-web
https://www.eff.org/deeplinks/2014/11/certificate-authority-encrypt-entire-web
http://adblockplus.org/
http://docs.aws.amazon.com/silk/latest/developerguide/split-arch.html
http://docs.aws.amazon.com/silk/latest/developerguide/split-arch.html
http://arstechnica.com/business/2015/02/att-charges-29-more-for-gigabit-fiber-that-doesnt-watch-your-web-browsing/
http://arstechnica.com/business/2015/02/att-charges-29-more-for-gigabit-fiber-that-doesnt-watch-your-web-browsing/
http://www.kb.cert.org/vuls/id/800113
http://www.kb.cert.org/vuls/id/800113
https://blog.cloudflare.com/introducing-universal-ssl/
https://blog.cloudflare.com/introducing-universal-ssl/
http://donottrack.us/
https://www.eff.org/files/filenode/social_networks/openlettertofacebook.pdf
https://www.eff.org/files/filenode/social_networks/openlettertofacebook.pdf
https://www.eff.org/privacybadger
https://www.eff.org/deeplinks/2014/11/verizon-x-uidh
https://www.eff.org/deeplinks/2014/11/verizon-x-uidh

BIBLIOGRAPHY 74

[11] Explicit Proxies for HTTP/2.0. https://tools.ietf.org/id/draft-rpeon-httpbis-

exproxy-00.txt.

[12] Explicit Trusted Proxy in HTTP/2.0. https://tools.ietf.org/id/draft-loreto-httpbis-

trusted-proxy20-01.txt.

[13] Facebook - A new way to control the ads you see on Facebook. https:

//www.facebook.com/notes/facebook-and-privacy/a-new-way-to-control-the-ads-you-

see-on-facebook/926372204079329.

[14] Facebook - How many Pages can I like? https://www.facebook.com/help/?faq=

116603848424794.

[15] Facebook Blocker. http://webgraph.com/resources/facebookblocker/.

[16] Facebook Fact Sheet. https://newsroom.fb.com/company-info/.

[17] Facebook Graph API. http://developers.facebook.com/docs/reference/api/.

[18] Facebook Like Button Count Inaccuracies. http://faso.com/fineartviews/21028/

facebook-like-button-count-inaccuracies.

[19] Facebook Plugins. http://developers.facebook.com/docs/plugins/.

[20] Federal Trade Commission - DoubleClick Inc. Closing Letter. https://www.ftc.gov/

sites/default/files/documents/closing_letters/doubleclick-inc./doubleclick.pdf.

[21] Federal Trade Commission - DoubleClick Inc. Complaint by the Electronic Privacy

Information Center. https://epic.org/privacy/internet/ftc/DCLK_complaint.pdf.

[22] Firefox Sync. http://www.mozilla.org/en-US/mobile/sync/.

[23] Google - Data Saver Proxy. https://developer.chrome.com/multidevice/data-compression.

[24] Hypertext Transfer Protocol 1.1. https://www.ietf.org/rfc/rfc2616.txt.

[25] Hypertext Transfer Protocol Version 2 (HTTP/2). https://tools.ietf.org/html/

rfc7540.

https://tools.ietf.org/id/draft-rpeon-httpbis-exproxy-00.txt
https://tools.ietf.org/id/draft-rpeon-httpbis-exproxy-00.txt
https://tools.ietf.org/id/draft-loreto-httpbis-trusted-proxy20-01.txt
https://tools.ietf.org/id/draft-loreto-httpbis-trusted-proxy20-01.txt
https://www.facebook.com/notes/facebook-and-privacy/a-new-way-to-control-the-ads-you-see-on-facebook/926372204079329
https://www.facebook.com/notes/facebook-and-privacy/a-new-way-to-control-the-ads-you-see-on-facebook/926372204079329
https://www.facebook.com/notes/facebook-and-privacy/a-new-way-to-control-the-ads-you-see-on-facebook/926372204079329
https://www.facebook.com/help/?faq=116603848424794
https://www.facebook.com/help/?faq=116603848424794
http://webgraph.com/resources/facebookblocker/
https://newsroom.fb.com/company-info/
http://developers.facebook.com/docs/reference/api/
http://faso.com/fineartviews/21028/facebook-like-button-count-inaccuracies
http://faso.com/fineartviews/21028/facebook-like-button-count-inaccuracies
http://developers.facebook.com/docs/plugins/
https://www.ftc.gov/sites/default/files/documents/closing_letters/doubleclick-inc./doubleclick.pdf
https://www.ftc.gov/sites/default/files/documents/closing_letters/doubleclick-inc./doubleclick.pdf
https://epic.org/privacy/internet/ftc/DCLK_complaint.pdf
http://www.mozilla.org/en-US/mobile/sync/
https://developer.chrome.com/multidevice/data-compression
https://www.ietf.org/rfc/rfc2616.txt
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540

BIBLIOGRAPHY 75

[26] Indexed Database API. http://www.w3.org/TR/IndexedDB/.

[27] ISPs Removing Their Customers’ Email Encryption. https://www.eff.org/deeplinks/

2014/11/starttls-downgrade-attacks.

[28] MDN - Intercepting Page Loads. https://developer.mozilla.org/en/XUL_School/

Intercepting_Page_Loads.

[29] MDN - Pageshow Event. https://developer.mozilla.org/en/using_firefox_1.5_caching#

pageshow.

[30] MDN - window.postMessage. https://developer.mozilla.org/en/DOM/window.postMessage.

[31] MDN - XML User Interface Language. https://developer.mozilla.org/En/XUL.

[32] MIT technology review - Facebook’s like buttons will soon track your web browsing

to target ads. https://www.technologyreview.com/s/541351/facebooks-like-buttons-will-

soon-track-your-web-browsing-to-target-ads/.

[33] Mozilla - Tracking Protection. https://developer.mozilla.org/en-US/Firefox/Privacy/

Tracking_Protection.

[34] Mozilla At a Glance. http://blog.mozilla.org/press/ataglance/.

[35] No Likie. https://chrome.google.com/webstore/detail/pockodjapmojcccdpgfhkjldcnbhenjm.

[36] NoScript. https://addons.mozilla.org/en-US/firefox/addon/noscript/.

[37] Official Gmail Blog - Staying at the forefront of email security and reliability. http:

//gmailblog.blogspot.com/2014/03/staying-at-forefront-of-email-security.html.

[38] ProPublica - It’s Complicated: Facebook’s History of Tracking You. https://www.

propublica.org/article/its-complicated-facebooks-history-of-tracking-you.

[39] QUALYS SSL Labs - SSL Server Test. https://www.ssllabs.com/ssltest/.

[40] ShareMeNot. http://sharemenot.cs.washington.edu/.

[41] sslstrip. http://www.thoughtcrime.org/software/sslstrip/.

http://www.w3.org/TR/IndexedDB/
https://www.eff.org/deeplinks/2014/11/starttls-downgrade-attacks
https://www.eff.org/deeplinks/2014/11/starttls-downgrade-attacks
https://developer.mozilla.org/en/XUL_School/Intercepting_Page_Loads
https://developer.mozilla.org/en/XUL_School/Intercepting_Page_Loads
https://developer.mozilla.org/en/using_firefox_1.5_caching#pageshow
https://developer.mozilla.org/en/using_firefox_1.5_caching#pageshow
https://developer.mozilla.org/en/DOM/window.postMessage
https://developer.mozilla.org/En/XUL
https://www.technologyreview.com/s/541351/facebooks-like-buttons-will-soon-track-your-web-browsing-to-target-ads/
https://www.technologyreview.com/s/541351/facebooks-like-buttons-will-soon-track-your-web-browsing-to-target-ads/
https://developer.mozilla.org/en-US/Firefox/Privacy/Tracking_Protection
https://developer.mozilla.org/en-US/Firefox/Privacy/Tracking_Protection
http://blog.mozilla.org/press/ataglance/
https://chrome.google.com/webstore/detail/pockodjapmojcccdpgfhkjldcnbhenjm
https://addons.mozilla.org/en-US/firefox/addon/noscript/
http://gmailblog.blogspot.com/2014/03/staying-at-forefront-of-email-security.html
http://gmailblog.blogspot.com/2014/03/staying-at-forefront-of-email-security.html
https://www.propublica.org/article/its-complicated-facebooks-history-of-tracking-you
https://www.propublica.org/article/its-complicated-facebooks-history-of-tracking-you
https://www.ssllabs.com/ssltest/
http://sharemenot.cs.washington.edu/
http://www.thoughtcrime.org/software/sslstrip/

BIBLIOGRAPHY 76

[42] The Chromium projects - Sync. http://www.chromium.org/developers/design-documents/

sync.

[43] The Official Microsoft Blog - Protecting customer data from government

snooping. http://blogs.microsoft.com/blog/2013/12/04/protecting-customer-data-from-

government-snooping/.

[44] The Platform for Privacy Preferences Specification. http://www.w3.org/TR/P3P/.

[45] The Transport Layer Security (TLS) Protocol Version 1.2. https://tools.ietf.org/

html/rfc5246.

[46] The Washington Post - NSA infiltrates links to Yahoo, Google data centers world-

wide. https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-

to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-

4166-11e3-8b74-d89d714ca4dd_story.html.

[47] The Washington Post - NSA uses Google cookies to pinpoint targets for hack-

ing. https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-

cookies-to-pinpoint-targets-for-hacking/.

[48] Time Magazine - One Minute on Facebook. http://www.time.com/time/video/player/0,

32068,711054024001_2037229,00.html.

[49] Tor Meek. https://trac.torproject.org/projects/tor/wiki/doc/meek.

[50] Tracking the FREAK Attack. https://freakattack.com/.

[51] Transport Layer Security (TLS) Extensions. https://www.ietf.org/rfc/rfc3546.txt.

[52] Uniform Resource Identifier. http://www.ietf.org/rfc/rfc3986.txt.

[53] Widgets Distribution. http://trends.builtwith.com/widgets.

[54] CVE-2014-0160, 2014. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160.

[55] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Diaz. The web

never forgets: Persistent tracking mechanisms in the wild. In Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security. ACM, 2014.

http://www.chromium.org/developers/design-documents/sync
http://www.chromium.org/developers/design-documents/sync
http://blogs.microsoft.com/blog/2013/12/04/protecting-customer-data-from-government-snooping/
http://blogs.microsoft.com/blog/2013/12/04/protecting-customer-data-from-government-snooping/
http://www.w3.org/TR/P3P/
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking/
https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking/
http://www.time.com/time/video/player/0,32068,711054024001_2037229,00.html
http://www.time.com/time/video/player/0,32068,711054024001_2037229,00.html
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://freakattack.com/
https://www.ietf.org/rfc/rfc3546.txt
http://www.ietf.org/rfc/rfc3986.txt
http://trends.builtwith.com/widgets
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

BIBLIOGRAPHY 77

[56] G. Aggrawal, E. Bursztein, C. Jackson, and D. Boneh. An analysis of private browsing

modes in modern browsers. In Proceedings of 19th USENIX Security Symposium.

USENIX Association, 2010.

[57] M. Akhoondi, C. Yu, and H. V. Madhyastha. LASTor: A Low-Latency AS-Aware

Tor Client. In Proceedings of the 2012 IEEE Symposium on Security and Privacy.

IEEE Computer Society, 2012.

[58] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. N. Schuldt.

On the Security of RC4 in TLS. In Proceedings of the 22nd USENIX Conference on

Security. USENIX Association, 2013.

[59] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient Overlay Net-

works. In Proceedings of the 18th ACM Symposium on Operating Systems Principles.

ACM, 2001.

[60] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub,

S. Zanella-Beguelin, J.-K. Zinzindohoue, and B. Beurdouche. FREAK: Factoring RSA

Export Keys, 2015. https://www.smacktls.com/#freak.

[61] E. Y. Chen, J. Bau, C. Reis, A. Barth, and C. Jackson. App isolation: Get the security

of multiple browsers with just one. In Proceedings of the 18th ACM Conference on

Computer and Communications Security. ACM, 2011.

[62] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet. Revealing mid-

dlebox interference with tracebox. In Proceedings of the 2013 Conference on Internet

Measurement Conference. ACM, 2013.

[63] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the second-generation onion

router. In Proceedings of the 13th USENIX Security Symposium. USENIX Association,

2004.

[64] T. Duong and J. Rizzo. Here Come the XOR Ninjas, 2011. https://bug665814.bugzilla.

mozilla.org/attachment.cgi?id=540839.

https://www.smacktls.com/#freak
https://bug665814.bugzilla.mozilla.org/attachment.cgi?id=540839
https://bug665814.bugzilla.mozilla.org/attachment.cgi?id=540839

BIBLIOGRAPHY 78

[65] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein, N. Lidzborski,

K. Thomas, V. Eranti, M. Bailey, and J. A. Halderman. Neither Snow Nor Rain

Nor MITM ... An Empirical Analysis of Email Delivery Security. In Proceedings of

the ACM Internet Measurement Conferene. ACM, 2015.

[66] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein, M. Bailey,

J. A. Halderman, and V. Paxson. The security impact of https interception. In Pro-

ceedings of the 2017 Network and Distributed Systems Symposium. Internet Society,

2017.

[67] P. Eckersley. How unique is your web browser? In Proceedings of the 10th international

conference on Privacy Enhancing Technologies. Springer, 2010.

[68] M. Egele, A. Moser, C. Kruegel, and E. Kirda. PoX: Protecting users from malicious

Facebook applications. In Proceedings of the 9th Annual IEEE international con-

ference on Pervasive Computing and Communications, Workshop Proceedings. IEEE

Computer Society, 2011.

[69] S. Englehardt and A. Narayanan. Online tracking: A 1-million-site measurement and

analysis. In Proceedings of the 23rd ACM Conference on Computer and Communica-

tions Security. ACM, 2016.

[70] A. Felt and D. Evans. Privacy protection for social networking platforms. In Proceed-

ings of the 2008 IEEE Workshop on Web 2.0 Security and Privacy. IEEE Computer

Society, 2008.

[71] M. Fredrikson and B. Livshits. RePriv: Re-envisioning in-browser privacy. In Proceed-

ings of the 2011 IEEE Symposium on Security and Privacy. IEEE Computer Society,

2011.

[72] L. Gao. On Inferring Autonomous System Relationships in the Internet. IEEE/ACM

Transactions of Networking, 9(6):733–745, 2001.

BIBLIOGRAPHY 79

[73] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida. Constraint-based geolocation of

internet hosts. In Proceedings of the 4th ACM SIGCOMM Internet Measurement

Conference. ACM, 2004.

[74] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and D. Wetherall.

Improving the Reliability of Internet Paths with One-hop Source Routing. In Proceed-

ings of the 6th USENIX Symposium on Operating Systems Design & Implementation.

USENIX Association, 2004.

[75] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Protecting browser state from web

privacy attacks. In Proceedings of the 15th international World Wide Web Conference.

ACM, 2006.

[76] S. Kamkar. Evercookie. http://samy.pl/evercookie/.

[77] E. Katz-Bassett, J. P. John, A. Krishnamurthy, D. Wetherall, T. Anderson, and

Y. Chawathe. Towards IP geolocation using delay and topology measurements. In

Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement. ACM,

2006.

[78] A. Kobsa. Privacy-enhanced personalization. Communications of the ACM, 50:24–33,

2007.

[79] B. Krishnamurthy and C. E. Wills. Characterizing privacy in online social networks.

In Proceeedings of the 1st Workshop on Online Social Networks. ACM, 2008.

[80] T. Libert. Exposing the Invisible Web: An Analysis of Third-Party HTTP Requests

on 1 Million Websites. International Journal of Communication, 9:3544–3651, 2015.

[81] M. M. Lucas and N. Borisov. FlyByNight: mitigating the privacy risks of social

networking. In Proceedings of the 7th ACM workshop on Privacy in the Electronic

Society. ACM, 2008.

[82] W. Luo, Q. Xie, and U. Hengartner. FaceCloak: An architecture for user privacy on

social networking sites. In Proceedings of the international conference on computa-

tional science and engineering. IEEE Computer Society, 2009.

http://samy.pl/evercookie/

BIBLIOGRAPHY 80

[83] J. R. Mayer and J. C. Mitchell. Third-Party Web Tracking: Policy and Technology. In

Proceedings of the 2012 IEEE Symposium on Security and Privacy. IEEE Computer

Society, 2012.

[84] D. S. Miller, 2012. http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/

commit/?id=89aef8921bfbac22f00e04f8450f6e447db13e42.

[85] B. Moller, T. Duong, and K. Kotowicz. This POODLE Bites: Exploiting the SSL 3.0

Fallback, 2014. https://www.openssl.org/~bodo/ssl-poodle.pdf.

[86] K. Mowery and H. Shacham. Pixel perfect: Fingerprinting canvas in HTML5. In

Proceedings of W2SP 2012. IEEE Computer Society, 2012.

[87] G. Nakibly, J. Schcolnik, and Y. Rubin. Website-targeted false content injection by

network operators. In Proceedings of the 25th USENIX Security Symposium. USENIX

Association, 2016.

[88] R. Nithyanand, O. Starov, A. Zair, P. Gill, and M. Schapira. Measuring and Mitigat-

ing AS-level Adversaries against Tor. In Proceedigns of the Network and Distributed

System Security Conference. Internet Society, 2016.

[89] V. N. Padmanabhan and L. Subramanian. An investigation of geographic map-

ping techniques for internet hosts. In Proceedings of the 2001 Conference on Ap-

plications, Technologies, Architectures, and Protocols for Computer Communications.

ACM, 2001.

[90] N. Perlroth. NYTimes - China Is Said to Use Powerful New Weapon to Cen-

sor Internet, 2015. http://www.nytimes.com/2015/04/11/technology/china-is-said-to-use-

powerful-new-weapon-to-censor-internet.html.

[91] A. Porter Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz. Measuring

HTTPS adoption on the web. In Proceedings of the 26th USENIX Security Symposium.

USENIX Association, 2017.

[92] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. My botnet is bigger than yours

(maybe, better than yours): why size estimates remain challenging. In Proceedings

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=89aef8921bfbac22f00e04f8450f6e447db13e42
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=89aef8921bfbac22f00e04f8450f6e447db13e42
https://www.openssl.org/~bodo/ssl-poodle.pdf
http://www.nytimes.com/2015/04/11/technology/china-is-said-to-use-powerful-new-weapon-to-censor-internet.html
http://www.nytimes.com/2015/04/11/technology/china-is-said-to-use-powerful-new-weapon-to-censor-internet.html

BIBLIOGRAPHY 81

of the first workshop on Hot topics in understanding Botnets. USENIX Association,

2007.

[93] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver. Detecting In-flight Page Changes

with Web Tripwires. In Proceedings of the 5th USENIX Symposium on Networked

Systems Design and Implementation. USENIX Association, 2008.

[94] F. Roesner, T. Kohno, and D. Wetherall. Detecting and defending against third-party

tracking on the web. In Proceedings of the 9th USENIX conference on Networked

Systems Design and Implementation. USENIX Association, 2012.

[95] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design,

1984.

[96] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins, E. Hoffman,

J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan. Detour: Informed Internet Routing

and Transport. IEEE Micro, 19(1):50–59, 1999.

[97] M. Sherr, A. Mao, W. R. Marczak, W. Zhou, B. T. Loo, and M. Blaze. A3: An

Extensible Platform for Application-Aware Anonymity. In Proceedings of the Network

and Distributed System Security Symposium. Internet Society, 2010.

[98] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar. Mak-

ing middleboxes someone else’s problem: Network processing as a cloud service. In

Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication. ACM, 2012.

[99] K. Singh, S. Bhola, and W. Lee. xbook: Redesigning privacy control in social net-

working platforms. In Proceedings of the 18th USENIX Security Symposium. USENIX

Association, 2009.

[100] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and P. Mittal.

Raptor: Routing attacks on privacy in tor. In Proceedings of the 24th USENIX

Security Symposium. USENIX Association, 2015.

BIBLIOGRAPHY 82

[101] L. Sweeney. k-anonymity: a model for protecting privacy. International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems, 2002.

[102] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas. Adnos-

tic: Privacy preserving targeted advertising. In Proceedings of the 17th Network and

Distributed System Security Symposium. Internet Society, 2010.

[103] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the facebook

social graph. https://arxiv.org/abs/1111.4503.

[104] N. Weaver, C. Kreibich, M. Dam, and V. Paxson. Here be web proxies. In Proceedings

of the 15th International Conference on Passive and Active Measurements. Springer,

2014.

https://arxiv.org/abs/1111.4503

	List of Figures
	List of Tables
	1 Introduction
	1.1 Hypothesis
	1.2 Thesis Statement
	1.3 Contributions

	2 Related Work
	2.1 Preventing Third-party Tracking on the Web
	2.2 Preventing Third-party Tracking on the Network

	3 Privacy-Preserving Social Plugins
	3.1 Overview
	3.2 Design
	3.3 Implementation
	3.4 Experimental Evaluation
	3.4.1 Supported Facebook Plugins
	3.4.2 Space Requirements
	3.4.3 Speed
	3.4.4 Effectiveness
	3.4.5 Revisiting Social Plugins

	3.5 Privacy-Preserving Social Plugins as a Service: A Pure JavaScript Design
	3.6 Discussion

	4 Topology-Aware Network Tunnels
	4.1 Overview
	4.2 Threat Model
	4.3 Design
	4.3.1 Topology-Aware Network Overlay
	4.3.2 The TNT Router

	4.4 Understanding the Landscape of Web Services
	4.4.1 HTTPS Adoption
	4.4.2 Web Service Collocation

	4.5 Implementation
	4.5.1 Deployment
	4.5.2 Operation
	4.5.3 Transparent Routing Updates
	4.5.4 Application-Specific Routing

	4.6 Evaluation
	4.6.1 Network Proximity
	4.6.2 Operating a TNT router
	4.6.3 Web Browsing over TNT

	4.7 Security Discussion
	4.8 Limitations
	4.9 Production

	5 Conclusion
	5.1 Summary
	5.2 Future Directions
	5.2.1 Decentralizing User Data
	5.2.2 Revisiting the Security Model of Client-Server Interactions

	Bibliography

