
Design and Analysis of Decoy Systems for
Computer Security

Brian M. Bowen

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2011

c©2011

Brian M. Bowen

All Rights Reserved

ABSTRACT

Design and Analysis of Decoy Systems for
Computer Security

Brian M. Bowen

This dissertation is aimed at defending against a range of internal threats, including eaves-

dropping on network taps, placement of malware to capture sensitive information, and gen-

eral insider threats to exfiltrate sensitive information. Although the threats and adversaries

may vary, in each context where a system is threatened, decoys can be used to deny critical

information to adversaries making it harder for them to achieve their target goal. The

approach leverages deception and the use of decoy technologies to deceive adversaries and

trap nefarious acts. This dissertation proposes a novel set of properties for decoys to serve

as design goals in the development of decoy-based infrastructures. To demonstrate their

applicability, we designed and prototyped network and host-based decoy systems. These

systems are used to evaluate the hypothesis that network and host decoys can be used to

detect inside attackers and malware.

We introduce a novel, large-scale automated creation and management system for de-

ploying decoys. Decoys may be created in various forms including bogus documents with

embedded beacons, credentials for various web and email accounts, and bogus financial in-

formation that is monitored for misuse. The decoy management system supplies decoys for

the network and host-based decoy systems.

We conjecture that the utility of the decoys depends on the believability of the bogus

information; we demonstrate the believability through experimentation with human judges.

For the network decoys, we developed a novel trap-based architecture for enterprise networks

that detects “silent” attackers who are eavesdropping network traffic. The primary contri-

butions of this system is the ease of injecting, automatically, large amounts of believable

bait, and the integration of various detection mechanisms in the back-end. We demonstrate

our methodology in a prototype platform that uses our decoy injection API to dynamically

create and dispense network traps on a subset of our campus wireless network. We present

results of a user study that demonstrates the believability of our automatically generated

decoy traffic. We present results from a statistical and information theoretic analysis to

show the believability of the traffic when automated tools are used.

For host-based decoys, we introduce BotSwindler, a novel host-based bait injection sys-

tem designed to delude and detect crimeware by forcing it to reveal itself during the ex-

ploitation of monitored information. Our implementation of BotSwindler relies upon an

out-of-host software agent to drive user-like interactions in a virtual machine, seeking to

convince malware residing within the guest OS that it has captured legitimate credentials.

To aid in the accuracy and realism of the simulations, we introduce a novel, low overhead

approach, called virtual machine verification, for verifying whether the guest OS is in one

of a predefined set of states. We provide empirical evidence to show that BotSwindler

can be used to induce malware into performing observable actions and demonstrate how

this approach is superior to that used in other tools. We present results from a user to

study to illustrate the believability of the simulations and show that financial bait infor-

mation can be used to effectively detect compromises through experimentation with real

credential-collecting malware. We present results from a statistical and information theo-

retic analysis to show the believability of simulated keystrokes when automated tools are

used to distinguish them.

Finally, we introduce and demonstrate an expanded role for decoys in educating users

and measuring organizational security through experiments with approximately 4000 uni-

versity students and staff.

Table of Contents

1 Introduction 14

1.1 Contributions . 16

1.2 Dissertation Organization . 18

I Related Work and Decoy Properties 20

2 Related Work 21

2.1 Decoy Properties . 21

2.2 Decoy Documents . 22

2.3 Decoy Networking . 22

2.4 Host-based Decoys . 24

2.5 Educating Users and Measuring Organizational Security 26

3 Design Goals 27

3.1 Threat Model - Level of Sophistication of the Attacker 27

3.2 Decoy Properties . 28

3.3 Design Goals Summary . 36

II Decoy Systems 37

4 Design and Generation of Decoys 38

4.1 Decoy Documents . 39

4.1.1 Honeytokens . 40

5

4.1.2 Beacon Implementation . 40

4.1.3 Embedded Marker implementation 41

4.2 Trap-based Decoys . 41

4.2.1 PayPal Decoy Analysis . 43

4.2.2 Gmail Decoy Analysis . 44

4.2.3 Beacon Implementation Tests . 45

4.3 Perfectly Believable Decoys . 46

4.3.1 Detecting Perfectly Believable Decoys 47

4.4 Masquerade detection using Decoy Documents as Bait 49

4.4.1 Experimental Setup . 49

4.4.2 Experimental Results . 51

4.5 Design and Generation of Decoys Summary 53

5 Decoy Networking 54

5.1 Platform Implementation . 56

5.1.1 Automated Decoy Traffic Generator 57

5.1.2 Statistically Similar Temporal Features 61

5.1.3 Decoy Broadcaster . 61

5.2 Detecting Snoopers . 64

5.2.1 Defcon Experiment . 65

5.2.2 Massive Cookie Harvesting . 65

5.3 Believability of Bogus Traffic: A Decoy Turing Test 67

5.3.1 Results and Discussion . 70

5.4 Statistical and Information Theoretic Analysis 72

5.4.1 Evaluation Data . 72

5.4.2 Classification Experiments . 73

5.4.3 Kolmogorov-Smirnov Tests . 74

5.4.4 Entropy Tests . 75

5.5 Interference Measurements . 76

5.5.1 Experimental Setup . 78

5.5.2 Results and Discussion . 79

6

5.6 Legal Considerations . 82

5.7 Limitations and Open Problems . 82

5.8 Decoy Networking Summary . 83

6 Decoy Host System 85

6.0.1 Overview of Results . 88

6.1 BotSwindler Components . 89

6.1.1 VMSim . 90

6.1.2 Virtual Machine Verification . 94

6.2 Statistical and Information Theoretic Analysis 96

6.2.1 Classification Experiments . 97

6.2.2 Anomaly Detection Experiments . 99

6.3 Decoy Turing Test . 101

6.4 Virtual Machine Verification Overhead . 104

6.5 Detecting Real Malware with Bait Exploitation 107

6.6 Applications of BotSwindler in an Enterprise 111

6.7 Limitations and Open Problems . 113

6.8 Host System Summary . 114

7 Educating Users and Measuring Organizational Security 115

7.1 Phony Phish System . 117

7.2 Experimental Analysis and Results . 118

7.3 Metrics Conclusion . 121

III Conclusions 122

8 Conclusions 123

IV Appendices 126

9 Experimental Details 127

9.1 IRB Approvals . 127

7

9.2 BotSwindler Study Description . 127

V Bibliography 132

Bibliography 133

8

List of Figures

1.1 The variety of decoy concepts covered in this dissertation. 16

5.1 Injection Platform. 57

5.2 Honeyflow creation process. 58

5.3 SMTP Identifiers. 58

5.4 Defcon ’09 Wall of Sheep. 66

5.5 DTT 1 Results: Real vs. Decoy. 67

5.6 DTT 2 Results: Real vs. Decoy. 68

5.7 DTT 1 Results: Users’ Correctness. 68

5.8 DTT 2 Results: Users’ Correctness. 69

5.9 Decision Tree classification. 76

5.10 BayesNet classification. 77

5.11 Average Entropy per session for generated and actual timing data. 77

5.12 Interference cost. 80

5.13 Packets successfully injected. 81

6.1 BotSwindler architecture. 90

6.2 VMSim language. 91

6.3 VMV pseudocode of the monitor function. 95

6.4 SVM classification. 97

6.5 Naive Bayes classification. 98

6.6 Entropy of generated and actual timing data. 98

9

6.7 True positive rates for anomaly detection using the Euclidean distance and

a threshold set with a .05 FP rate. 100

6.8 True positive rates for anomaly detection using the Manhattan distance and

a threshold set with a .05 FP rate. 100

6.9 True positive rates for anomaly detection using the (scaled) Manhattan dis-

tance and a threshold set with a .05 FP rate. 101

6.10 Decoy Turing Test results: real vs. simulated. 104

6.11 Judges’ overall performance in our initial study in which judges were pre-

sented with real and bogus videos for each of the five senarios. 105

6.12 Judges’ overall performance in our second study in which the order of the

videos were randomized and judges were presented with only a single video

for each of five scenarios. 105

6.13 Enterprise Deployment of BotSwindler . 111

6.14 Personal workstation environment in which decoys are injected over the Blue-

tooth protocol from a nearby location. 112

7.1 Components of the Phony Phish System. 117

9.1 Columbia University IRB for Turing Test user studies 128

9.2 Columbia University IRB for the metrics user study 129

9.3 The description of the user study given to each of the participants. 130

9.4 JavaScript to randomize the links to videos in the BotSwindler study. . . . 131

10

List of Tables

4.1 PayPal decoy false negative likelihoods. 44

4.2 False alerts for Gmail Decoys over a 5-month period (based on 36,000 login

attempts). 45

4.3 PDF Beacon Test Results . 46

4.4 Word Beacon Test Results . 46

5.1 Rules used to match protocols. 58

5.2 Kolmogorov-Smirnov test results for different binning thresholds. 75

6.1 Average true positive rates for three anomaly detectors tested against the

simulated keystroke timing data. 99

6.2 Overhead of VMV with idle user. 106

6.3 Overhead of VMV with active user. 106

7.1 The number of responses for each round for the first experiment to measure

the user response to Phony Phish. 120

7.2 The number of responses for each round for the second experiment to measure

the user response to Phony Phish. 120

11

Acknowledgments

This dissertation was made possible through the guidance and encouragement of my advi-

sors, Angelos Keromytis and Sal Stolfo. I am grateful to them for the years of support they

provided and their help in shaping this thesis.

Many people helped with efforts in this thesis, including: Vasileios Kemerlis, Pratap

Prabhu, Vailis Pappas, Stelios Sidiroglou-Douskos, and Ramaswamy Devarajan. I would

like to thank all of them for their hard work, contributions, and thoughtful insights.

A large part of a PhD program involves the community of people you get to know and

work with. I would like to thank everyone in the Network Security Lab and Intrusion

Detection Systems Lab for their support and for helping to make the PhD journey an

enjoyable one.

I would also like to thank those who served on my PhD committee, including: Angelos

Keromytis, Sal Stolfo, Fabian Monrose, Steven Bellovin, and Moti Young. I am especially

grateful for the detailed feedback given by Steven Bellovin and Fabian Monrose.

Support for my thesis work was provided by Sandia National Laboratories through its

Doctorate Study Program. I would like to offer a special thanks to everyone at Sandia

who supported me in getting into and through the program, including: Kim Denton-Hill,

Joselyne Gallegos, David Williams, Rob Leland, Ron Detry, Carol Jones, Bob Hutchinson,

Carol Harrison, Jerriann Garcia, David White, David Duggan, as well as everyone on the

Sandia Education Committee for their support, including: John Moser, Charline Wells, Pat

Sena, Keith Bauer, Krystal Kelley, Diane Peebles, Mary Kay Austin, Rebecca Burt, Paul

Yourick, Mark Garrett, Brian Damkroger, and Bernadette Montano.

I would like to thank my friends and family, especially my parents, Patricia and Raymond

Bowen, for the lifelong support and encouragement they have provided. John Ziegler also

provided helpful editorial reviews.

12

Finally, I am especially thankful to Leslie Ward for her perseverance over the past few

years in enduring the pregnancy and delivery of our twins, Nathan and Chloe Bowen. She

has overcome many challenges to support this work and our young twins.

13

Chapter 1

Introduction

The cyber domain provides a fertile environment for attacks aimed at information theft as a

consequence of eavesdropping on networks and hosts. This dissertation is aimed at defending

against a range of internal threats, including eavesdropping on network taps, placement of

malware to capture sensitive information, and general insider threats to exfiltrate sensitive

information.

Much research in computer security has focused on the means of preventing unauthorized

and illegitimate access to systems and information. Unfortunately, the most damaging

malicious activity is the result of internal misuse within an organization, perhaps since far

less attention has been focused inward. Despite classic internal operating system security

mechanisms and the body of work on formal specification of security and access control

policies, including Bell-LaPadula [Bell and Whaley, 1982] and the Clark-Wilson models

[Clark and Wilson, 1987], we still have an extensive insider attack problem. Indeed in many

cases, formal security policies are incomplete and implicit or they are purposely ignored

in order to get business goals accomplished. There seems to be little technology available

to address the insider threat problem. As a result, insider abuse contributes significantly

to the losses faced by many organizations today. According to the the annual Computer

Crime and Security Survey for 2009 which surveyed 443 security personnel members from

US corporations and government agencies, insider incidents were cited by 44 percent of

respondents [Richardson, 2009]. The state-of-the-art seems to be still driven by forensics

analysis after an attack, rather than technologies that prevent, detect, and deter insider

14

attack.

The characteristics that distinguish insider attacks from traditional external attacks are

knowledge and access of the attacker. Malicious Insiders possess greater knowledge of the

systems and infrastructures they seek to exploit. They may already have access to the same

systems systems either physically or through the network for legitimate reasons making

defense a challenging task. Some external attackers can acquire insider characteristics by

attaining internal network access. Many attacks use spyware and rootkits, which give

outsiders internal access. Such software can easily be installed on systems from physical or

digital media (e.g., email, downloads) and allow an attacker to gain administrator or “root”

access on a machine along with a capability to gather sensitive data. Rootkits have the

ability to conceal themselves and elude detection, especially when the rootkit is previously

unknown, as is true in zero-day attacks. An external attacker that manages to install

rootkits internally in effect becomes an insider, thereby multiplying the ability to inflict

harm. The creation and rapid growth of an underground economy that trades in stolen

digital credentials has spurred the growth of spyware-driven bots that harvest sensitive

data from unsuspecting users.

Traditional detection techniques rely on comparing signatures of known malicious in-

stances to identify unknown samples, or on anomaly-based detection techniques in which

host behaviors are monitored for large deviations from a baseline. Unfortunately, these

approaches suffer a large number of known weaknesses. Signature-based methods can be

useful when a signature is known, but due to the large number of possible variants, learning

and searching all possible signatures to identify unknown binaries is intractable [Song et

al., 2007]. Anomaly-based methods are susceptible to false positives and negatives, limit-

ing their potential utility. Consequently, a large amount of existing malware now operate

undetected by antivirus software. A recent study focused of Zeus1 (the largest botnet with

over 3.6 million PC infections in the US alone [Messmer, 2009]), revealed that the malware

bypassed up-to-date antivirus software 55% of the time [zeu, 2009].

Another drawback to conventional host-based antivirus software is that it typically mon-

1Zeus uses key-logging techniques to steal sensitive data such as user names, passwords, account numbers.

It can be purchased on the black market for $600, complete with support and maintenance [abu, 2009].

15

database

email

filesystem

scanning

application events (e.g., browser)

keystrokes/screenshots

network on same host

network

eavedropping

Threats

WF

PayPal

GMail

External service

beacon

Honeypot

Host sensor(s)

NIDS/DLP

Detection method

OT CCs

bank accounts
financial information

beacon document

URLs

passwords

Decoy types

Keystrokes & input events

Files/database records

Documents

Network flows

Cover traffic

Non-interference

Variability

Differentiability

Detectability

Conspicuousness

Enticingness

Believability

Properties

Keystrokes & input events

Files/database records

Network flows

Documents

Carry traffic

Web browser

SSH

Filesystem

Virtual Machine

WiFi

Injection methods

Decoy concepts

Figure 1.1: The variety of decoy concepts covered in this dissertation.

itors from within the host, making it vulnerable to evasion or subversion by malware. In

fact, we see an increasing number of malware attacks that disable defenses such as antivirus

software prior to undertaking some malicious activity [Ilett, 2005].

1.1 Contributions

The focus of this dissertation is on a defense system of an offensive nature, intended to

confuse and deceive adversaries by leveraging uncertainty, to reduce the knowledge they

ordinarily have of target systems, or they may be used to provide false information to an

adversary that causes a detectable reaction. This dissertation focuses on the design and

analysis of decoys to combat threats by deceiving adversaries with trap-laden misinformation

that is detectable upon exploitation. The proposed decoys may be created in various forms

including bogus documents with embedded beacons, credentials for various web and email

accounts, and bogus financial information that is monitored for misuse.

16

The cyber landscape provides a vast number of settings in which decoys can be deployed.

Naturally, the probability of exposing an attacker with trap-based defense tactics increases

with the amount of decoy information that is generated and disseminated. The complexity

of their deployment largely depends on the scale of the system and threat model. This

dissertation synthesizes a variety of decoy concepts that range from various threat models,

to types of decoys, their design, and their deployment. Figure 1.1 provides a synopsis of

the variety of decoy concepts covered in this dissertation.

Most of this dissertation is aimed at deceiving attackers by convincing them something

is real when in-fact it is not. To show how decoys are generally valuable to security, we

inverse the role of decoys and show how they can be used to educate users and provide

valuable metrics. Here, we create decoys that mimic attackers’ actions as opposed to those

of legitimate users. Subsequent chapters will explore each of this concepts in detail.

Thesis Statement: Network and host decoys can be used to detect malicious actions by inside

attackers or malware seeking to extend access, and to educate innocent users on potentially

vulnerable actions. Although the threats and adversaries may vary, in each context where a

system is threatened, decoys can be used to deny critical information to adversaries making

it harder for them to achieve their target goal.

In summary, this dissertation includes the following contributions:

• A novel set of generally applicable properties are proposed to guide the design and

deployment of decoys and maximize the deception they induce for different classes of

insiders who vary by their level of knowledge and sophistication.

• A large-scale automated creation and management system for deploying decoys that

can indicate malicious insider activity. This provides a means for ordinary users to

deploy decoy documents without having to setup sophisticated honeypot systems and

sensors.

17

• The use of the decoy properties to measure the success of the proposed decoy systems.

In particular, we focus on the two most important properties of decoys – believability

and detectability – for metrics on which the systems are evaluated.

• A novel architecture based on a “record, modify, replay” paradigm to automatically

generate large quantities of decoy traffic that are injected into the network. The

system continuously regenerates decoys to prevent an adversary from learning how to

recognize bait over time. We analyze the believability of the generated traffic with

human judges and present results from field experiments. We provide a statistical

analysis to show the believability of the traffic when automated tools are used.

• A novel approach for malware detection that relies on the use of decoy injection

whereby bogus information is used to bait and delude information stealing malware,

forcing it to reveal itself during the exfiltration or exploitation of the monitored in-

formation. We demonstrate the believability of the simulations experimentally with

human judges and statistical means. We show malware can be detected with various

types of web and financial decoys.

• A novel approach to measuring an organization’s security posture using decoys that

demonstrates an expanded role of decoys for providing utility in measuring security

and trapping user mistakes for educational purposes.

1.2 Dissertation Organization

This dissertation lays out a design for host and network deception infrastructure and is

organized as follows. In Chapter 2, we survey work related to each of the contribution

areas. Chapter 3 introduces a core set of properties which are used as design goals in

the systems described in the following chapters. Chapters 5 and 6 describe proposed

systems to demonstrate these properties. The systems are designed to enable the automatic

generation and injection of network and host decoys. As part of these chapters, results

are presented that attest to the believability of the generated decoys and their ability to

detect attackers. Chapter 7 discusses an expanded role for decoys for educating users and

18

measuring organizational security. Chapter 8 concludes this dissertation with a summary

of results and contributions.

19

Part I

Related Work and Decoy

Properties

20

Chapter 2

Related Work

The use of deception, or decoys, plays a valuable role in the protection of systems, networks,

and information. The first use of decoys (i.e., in the cyber domain) has been credited to

Cliff Stoll [Yuill et al., 2004; Spitzner, 2003b] and detailed in [Stoll, 1988], where he provides

a thorough account of his crusade to catch German hackers breaking into Lawrence Berkeley

Laboratory computer systems. Stoll’s methods included the use of bogus networks, systems,

and documents to gather intelligence on the German attackers who were apparently seeking

state secrets. Among the many techniques waged, he crafted “bait” files, or in his case,

bogus classified documents that really contained non-sensitive government information and

attached “alarms” to them so that he would know if anyone accessed at them. To Stoll’s

credit, a German hacker was eventually caught and it was found that he had been selling

secrets to the KGB.

2.1 Decoy Properties

In this proposal, a set of generally applicable decoy properties are introduced to guide the

design of decoys and maximize the deception they induce for different classes of insiders

who vary by their level of knowledge and sophistication. Bell and Whaley [Bell and Whaley,

1982] have described the structure of deception as a process of hiding the real and showing

showing the false. They introduce several methods of hiding that include masking, repack-

aging, and dazzling, along with three methods of showing that include mimicking, inventing,

21

and decoying. Yuill et al. [Yuill et al., 2006] expand upon this work and characterize decep-

tive hiding in terms of how it defeats an adversary’s discovery process. They describe an

adversary’s discovery process as taking three forms: direct observation, investigation based

on evidence, and learning from other people or agents. Their work offers a process model

for creating deceptive hiding techniques based on how they defeat an adversary’s discovery

process.

2.2 Decoy Documents

The decoy documents introduced in this dissertation utilize similar deception mechanisms

as well as beacons to signal a remote detect and alert in real-time time when a decoy has

been opened. Web bugs are a class of silent embedded tokens which have been used to

track usage habits of web or email users [McRae and Vaughn, 2007]. Unfortunately, they

have been most closely associated with unscrupulous operators, such as spammers, virus

writers, and spyware authors who have used them to violate users privacy. Typically they

will be embedded in the HTML portion of an email message as a non-visible white on white

image, but they have also been demonstrated in other forms such as Microsoft Word, Excel,

and PowerPoint documents [Smith, 2000]. When rendered as HTML, a web bug triggers

a server update which allows the sender to note when and where the web bug was viewed.

Animated images allow the senders to monitor how long the message was displayed. The

web bugs operate without alerting the user of the tracking mechanisms. The advantage for

legitimate advertisers is that this allows them to monitor advertisement effectiveness, while

privacy advocates worry that this technology can be misused to spy on users’ habits. Our

work leverages the same ideas, but extends them to other document classes and is more

sophisticated in the methods used to draw attention. In addition, our targets are insiders

who should have no expectation of privacy on a system they violate.

2.3 Decoy Networking

The goal of our work is to design a system for generating network traps as a means of

proactive defense against snoopers. Traffic generation has long been studied for a variety

22

of tasks that include traffic engineering [Medina et al., 2002] (e.g., load balancing, routing

protocols configuration), network simulation, emulation [Vahdat et al., 2002], and many

more. To support these applications, many software tools have been created ranging from

customizable packet generators, such as Hping [Hping,] and Scapy [Scapy,], to large-scale

network emulators such as ModelNet [Vahdat et al., 2002]. Other tools, including Swing

[Vishwanath and Vahdat, 2009], focus solely on traffic generation, but with the end goal

of realistic TCP/IP or UDP values and statistically accurate timing measures. Similarly,

Harpoon [Sommers and Barford, 2004] is a traffic generation tool for creating packet flows

with byte, packet, temporal, and spatial characteristics that match those from existing

netflow or packet trace data. Although the goals of realistic TCP/IP values overlap with

ours, generating believable decoys additionally requires realistic application-layer content.

The requirements of which vary from those of the preceding traffic generation efforts, adding

to the novelty of our research.

Deception-based information resources that have no production value other than to at-

tract and detect adversaries (like those used by Stoll) are commonly known as honeypots.

Honeypots serve as effective tools for profiling attacker behavior and to gather intelligence

for understanding how attackers operate. Honeypots are considered to have low false posi-

tive rates since they are designed to capture only malicious attackers, except for perhaps an

occasional mistake by innocent users. Spitzner described how honeypots can be useful for

detecting insider attacks [Spitzner, 2003a], in addition to the common external threats for

which they are traditionally known. He discusses the use of honeytokens, which he defines

as “a honeypot that is not a computer” [Spitzner, 2003b], citing examples that include

bogus medical records, credit card numbers, and credentials, with descriptions of how they

can be used to detect malicious insiders. Oudot [Oudot, 2004] gave a simple example of

how honeypots can be used on wireless networks, but in this case, all of the sessions are

the same, making them trivial to avoid. Grundschober [Grundschober and Dacier, 1998]

created a sniffer detector for wired networks that relied on simple scripts to create telnet

and ftp sessions with bait information, however no attention was given to the believability

of the sessions, making them easy to avoid. More importantly, the detector relied on a net-

work intrusion detection system to detect decoy misuse on the network rather than misuse

23

at the application layer, as we do; the benefits of which are discussed in Section 4.2.

Currently, the decoy/honeytoken creation is a laborious and manual process requiring

large amounts of administrator intervention. In contrast, we have devised a system that

automatically generates and disseminates, continuously, decoy information (of various dif-

ferent types) throughout an operational network to create indistinguishable honeyflows.

Indeed, it is the indistinguishability of our honeyflows, the volume at which they can be

produced, and the non-interference with real flows that makes our work novel.

2.4 Host-based Decoys

Deception-based information resources that have no production value other than to attract

and detect adversaries are commonly known as honeypots. Honeypots serve as effective

tools for profiling attacker behavior and to gather intelligence to understand how attackers

operate. They are considered to have low false positive rates since they are designed to

capture only malicious attackers, except for perhaps an occasional mistake by innocent

users. Spitzner discusses the use of honeytokens [Spitzner, 2003b], which he defines as “a

honeypot that is not a computer,” citing examples that include bogus medical records,

credit card numbers, and credentials. Our work harnesses the honeytoken concept to detect

crimeware that may otherwise go undetected.

Injecting human input to detect malware has been shown to be useful by Borders et al.

[Borders et al., 2006] with their Siren system. The aim of Siren is to thwart malware that

attempts to blend in with normal user activity to avoid anomaly detection systems. How-

ever, detection is performed by manually injecting human input to generate a sequence of

network requests and observing the resulting network traffic to identify differences from the

known sequences of requests; deviations are flagged as malicious. Expanding upon Siren,

Chandrasekaran et al. [Chandrasekaran et al., 2007], developed a system to randomize gen-

erated human input to foil potential analysis techniques that may be employed by malware.

The work by Holz et al. [Holz et al., 2009] to investigate keyloggers and dropzones, relied

on executing maleware in CWSandbox [Willems et al., 2007] and automating user input

24

with AutoIt 1. However, it was limited to ad hoc scenarios designed for the sole purpose

of detecting harvesting channels. Their approach depends on miss-configured and insecure

dropzone servers to learn about what sort of information is being stolen. While this ef-

fort did reveal interesting details about stolen information, it is limited by law and skill

of the attackers (i.e., they can just secure their dropzone servers). In addition, relying on

simulator software that resides within the host, such as AutoIt, provides attackers with a

simple means to detect and avoid it. In contrast to these systems, BotSwindler is difficult

to detect, automatically injects input designed to be believable, relies on monitored decoy

credentials for detection, and provides a platform to convince malware that it has captured

legitimate credentials.

Taint analysis is another technique that has been used to detect credential stealing

malware. Egele et al. [Egele et al., 2007] used taint analysis to track information as it

is processed by the web browser and loaded in to browser helper objects (BHOs). Their

approach allows for a human analyst to observe where information is being sent in offline

analysis. Similarly, Yin et al. [Yin et al., 2007] built Panorama, a taint tracking system that

extends beyond BHOs to handle tracking throughout multiple processes, memory swapping,

and disks. These systems may work well to track information in a system, but they do

so with large overhead (factor of 10-20 slowdown in the systems described) or contain

components that reside on the guest [Yin et al., 2007]; both these features that can be

detected by malware and used for evasion purposes.

BotSwindler injects monitored bait into VM-based hosts by simulating user activity that

is of interest to crimeware. The simulation is performed on the native OS outside of the

VM to minimize artifacts that could be used to tip-off resident malicious software. To keep

track of the simulation state within the virtual environment, our approach relies on a form

of virtual machine introspection (VMI), a concept proposed by Garfinkel et al.[Garfinkel

and Rosenblum, 2003] to describe the act of inspecting a virtual machine’s software from

outside the virtual environment. The challenge of VMI lies in overcoming the semantic gap

[Chen and Noble, 2001] between the two levels of abstraction represented by the VM and the

underlying service or OS. Garfinkel et al. focused on inspecting memory, registers, device

1http://www.autoitscript.com

25

http://www.autoitscript.com

state, and other process related information to implement an attack resistant host-based

IDS for VMs whereby the IDS is located outside of the guest in the virtual machine monitor

(VMM). Other VMI implementations include [Jones et al., 2006; Jiang and Wang, 2007;

Srivastava and Giffin, 2008; Payne et al., 2007; Krishnan et al., 2010], but unlike most

of these approaches, we circumvent the semantic gap and rely on artifacts found in the

VMM graphical framebuffer. To the best of our knowledge, we are the first to focus on the

verification of state for user simulations, a challenge with unique requirements.

2.5 Educating Users and Measuring Organizational Security

In Chapter 7, we introduce our system for educating users and measuring organizational

security using decoy emails. Traditional security training classes can be beneficial for or-

ganizations, but they are not enough and there are more effective methods [Kumaraguru

et al., 2007]. Our technique involves testing users’ vulnerability using a variety of decoy

emails; those that fall victim to our phony phishing attacks are informed so that they

may learn and change their behavior. Traditional approaches for training users about the

threat posed by phishing rely on classes and informational warnings. Efforts to raise user

awareness have focused on testing users to demonstrate their vulnerability [New York State

Office of Cyber Security & Critical Infrastructure Coordination, 2005]. Some tools have

been created to support the sending of fake phishing emails for purposes of pen testing and

training[Core Security, 2010; Phishme.com, 2011], but these rely on an administrator to

manually construct and send the emails to targeted individuals. None of these tools focus

on the development of formal metrics for measuring organizational security such that they

can be used for relative comparisons for comparing one organization against another.

26

Chapter 3

Design Goals

In this chapter, we introduce our threat model that defines various levels of attackers that

differ by their level of knowledge and sophistication. We introduce a novel set of gener-

ally applicable properties to guide the design and deployment of decoys and maximize the

deception they induce for different classes of attackers.

3.1 Threat Model - Level of Sophistication of the Attacker

The insider seeks to identify and avoid the decoys and abscond with “real” information. We

broadly define four monotonically increasing levels of insider sophistication and capability.

Some will have tools available to assist in deciding what is a decoy and what is real. Others

will only have their own observations and thoughts.

• Low: Direct observation is the only tool available. The adversary largely depends on

what can be gleaned from a first glance. We strive to defeat this level of adversary

with our beacon documents, even though decoys with embedded beacons may be

distinguished with more advanced tools.

• Medium: A more thorough investigation can be performed by the insider; decisions

based on other, possibly outside evidence, can be made. For example, if a decoy doc-

ument contains a decoy account credential for a particular identity, an adversary may

verify that the particular identity is real or not by querying an external system (such

27

as www.whitepages.com). Such adversaries will require stronger decoy information

possibly corroborated by other sources of evidence.

• High: Access to the most sophisticated tools are available to the attacker (e.g., super

computers, other informed people who have organizational information). The notion

of the “Perfect Decoy” described in the next section may be the only indiscernible

decoy by an adversary of such caliber.

• Highly Privileged: Probably the most dangerous of all is the privileged and highly

sophisticated user. Such attackers might even be aware that the system is baited and

will employ sophisticated tools to try to analyze, disable, and avoid decoys entirely. As

an example of how defeating this level of threat might be possible, consider the analogy

with someone who knows encryption is used (and which encryption algorithm is used),

but still cannot break the system because they do not have knowledge of an easy-to-

change operational parameter (the key). Likewise, just because someone knows that

decoys are used in the system does not mean they should be able to identify them.

This is the principal– coming up with a scheme to satisfy it remains an open problem.

3.2 Decoy Properties

One of the major contributions of this thesis is the identification and formal definition

of core properties of a decoy that will successfully bait inside attackers. We enumerate

various properties and means of measuring these properties that are associated with decoys

to ensure their use will be likely to snare an attacker. These properties serve as goals for

decoys and systems described in later chapters. Although we define the properties in the

context of our decoy documents, they are directly applicable to the rest of the decoys used

throughout this work. We note the differences where they may exist. We introduce the

following notation for these definitions.

Believable1: Capable of eliciting belief or trust; capable of being believed;

appearing true; seeming to be true or authentic.

1For clarity, each property is provided with its definition gleaned from online dictionary sources.

28

A good decoy should make it difficult for an adversary to discern whether they are

looking at a legitimate source or if they are indeed looking at a decoy. We conjecture

that believability of any particular decoy can be measured by adversary’s failure to discern

one from the other. We formalize this by defining a decoy believability experiment. The

experiment is defined for the document space M with the set of decoys D such that D ⊆M

and M −D is the set of authentic documents or credentials.

The Decoy Believability Experiment: Expbelieve
A,D,M

• For any d ∈ D, choose two documents m0,m1 ∈ M such that m0 = d or m1 = d,

and m0 6= m1; that is, one is a decoy we wish to measure the believability of and the

second is chosen at random from the set of authentic documents.

• Adversary A obtains m0,m1 and attempts to choose m̂ ∈ {m0,m1} such that m̂ 6= d,

with an effort bounded by cost c (time, computing power, etc).

• The output of the experiment is 1 if m̂ 6= d and 0 otherwise.

For concreteness, we build upon the definition of “Perfect Secrecy” proposed in the

cryptography community [Katz and Lindell, 2007] and define a “perfect decoy” when:

Pr[Expbelieve
A,D,M = 1] = 1/2

The decoy is chosen in a believability experiment with a probability of 1/2 (the outcome

that would be achieved if the volunteer decided completely at random). That is, a perfect

decoy is one that is completely indistinguishable from one that is not. A benefit of this

definition is that the challenge of showing a decoy to be believable, or not, reduces to the

problem of creating a “distinguisher” that can decide with probability better than 1/2.

In practice, the construction of a “perfect decoy” might be unachievable, especially

through automatic means, but the notion remains important as it provides a goal to strive

for in our design and implementation of systems. For many threat models, it might suffice

to have less than perfectly believable decoys.

We note that the believability property of a decoy may be less important than other

properties defined below since the attacker may have to open the decoy in order to decide

29

whether the document is real or not. The act of opening a document or testing a decoy

may be all that we need to trap an adversary, irrespective of the believability of its content.

Hence, enticing an attacker to open a decoy, say one with a very interesting name, may

be a more effective strategy to detect an attacker than producing a decoy document with

believable content.

This definition introduced the notion of cost as a means of bounding an attackers ability.

Cost may be taken to mean the level of effort, knowledge, or financial means required by

the attacker to achieve success.

Chapters 5.3 and 5.4 demonstrate how believability can be evaluated for decoy network

traffic. Chapters 6.2 and 6.3 demonstrate the evaluation of believability for decoys injected

into hosts.

Enticing: highly attractive and able to arouse hope or desire; “an alluring

prospect”; lure.

Herein lies the issue of how does one measure the extent to which a decoy arouses

desires, how well is it a lure? One obvious way is to create decoys containing information

with monetary value, such as passwords or credit card numbers that have black market

value [Symantec, 2008]. This is the case for some of the decoys used in this work; they are

known to have value in the underground economy making them enticing targets for cyber

criminals.

Enticement also depends upon the attacker’s intent or preference. We define enticing

documents in terms of the likelihood of an adversary’s preference; enticing decoys are those

decoys that are chosen with the same likelihood. More formally, for the document space

M , let P be the set of documents of an adversary’s A preference, where P ⊆M . For some

value ε such that ε > 1/|M |, an enticing document is defined by the probability

Pr[m→M |m ∈ P] > ε

where m→M denotes m is chosen from M. An enticing decoy is then defined for the set

of decoys D, where D ⊆M , such that

Pr[m→M |m ∈ P] = Pr[d→M |d ∈ D]

30

We posit that by defining several general categories of “things” that are of “attacker

interest”, one may compose decoys using terms or words that correspond to desires of the

attacker that are overwhelmingly enticing. For example, if the attacker desires money, any

document that mentions or describes information that provides access to money should be

highly enticing. We believe we can measure frequently occurring (search) terms associated

with major categories of interest (e.g., words or terms drawn from finance, medical informa-

tion, intellectual property) and use these as the constituent words in decoy documents. To

measure the effectiveness of this generative strategy, it should be possible to execute content

searches and count the number of times decoys appear in the top 10 list of displayed doc-

uments. This is a reasonable approach also, to measuring how conspicuous, defined below,

the decoys become based upon the attacker’s searches associated with their interest and

intent.

Conspicuous: easily visible; easily or clearly visible; obvious to the eye or

mind; Attracting attention.

A conspicuous decoy should be easily found or observed. Conspicuous is defined similar

to enticing, but conspicuous documents are found because they are easily observed, whereas

enticing documents are chosen because they are of interest to an attacker. For the document

space M , let V be the set of documents defined by the minimum number of user actions

required to enable their view. We use a subscript to denote the number of user actions

required to view some set of documents. For example, documents that are in view at logon

or on the desktop (requiring zero user actions) are labeled V0, those requiring one user

action are V1, etc. We define a “view”, Vi of a set of documents as a function of a number

of user actions applied to a prior view, Vi−1, hence

Vi = Action(Vi−1) where Vj 6= Vi, j < i

An “Action” may be any command or function that displays files and documents, such as

‘ls’, ‘dir’, ‘search.’ For some value ε such that ε > 0, a conspicuous document, d, is defined

by the probability

31

n∏
i=0

Pr[Vi] > ε

where n is the minimum value where d ∈ Vn. Note if d is on the desktop, V0, Pr[V0] = 1

(i.e., the documents in full view are highly conspicuous).

When a user first logs in, a conspicuous decoy should either be in full view on the

desktop, or viewable after one (targeted) search action. One simple user action is optimal

for a highly conspicuous decoy. Thus, a measure of conspicuousness may be a count of the

number of search actions needed, on average, for a decoy to appear in full view. The decoy

may be stored in the file system anywhere if a simple content-based search locates it in one

step. But, this search act depends upon the query executed by the user. The query can

either be a location (e.g., search for a directory named “TAX” in which the decoy appears)

or a content query (e.g., using Google Desktop Search for documents containing the word

“TAX.”) In either case, if a decoy document appears after one such search, it is conspicuous.

Hence, we may define the set P as all such files that can be found in some number of steps.

But, this depends upon what search terms the attacker uses to query! If the decoy never

appears because the attacker used the wrong search terms, the decoy is not conspicuous.

We posit that the property of enticing is likely the most important property, and a formal

measure to evaluate enticement will generate better decoys. In summary, an enticing decoy

should be conspicuous to be an effective decoy trap.

Detectable; to discover or catch (a person) in the performance of some act: to

detect someone cheating.

Decoys must ensure an alert is generated if they are exploited. Formally, this is defined

for adversary A, document space M , and the set of decoys D such that D ⊆ M . We use

AlertA,d = 1 to denote an alert for d ∈ D. We say d is detectable with probability ε when

Pr[d→M : AlertA,d = 1] ≥ ε

Ideally, ε should be 1. We seek to maximize ε with a strategy of “detection in depth.”

32

We designed the decoy documents with several techniques to provide a good chance of

detecting the malfeasance of an inside attack in real-time.

Chapters 5.2 demonstrate detectability for networking-based decoys. Chapters 6.5

and 4.4 demonstrate the detectability of host-based decoys.

Variability: The range of possible outcomes of a given situation; the quality of

being subject to variation.

Attackers are humans with insider knowledge, even possibly with the knowledge that

decoys are liberally spread throughout an enterprise. Their task is to identify the real

documents from the potentially large cache of decoys. One important property of the set

of decoys is that they are not easily identifiable due to some common invariant information

they all share. A single search or test function would thus easily distinguish the real from the

fake. The decoys thus must be highly varied. We define variable in terms of the likelihood

of being able to decide the believability of a decoy given any known decoy. Formally, we

define perfectly variable for document space M with the set of decoys D such that D ⊆M

where

Pr[d′ → D : Expbelieve
A,D,M,d′ = 1] = 1/2

Observe that, under this definition, an adversary may have access to all N previously

generated decoys with the knowledge they are bogus, but still lack the ability to discern the

N+1st. From a statistical perspective, each decoy is independent and identically distributed.

For the case that an adversary can determine the N+1st decoy only after observing the N

prior decoys, we define this as an N-strong Variant.

Non-interference: Something that does not hinder, obstructs, or impede.

Introducing decoys to an operational system has the potential to interfere with normal

operations in multiple ways. Of primary concern is that decoys may pollute authentic data

so that their legitimate usage becomes hindered by corruption or as a result of confusion by

legitimate users (i.e., they cannot differentiate real from fake). We define non-interference

in terms of the likelihood of legitimate users successfully accessing normal documents after

33

decoys are introduced. We use AccessU,m = 1 to denote the success of a legitimate user U

accessing a normal document m. More formally, for some value ε, the document space M ,

∀m ∈M we define

Pr[AccessU,m = 1] ≥ ε

on a system without decoys. Non-interference is then defined for the set of decoys D such

that D ⊆M and ∀m ∈M we have

Pr[AccessU,m = 1] = Pr[AccessU,m = 1|D]

Although we seek to create decoys to ensnare an inside attacker, a legitimate user whose

data is the subject of an attacker must still be able to identify their own real documents

from the planted decoys. The more enticing or believable a decoy document may be, the

more likely it would be to lead the user to confuse it with a legitimate document they were

looking for. Our goal is to increase believability, conspicuousness, and enticingness while

keeping interference low; Ideally a decoy should be completely non-interfering.

Chapter 5.5 demonstrates the use of this property by measuring the amount of non-

interference in networking-based decoys.

Differentiable: to mark or show a difference in; constitute a difference that

distinguishes; to develop differential characteristics in; to cause differentiation

of in the course of development.

It is important that decoys be “obvious” to the legitimate user to avoid interference,

but “unobvious” to the attacker stealing information. We define this in terms of an inverted

believability experiment, in which the adversary is replaced by a legitimate user. We say a

decoy is differentiable if the legitimate user always succeeds. Formally, we state this for the

document space M with the set of decoys D such that D ⊆M where

Pr[Expbelieve
U,D,M = 1] = 1

How might we easily differentiate a decoy for the legitimate user so that we maintain

“non-interference” with the user’s own actions and legitimate work? This depends on the

34

particular type of decoy. The remote thief who exfiltrates all of a user’s files onto a remote

hard drive may be perplexed by having hundreds of decoys amidst a few real documents;

the thief should not be able to easily differentiate between the two cases. If we store a

hundred decoys for each real document, the thief’s task is daunting; they would need to

test embedded information in the documents to decide what is real and what is not, which

should complicate their end goals. For clarity, decoys should be easily differentiable to the

legitimate user, but not to the attacker without significant effort.

Expiration: the ending of the period of time for which a decoy is valid.

Decoys may become invalid as a result of an attacker identifying it as a decoy, causing

the decoy to fail the believability test. In certain cases, the expiration of decoy may be

represented as a half-life, or the time it takes half of the potential attackers to identify it

has being bogus. In other cases, an expiration of a decoy might be defined at its creation

time by its creator. For example, a bogus account might be created that it is automatically

deactivated after a fixed period of time. Such would be the case for decoy credit cards that

automatically become invalid at some predefined date. Formally, we state this in respect to

the believability and detectability expirations. After the expiration, a decoy either becomes

distinguishable or fails at detection. Formally, for the document space M with the set of

decoys D such that D ⊆M for a given time t and expiration E as:

Pr[Expbelieve
A,D,M = 1] = 1/2 ∧ Pr[d→M : AlertA,d = 1] ≥ ε when t < E

and

Pr[Expbelieve
A,D,M = 1] = 1 ∨ Pr[d→M : AlertA,d = 1] = 0 when t ≥ E

Some of the decoys introduced in Chapter 4 are considered expired after an alert is

triggered. The alert indicates that an attacker has learned the username and password for

the decoy account and that the account has a zero balance. These decoys can be refreshed

by changing the password. In some cases, the refreshing of a decoy may not be possible if

the attacker manages to change the password and block our access.

35

Cost: the price or level of effort required to acquire or produce a particular

decoy.

The construction and deployment of decoys comes at an expense that can be measured

financially or as a level effort required by the legitimate users to create and maintain oper-

ational decoys. This is not to be confused with the cost used in the believability definition,

which is the cost the attacker must pay to be able to distinguish a decoy. The cost of a

decoy system largely depends on its scale and each of the properties.

3.3 Design Goals Summary

We have introduced a novel set of properties to guide in the design of decoy systems.

It remains an open problem to prove the completeness or incompleteness of this set. The

remainder of this dissertation focuses on the use of these properties in designing decoy-based

systems. In particular, we focus on the two most important properties – detectability and

believability. Chapters 5.3 and 5.4 focus on evaluating the believability of decoy network

traffic. Chapters 6.2 and 6.3 focus on evaluating the believability decoys injected into

hosts. Chapters 5.2 demonstrate detectability for networking-based decoys. Chapters 6.5

and 4.4 demonstrate the detectability of host-based decoys. The remaining properties are

important, but we do not necessarily demonstrate them through experimental analysis

except where it is appropriate. In many cases, their proof is trivial and we focus on their

applicability.

36

Part II

Decoy Systems

37

Chapter 4

Design and Generation of Decoys

One of the core systems of this dissertation is the Decoy Document Distributor (D3) System,

a web-based service for generating, distributing, and monitoring decoys. D3 can be used by

registered users to generate decoys for download, or as a decoy data source for the host and

network components. To achieve the goal of wide spread distribution of decoys a variety

of methods are considered to trap potential attackers with varying levels of sophistication.

The contributions of this system include:

• A large-scale automated creation and management system for deploying decoys that

can detect the presence (and, in some cases, “identity”) of malicious insiders, or at

least indicate malicious insider activity. This provides a means for ordinary users to

deploy honey documents without having to setup sophisticated honeypot systems and

sensors.

• An offensive trap-based defense system is proposed to detect masqueraders and traitors,

and to flood attackers with bogus exfiltrated information that they must analyze in

order to find real information of value. Hence, our long term goal is to flood the

miscreant marketplace with bogus information devaluing their quarry.

• A design of decoy information that combines a number of methods and monitors, both

internal and external, to detect insider exploitation using a common and ubiquitous

set of baited targets, ordinary looking documents.

38

1. A watermark is embedded in the binary format of the document file to detect

when the decoy is loaded in memory, or egressed in the open over a network.

2. A “beacon” is embedded in the decoy document that signals a remote web site

upon opening of the document indicating the malfeasance of an insider illicitly

reading bait information.

3. If these methods fail to detect an insider attack or an exfiltration of baited

documents, the content of the documents contain bait and decoy information

that is monitored as well. Bogus logins at multiple organizations as well as

bogus and realistic bank information is monitored by external means.

• An easy to use system to broadly deploy decoys to ordinary users who are alerted by

email when a decoy has been touched on their laptops and personal computers; no

such system presently exists.

• Various monitors for detecting the (mis)use of Gmail, Payal, Bank, and university

bait credentials.

4.1 Decoy Documents

The primary goal of the trap based defense is to detect malfeasance. Since no system is

foolproof, we propose that multiple overlapping signals be embedded in the decoy documents

to ensure detectability. Any alert generated by the multiple decoys is an indicator that some

insider activity has occurred. Since the attacker may have varying levels of sophistication, a

combination of traps are used in decoy documents to increase the likelihood one will succeed

in generating an alert. A sophisticated attacker may, for example, disable the internal

beacon, or cut off network connections avoiding communication, disable or kill local host

monitoring processes, or they may exfiltrate documents via a web-browser without opening

them locally. The documents are designed with several means of detecting their misuse:

• embedded honeytokens, computer login accounts created that provide no access to

valuable resources, and that are monitored when (mis)used;

39

• embedded honeytoken banking login accounts specifically created and monitored for

this trap-based technology demonstration specifically to entice financially motivated

attackers;

• a network-level egress monitor that alerts whenever a marker, specially planted in the

decoy document, is detected. Snort may be used as simple signature detector;

• a host-based monitor that alerts whenever a decoy document is “touched” in the file

system such as a copy operation;

• an embedded “beacon” alerts a remote server at a site at Columbia and recorded on

D3. The web site emits an email to the registered user who created and downloaded

the decoy document.

The implementation of features are described below.

4.1.1 Honeytokens

This layer of defense is made up of “bait” information such as online banking logins pro-

vided by a collaborating financial institution, credit card numbers, login accounts for online

servers, and web based email accounts. The primary requirement for bait is that it be de-

tectable when (mis)used. The various types of information used are discussed in a Chapter

4.2.

4.1.2 Beacon Implementation

The highly sophisticated attacker will likely attempt to differentiate between a real docu-

ment and a decoy by analyzing the binary file format prior to opening a file. This necessitates

a design where beacon code and watermarks in decoy documents are hidden to avoid their

easy identification. The attacker would surely avoid the decoys if they could easily identify

them by a simple static test for an embedded beacon. The beacon code can be embedded

in documents in a number of ways and made to appear statistically equivalent to its sur-

rounding data using a blending technique called “spectrum shaping” (see [Song et al., 2007;

Detristan et al., 2003]). Such obfuscation techniques are very hard to defeat [Li et al., 2007].

40

Using common techniques developed for malware, beacons attempt to silently contact

a centralized server with a unique token embedded within the document at creation time.

The token is used to identify the decoy and document, the IP address of the host access-

ing the decoy document. Depending on the particular document type and the rendering

environment used during viewing of the beacon document, some additional data may be

collected.

The first proof-of-concept beacons have been implemented in MS Word and PDF and

deployed through the D3 system. In the case of the MS Word document beacons, the

examples rely on a stealthily embedded remote image that is rendered when the document

is opened. The request for the remote image is a positive indication the document has

been opened. In the case of PDF document beacons, the signaling mechanism relies on the

execution of Javascript within the document. The D3 site includes a tutorial guiding the

user on how to generate, download, and enable the decoys’ silent communication on hosts.

It is important to point out that there are methods for disabling the beacon mechanism. In

Section 4.2.3, we provide an evaluation of beacon robustness.

4.1.3 Embedded Marker implementation

Beacon documents contain embedded markers that a host or network sensor may detect

either when documents are loaded in memory or transmitted in the clear. The markers

are constructed as a unique pattern of word tokens uniquely tied to the document creator.

The sequence of word tokens is embedded within the beacon document’s meta-data area or

reformatted as comments within the document format structure. Both locations are ideal

for embedding markers since most rendering programs ignore these parts of the document.

The embedded markers can be used in Snort signatures for detecting exfiltration.

4.2 Trap-based Decoys

Our trap-based decoys are detectable outside of a host by external monitors, so they do not

require host monitoring nor do they suffer the performance burden characteristic of decoys

that require constant internal monitoring (such as those used for taint analysis). They are

41

made up of bait information including online banking logins provided by a collaborating

financial institution, login accounts for online servers, and web based email accounts. For

the experiments in this thesis, we focused on the use of decoy Gmail credentials, PayPal

credentials, and banking credentials. These were chosen because they are widely used and

known to have underground economy value [Symantec, 2008; Holz et al., 2009], making

them alluring targets for crimeware, yet inexpensive for us to create. The banking logins

are provided to us by a collaborating financial institution. As part of the collaboration,

we receive daily reports showing the IP addresses and timestamps for all accesses to the

accounts at any time.

The decoy PayPal and bank accounts have an added bonus that allows us to expose

the credentials without having to be concerned about an attacker changing their password.

PayPal requires multi-factor authentication to change the passwords on an account. Yet, we

do not reveal all of the attributes of an account making it difficult for an attacker to change

the authentication credentials. For the banking logins, we have the ability to manage the

usernames and passwords.

Custom monitors for PayPal and Gmail accounts were developed to leverage internal

features of the services that provide the time of last login, and in the case of Gmail accounts,

the IP address of the last login. In the case of PayPal, the monitor logs into the decoy

accounts every hour to check the PayPal recorded last login. If the delta between actual

and expected times is greater than 75 seconds, the monitor triggers an alert for the account

and notifies us by email. The 75 second threshold was chosen because PayPal reports the

time to a resolution of minutes rather than seconds. The choice as to what time interval to

use and how frequently to poll presents significant tradeoffs that we analyze in Chapter 4.2.1.

In the case of the Gmail accounts, custom scripts access mail.google.com to parse the

bait account pages, gathering account activity information. The information includes the

IP addresses for the previous 5 account accesses and the time. If there is any activity from

IP addresses other than the monitor’s host IP, an alert is triggered with the time and IP

of the offending host. Alerts are also triggered when the monitor cannot login to the bait

account. In this case, we conclude that the account password was stolen (unless monitoring

resumes) and maliciously changed unless other corroborating information (like a network

42

mail.google.com

outage) can be used to convince otherwise.

We also introduce a type of decoy that we refer to as a one-time decoy. One-time

decoys function by revealing themselves as a side-effect of revealing an attacker and become

immediately expired. An example of a “one-time decoy” is a bogus and invalid username

and password combination that is indistinguishable from one that is real, except when it

is used. An attacker is forced to test the credential in order to distinguish and validate it.

Upon testing the decoy credential and learning the password is bogus, the decoy reveals

itself as being fake; however, the act of testing, results in the attacker revealing himself.

We also employ beaconed decoy documents as an another type of decoy. Beacon decoys

are implemented to silently contact a centralized server when a document is opened, passing

to the server a unique token that was embedded within the document at creation time. The

token is used to uniquely identify the decoy document and its association to the network

location of the host accessing the decoy document. In addition to passing the token and

IP address, extra data are collected that depend on the particular document type, and

rendering environment, used while viewing the beacon document. In the case of the MS

Word document beacons, the examples rely on a stealthily embedded remote image that

is rendered when the document is opened. The request for the remote image is a positive

indication the document has been opened. Similarly, in the case of PDF document beacons,

the signaling mechanism relies on the execution of Javascript within the document.

4.2.1 PayPal Decoy Analysis

The PayPal monitor relies on the time differences recorded by the monitoring server and the

PayPal service for a user’s last login. The last login time displayed by the PayPal service is

presented with a granularity of minutes. This imposes the constraint that we must allow for

at least one minute of time between the PayPal monitor, which operates with a granularity

of seconds, and the PayPal service times. In addition, we have observed that there are slight

deviations between the times that can likely be attributed to time synchronization issues

and latency in the PayPal login process. Hence, it is useful to add additional time to the

threshold used for triggering alerts (we make it longer than the minimum resolution of one

minute).

43

Table 4.1: PayPal decoy false negative likelihoods.

Polling Frequency False Negative Rate

.5 hour .0417

1 hour .0208

24 hour .0009

Another parameter that influences the detection rate is the frequency at which the

monitor polls the PayPal service. Unfortunately, it is only possible to obtain the last login

time from the PayPal service, so we are limited to detecting a single attack between polling

intervals. Hence, the more frequent the polling, the greater the number of attacks on a single

account that we can detect and the quicker an alert can be generated after an account has

been exploited. However, the fact that we must allow for a minimum of one minute between

the PayPal last login time and the monitor’s, implies we must consider a significant tradeoff.

The more frequent the polling, the greater the likelihood for false negatives due to the one

minute window. In particular, the likelihood of a false negative is:

PFN =
Length of window

Polling interval

Table 4.1 provides examples of false negative likelihoods for different polling frequencies

using a 75 second threshold. These rates assume only a single attack per polling interval.

We rely on a 75 second threshold because it was experimentally determined that it exhibits

no false positives. This was determined by monitoring the accounts for five days prior to

additional experiments. For the experiments described in Chapter 6.5, we use the 1 hour

polling frequency because we believe it provides an adequate balance (the false negative

rate is low enough and the alerts are generated quickly enough).

4.2.2 Gmail Decoy Analysis

Table 4.2 lists the counts for login errors obtained by the decoy account monitors over

a 5-month period for a selection of the Gmail decoy identities we have. This study was

44

Table 4.2: False alerts for Gmail Decoys over a 5-month period (based on 36,000 login

attempts).

ID Login Errors Error Rate

1 136 .00377

2 140 .00388

3 133 .00369

4 132 .00367

5 136 .00377

conducted on decoys before the bait injection system was constructed to measure false

positives associated with the monitoring infrastructure alone. For these measurements, we

count login errors as false positives because sometimes we cannot discern whether they are

due to account exploit in which the password has been changed, or if they were caused by

something benign, like a network failure. Most of the time the login errors occur for all

of the decoys simultaneously and we can be reasonably assured that the problem is due

to an infrastructure hiccup. However, on rare occasions we get errors for accounts on an

individual basis (hence, the different numbers). When alerts are generated individually,

we cannot immediately make the determination as to whether it is a true or false positive.

Resolving the true source of these errors requires waiting to see if account access resumes,

which typically happens within minutes. If it does not, one can be reasonably certain that

the account has been compromised.

4.2.3 Beacon Implementation Tests

To test the robustness of the beacon implementations we tested them with the most common

configurations of operating systems and document viewers. To this end, we contacted a

random group of users across the Internet and sent them each two types of beacon documents

along with a request that they open them as part of a benign experiment. The results of

tests conducted on PDF and Word beacons are presented in Table 4.3 and 4.4 below.

These results are a representative sample of real users across multiple hosts accessing the

45

Table 4.3: PDF Beacon Test Results

OS Application #Tests #Pings

Windows XP Adobe 6 6

Windows Vista Adobe 4 4

Mac OS Preview 1 0

Mac OS Adobe 1 1

Ubuntu Evince 1 0

Table 4.4: Word Beacon Test Results

OS Application #Tests #Pings

Windows XP Word 5 4

Windows XP GoogleDocs 1 0

Windows Vista Adobe 4 4

Mac OS Word 2 2

Linux OpenOffice 1 0

beacon documents. For the most part the beacon technology works well on the windows

platform while not as well on Mac and Linux operating systems. The reason is that the

default PDF reader is not Adobe’s and does not execute Javascript embedded within the

documents. Similarly, Word document beacons do not work when applications other than

Microsoft Word (e.g., OpenOffice or Google Docs) are used to open them. We are currently

researching ways to address these limitations and will focus on them in future work.

4.3 Perfectly Believable Decoys

As described in Chapter 3, a good decoy should make it difficult for an adversary to discern

whether they are looking at an authentic document from a legitimate source or if they are

looking at a decoy. We define a “perfect decoy” to be a decoy that is completely indistin-

guishable from one that is not. One approach we use in creating decoys relies on a document

marking scheme in which all documents contain embedded markings such that decoys are

46

tagged with HMACs (i.e., a keyed cryptographic hash function) and non-decoys are tagged

with indistinguishable randomness. Here, the challenge of distinguishing decoys reduces to

the problem of distinguishing between pseudorandom and random numbers, a task proven

to be computationally infeasible under certain assumptions about the pseudorandom gener-

ation process. Hence, we claim these to be examples of perfect decoys and the only attacker

capable of distinguishing them is one with the key, perhaps the highly privileged insider.

As a prototype perfect decoy implementation, we built a component into D3 for adding

HMAC markers into PDF documents. Markers are added automatically using the iText

API, and inserted into the OCProperties section of the document. The OCProperties

section was chosen because it can be modified on any PDF without impact on how the

document is rendered, and without introduction of visual artifacts. The HMAC value itself

is created using a vector of words extracted from the content of the PDF. The HMAC key

is kept secret and managed by D3, where it is also associated with a particular registered

host. Since the system depends on all documents being tagged, another component inserts

random decoy markers in non-decoy documents, making them indistinguishable from decoys

without knowledge of the secret key.

4.3.1 Detecting Perfectly Believable Decoys

The second host sensor also detects malicious activity by monitoring user actions directed

at HMAC-embedded decoy documents. Any action directed toward a decoy is suggestive

of malicious activity. When a decoy document is accessed by any application or process,

the host sensor initiates a verification function. The verification function is responsible for

differentiating between decoys and normal documents by computing a decoy HMAC for the

particular document in question and comparing it to the one embedded in the OCProperties

section of the document. If there is a match, the document is deemed a decoy and an alert

is triggered; otherwise, the document is deemed normal and no action is taken.

The host sensor performs tasks similar to antivirus programs. In evaluating the perfor-

mance of the sensor, we use overhead comparisons of antivirus programs as a benchmark,

since the task of comparing an HMAC code is not substantially different from testing for

an embedded virus signature. Hence, accuracy performance is not relevant for this par-

47

ticular detector. However, there is a fundamental difference between the task of detecting

malware and that of detecting decoy activity. Antivirus programs are designed to prevent

the execution of and quarantine malicious software whenever any process is initiated. In

decoy detection the objective is merely to trigger an alert when a decoy file is loaded into

memory. Thus, the decoy detection need not serialize execution; for example, it may be

executed asynchronously (and in parallel by running on multiple cores).

We have tested the decoy host sensor on a Windows XP machine. A total of 108 decoy

PDF documents generated through D3 were embedded in the local file system. Markers

containing randomness in place of HMACs were embedded in another 2,000 normal PDF

files on the local system. Any attempt to load a decoy file in memory was recorded by the

sensor including content or metadata modification, as well as any attempt to print, zip, or

unzip the file.

The sensor detects the loading of decoy files in memory with 100% accuracy by validat-

ing the HMAC value in the PDF files. However, as we discovered during our validation tests,

decoy tests can be susceptible to non-negligible false positive rates. The problem encoun-

tered in our testing was created by antivirus scans of the filesystem. The file accesses of the

scanning process that touched a large number of files, resulted in the generation of spurious

decoy alerts. Although we are engineering a solution to this particular problem by ignoring

automatic antivirus scans, our test does highlight the challenges faced by such monitoring

systems. There are many applications on a system that access files indiscriminately for

legitimate reasons. Care must be taken to ensure that only (illicit) human activity triggers

alerts. As a future improvement to the sensor, file touches not triggered by user-initiated

actions, but rather caused by routine processes, such as antivirus scanners or backup pro-

cesses may be filtered. Nevertheless, this demonstrates a fundamental design challenge to

architect a security system with potentially interfering competing monitors.

With regard to the resource consumption of the sensor, the components of the sensor

used an average 20 KB of memory during our testing, a negligible amount. When performing

tests such as the zipping or copying of 50 files, the file access time overhead averaged 1.3 sec

on a series of 10 tests, using files with an average size of 33 KB. Based on these numbers, we

assert that our system has minimal performance impact to the system and user experience.

48

4.4 Masquerade detection using Decoy Documents as Bait

We have defined the general properties that decoys should have and discussed how we may

measure these properties, but here we focus on the most important property: detectability.

Under ideal testing conditions, decoy efficacy could be shown through deployment on true

operational systems either within an enterprise environment, or on personal computers, by

the number of attacks they are able to detect or thwart (they have a deterrence effect).

However, given reasonable time limits, the infrequency of attacks within the insider threat

model makes this approach impractical within a university environment. As we mentioned

we are now seeking a larger user population to study and measure decoy generation over

time.

Another approach to evaluation is a user study in which users are organized and asked

to evaluate decoys based on each of the key decoy properties mentioned earlier. We take

human evaluation to be the gold standard of evaluation since the human mind is the ultimate

target of our decoys. That is, we wish to show how well our decoys can induce deception on

human test subjects. One of the challenges of conducting a traditional user study lies in the

logistics of obtaining volunteers. In our methodology, we attempt to reduce this challenge by

leveraging external attackers to serve as participants in our study on masquerade detection.

To do so, we “invite” attackers (or more accurately, bamboozle them) into our study by

attracting them with a set of vulnerable systems on the university network, which also serve

as our testing platform.

4.4.1 Experimental Setup

Our test platform was setup within a honeynet [The Honeynet Project, 2010]. It consisted of

several virtual machines running Linux and configured with Sebek [The Honeynet Project,

2003] to capture attacker activities including commands and file references. In order to

limit potential damage from system compromise and still allow for testing, we configured

the honeynet to allow all incoming connections while restricting the number of outgoing

connections.

The virtual machine hosts within the honeynet were configured with accounts and home

49

directories for three decoy usernames. To make the environment as real as possible, genuine

data from personal accounts on other systems were loaded into each of the home directories.

We changed name references within the data to reflect those of the appropriate decoy users.

In total, our phony user accounts contained 15 or more directories and 50-100 files. The

hosts were then seeded with several of D3’s decoy files using the decoy distributor utility.

The decoy files were generated to have conspicuous names such as “stolen passwords”,

“credit card”, “private data”, and “Gmail AccountInfo”, but were distributed within the

polluted home directories of the decoy accounts, making the environment as real as possible.

To lure test subjects into the study, our initial approach was to use attackers that

attempt to gain internal access via password scanning. Password scanning attacks are

common on the university network, where attempts on a typical machine are in the range of

thousands per day. To enable attacker access, we conducted a short study to first determine

the most common usernames and passwords (excluding those for root and actual users) used

in these attempts. We created accounts with several of these usernames and passwords, to

quickly learn that this breed of attacker was not going to suffice for our user study; their

sole purpose seemed confined to creating zombies for botnets. While this may be a valid

threat to study while evaluating decoys, allowing bots to operate on the university network

poses too much risk.

In our second and more aggressive approach, we narrowed our recruitment effort to

web forums and IRC channels with the expectation and hope that we would get fewer at-

tacks involving botnets. In this approach, we selected several high volume forums to solicit

volunteers and posted variations of invitations with messages that included hostnames, user-

names, and passwords. The idea was to provide just enough innocent-looking information

from a novice to lure people into our machines without providing direct evidence that we

were conducting a deception-based experiment.

While our methodology could, in theory, provide anyone with access to our test platform,

by selectively choosing the location of postings and contents postings, we expected to recruit

two primary classes of individuals:

• Legitimate and generally curious computer-savvy individuals. These users have no

interest in extending privileges in an unauthorized way, but participate in the study

50

out of curiosity, as there is no other incentive.

• Unscrupulous opportunistic hackers who attempt to extend their network access by

whatever means afforded to them. These individuals are enticed by our posting as

they see our machines as low “hanging fruit” in their targeting campaign.

In either case, we believe these individuals to be suitable candidates for our study (with

one caveat mentioned later). Both classes of individuals can be used in measuring the

enticement property of decoys. We measure this by examining the behavior exhibited in

file access, both with respect to the particular files a user attempts to read and in the order

in which the files are read. For example, if all users consistently read the same file first, we

know the file must indeed be enticing.

In regards to indistinguishability of the decoys, we note that the content of these decoys

contains bait information in the form of monitored credentials on real systems. Certainly,

if our attackers take the time to use the decoy credentials, there is an implication that

they must also be believable. More importantly though, if they use the credentials and we

detect their use, we have also answered the most important question of – can we detect the

attacker? Note that the first class of the individuals is by definition, not useful for this part

of the study. That is, attempting to use credentials found on our machines is clearly an

illicit activity, which they would not partake in. Unfortunately, we do not have a good way

of distinguishing the two classes, so we get slightly skewed results.

4.4.2 Experimental Results

Over the span of the first week1, our hosts netted 20 unique users, determined anecdotally

by source IP address and reinforced by the unique behaviors exhibited by each. The length

of user sessions ranged from minutes to hours. The users that spent hours were focused on

activities that included writing code and attempting to install other software, presumably

with malicious intent. The most common activities exhibited for users upon login included

activities such as: determining who else was on the machine, checking and deleting the

command history, and exploring the system (i.e., reading the most conspicuous files). We

1Most attacks occurred within the first 8-hour period after posting.

51

note that in almost all cases, our decoys were among the first few files viewed by users

upon initial login (as noted, viewing the history file was also popular). The most significant

observations were made for 6 of the 20 unique users:

1. There were three attempts to use Gmail credentials that were contained in a decoy

document, which triggered an alert on D3.

2. One attacker changed the password on a bogus Gmail account, which also triggered

a D3 alert.

3. There were at least two attempts to exfiltrate decoy files (with scp and sftp; one file,

named “stolenpasswords”, contained credentials to the university systems.

4. There was one attempt to use the university credentials contained in the “stolen-

password” file, which we were alerted to by the monitor that signaled an alert to

D3.

We take these results as evidence that D3 indeed has value as a defense against masquer-

aders. While only 5 of the 20 users sounded an alarm on D3, we emphasize that our method-

ology did include an unknown proportion of benign users. Furthermore, the focus of study

was on masquerade detection; admittedly, we do not yet have a good way of evaluating our

system on traitors, but this will be the focus of future work.

One flaw in our evaluation methodology that was revealed during testing was that we

allowed users to make changes to the file system. We did this deliberately to increase

the realism of the environment in the experiments. The problem this created was that it

made decoy defense vulnerable to deletion (e.g., several of our visitors executed wholesale

deletion of files with “rm -rf *”) . This poses a problem in our testing methodology, but

not necessarily in practice. That is, the act of deleting files is in itself a detectable behavior

that would alert monitors of suspicious behavior.

In this study, we omitted testing decoy documents with embedded beacons. The hon-

eypots set up to attract remote attackers were stripped down Linux machines that had no

installed applications necessary to open and render the decoy documents. In Chapter 4.2.3,

we describe tests of the beacon implementation on multiple hosts.

52

4.5 Design and Generation of Decoys Summary

In summary, although the use of bait information and similar trap-based defenses is well

known, most of those efforts have focused either on artifacts that are logically separate

from the operational systems (e.g., honeypots [Spitzner, 2003a]) or on low-level snippets

of information created manually (e.g., fake database records [Spitzner, 2003b]). The D3

system is a scalable and automated trap-based defensive system that requires attackers to

expend considerable effort to identify realistic useful information from purposely planted

bogus information intended to deceive. Naturally, the probability of exposing a malicious

insider with trap-based defense tactics increases with the amount of decoy information that

is generated and disseminated. D3 offers the novel service of automatically creating and

managing decoy documents, enabling the throttling of bait based on the desired protection

level or cost (e.g., interference) one is willing to pay.

53

Chapter 5

Decoy Networking

In general, there is little that can be done to detect passive eavesdropping on networks.

Some techniques that have been applied to wired networks for detecting snoopers—although

unreliably—are based on DNS behavior or network and machine latency [AntiSniff, 2009].

The problem is only exacerbated with WiFi due to the range of signals and the absence of

physical access barriers. To demonstrate the efficacy of network decoys, this chapter takes

a particular focus to use of decoys on WIFI networks, although the approach is broadly

applicable and can be applied to wired networks.

The ubiquity of wireless networking exposes information to threats that are difficult

to detect and defend against. Even with the latest advances aimed at protecting wireless

networks, compromises still occur that allow sensitive information to be recorded and ab-

sconded. Secure protocols such as WiFi Protected Access 2 (WPA2) can help in preventing

network compromise, but in many cases they are not used for reasons that may include

cost, complexity, or overhead. In fact, the 2008 RSA Wireless Security Survey reported

that only 49% of corporate access points in New York City (NYC) and 48% in London used

advanced security [Cracknell et al., 2008]. To make things worse, only 24% and 19% of the

NYC and London total APs respectively, used a WPA2 variant.

The nature of radio communication makes the problem far more challenging; generally

speaking, these methods are not applicable. We address the problem of eavesdropping and

offer a proactive defense that makes it difficult for snoopers to avoid detection by targeting

the semantic information sought by the attackers rather than network-level observables that

54

has been the focus of previous efforts. We broadly target two types of attackers:

• Insiders, who legitimately have access to a network, but attempt to use it for attaining

illegitimate goals. In the case of shared-key encrypted wireless networks, (e.g., WEP,

and some instances of WPA) malicious insiders may eavesdrop with little difficulty

since they are already within the protective security perimeter. In other cases, there

may simply be no data encryption (e.g., as in many enterprise networks), where the

only barriers to separate the outside are firewalls or some form of physical security,

or with wireless hotspots (whether commercial or free).

• Those that successfully infiltrate the network through attacks at the protocol level [Beck

and Tews, 2009; Bittau et al., 2006], password guessing, router hijacking [Akritidis et

al., 2007; Tsow et al., 2006], or some vulnerability in WiFi security. As a concrete ex-

ample, consider the case of the massive credit card heist that occurred at TJX [Pereira,

2007] in which attackers exploited the vulnerable WEP protocol to gain internal net-

work access. Once inside, attackers eavesdropped undetected, acquired additional

credentials, and eventually stole over 45 million credit cards [McGlasson, 2007].

Our intuition is to confuse, deceive, and detect attackers by leveraging uncertainty. We

achieve this by introducing decoy traffic with enticing information that will, eventually,

cause the eavesdropper to undertake some observable action, such as access a decoy account

using sniffed credentials. Our methodology for building a trap-based network that is de-

signed to maximize the realism of decoy traffic. We propose and demonstrate the utility of a

novel architecture based on a “record, modify, replay” paradigm to automatically generate

large quantities of decoy traffic that are injected into the network. The system continuously

regenerates decoys to prevent an adversary from learning how to recognize bait over time.

Our contribution lies in the automation of decoy generation and injection, which allows the

use of decoys in large volumes.

Our prototype implementation demonstrates the feasibility of this approach on WiFi

networks. However, the methodology is broadly applicable and can be adopted to conven-

tional wired networks. Our proactive defense, which offers a controllable level of protection,

is based on the amount of “bait” traffic one is willing to inject. This amount can be throttled

55

based on a tolerated level of interference, as indicated in Chapter 5.5.

Demonstrating decoy efficacy and accuracy against snoopers requires an indeterminate

amount of time; in Chapter 5.2 we simulate attacks to show that the monitoring works

well and would capture snoopers if they misuse the stolen credentials. This assurance

depends on whether the snooping adversary captures the decoys that are believed to be

real. Hence it is the believability of decoys that is the most important property evaluated

in this work. We posit that the believability of decoy network flows can be measured by

their indistinguishability from what is real and we demonstrate decoy flow believability by

conducting a user study that is analogous to the Turing Test [Turing, 1950]; results are

presented in Chapter 5.3 that testify to decoy realism.

5.1 Platform Implementation

Synthetic network traffic is typically generated to support simulations, or emulations, that

require traffic to be structurally and syntactically correct with respect to protocols. In

contrast, decoy traffic is designed with a fundamentally different goal—to induce deception

on the human viewer. In Chapter 3, we formally defined a core set of properties, including

believability, non interference, detectability, variability, and enticement to guide the cre-

ation of decoys. We used some of these properties to aid the design of our platform and

its evaluation. We posit that achieving the deception goal requires traffic to be believable,

a quality ultimately measured by humans, in addition to the more general requirements of

syntactical and structural correctness. Our system addresses these objectives with an ar-

chitecture comprised of several hardware and software components that have been designed

to support the “record, modify, replay” paradigm for producing honeyflows. This model

produces believable decoys by leveraging human- generated content from recorded flows, as

opposed to relying solely on machine intelligence. The resulting honeyflows contain both

cover and carry traffic; carry traffic contains the decoys, whereas cover traffic includes ev-

erything else to support the believability of carry traffic. The architectural components,

shown in Figure 5.1, include a decoy traffic generator, a distribution platform built on com-

modity hardware, and a set of broadcasters for performing the injection of the various types

56

Figure 5.1: Injection Platform.

of decoys. The implementation details are discussed in the following subsections.

5.1.1 Automated Decoy Traffic Generator

The decoy traffic generator uses the software API that we developed to produce honeyflows

through a multi-step process, as shown in Figure 5.2. The automated process begins by load-

ing recorded network data, which might either be a template containing anonymous trace

data, or ideally, a complete network trace containing authentic traffic—we have specifically

designed the API to handle both types of input due to the ethical and legal issues concerning

the recording of network traffic (see Section 5.6). Within the university environment, we

use the template approach in which sets of protocol-specific templates are manually created

and passed to the API as input. The templates contain traffic of various network protocols

including TCP session samples for protocols used by our decoys. The obvious drawback of

57

Figure 5.2: Honeyflow creation process. Figure 5.3: SMTP Identifiers.

Table 5.1: Rules used to match protocols.

Protocol No. of Identifiers % Required

FTP 14 65%

GMail 7 70%

IMAP 10 40%

POP3 5 80%

SMTP 10 50%

templates is that the diversity and volume of the content is limited, which may subtract

from the realism of the overall generated traffic. However, it is important to note that there

are other environments in which it is legal and common to record traffic (e.g., enterprise

environments). In these environments, it would be advantageous to use live network traces

as a basis for decoy traffic within which decoys can be added.

Once the API obtains an input trace, a new trace is automatically created with decoy

information by following these steps:

1. Each input trace consists of multiple protocols and TCP sessions. We demultiplex

each session/protocol into individual trace files for simpler processing.

2. Configuration information (e.g., decoy information, IP/MAC addresses of emulated

networks) is read from a user specified configuration file.

58

3. Each demultiplexed trace file is passed through protocol-specific traffic identifier func-

tions for the protocols we support (currently Gmail, SMTP, POP, IMAP, FTP, HTTP)

to find the best match. The best match is found using predefined rules that examine

network trace data to determine protocols based on the content of application-layer

headers and protocol status messages. The approach relies on the presence of iden-

tifiers specific for a given protocol. The API can handle identifiers which are both

simple literal strings or complex regular expressions. For example, Figure 5.3 shows

the identifiers we use for the SMTP protocol. To accommodate varying application-

layer protocol implementations, we rely on a percentage of identifiers being present

for each protocol as shown in Table 5.1, rather than all of them. We determined the

percentage by manually observing real traffic from various implementations on a per-

protocol basis. Specifically, for the SMTP identifiers we rely on 80% of the identifiers

being present. If protocol determination does not succeed, the trace is marked as

unknown and the API proceeds to step 6.

4. Identified traces are passed through a protocol modifier function to insert decoy in-

formation. Our API supports rules for adding bait to protocol headers, such as Gmail

cookies and SMTP passwords, and protocol payloads (i.e., email body, web page con-

tent). Additionally, our implementation provides rules for creating several types of

decoys including: Gmail authentication cookies, URLs, passwords for unencrypted

protocols (e.g., SMTP, POP, IMAP), and beaconed documents as email attachments

(see Section 4.2). Moreover, the API can also be used to introduce bait HTTP flows

that contain monitored URLs or handle protocol complexities such as:

(a) Multi-packet editing. If multi-packet editing is required (e.g., insert a decoy file

as attachment into a POP3 trace), we buffer the data in memory. When a

boundary is found (i.e., a protocol status code indicating an end of file), the

modifier function stops buffering and inserts the decoy object. This data is then

written back to the output trace file as multiple packets.

(b) Protocol encoding. The API formats the decoy information appropriately for the

given protocol (e.g., Base64 for POP3 attachments).

59

5. Rules are used for the replacement of MACs and IPs to those from a predefined set to

suit the environment. For example, we select bogus IP addresses that are consistent

with those used inside a wireless cell, so as to avoid breaking the semantics of the

corresponding network topology. Similarly, the IP/MAC pairing is carefully selected

to be persistent throughout multiple bogus sessions.

6. Additional variability and randomness are introduced to the honeyflows using these

techniques:

(a) For identified TCP server protocols the client port is randomly generated. How-

ever, since different clients have different ephemeral port ranges (e.g., FreeBSD

follows the IANA dynamic/private port range, Linux uses the range 32768 to

61000, Solaris uses 32768 through 65535 and so forth), we generate the client

port either based on the bogus host that we simulate (in case the client OS is

important), or by following the IANA dynamic/private port range (when the

client OS is irrelevant).

(b) TCP sequence numbers are modified to be consistent with the size of the newly

generated packets, whereas heuristics are used to modify aspects of content like

names, addresses, and dates so that they match those of the decoy identities.

(c) Parameterization of temporal features (e.g., total flow time, inter-packet time)

that can be extracted from Netflow or packet trace data [Sommers and Barford,

2004] enable the creation of honeyflows that are statistically similar to normal

traffic.

7. OS fingerprint models of p0f [Zalewski, 2006] are used to generate honeyflows that

resemble the host OS. For example, to generate traffic that appears to emanate from

a Linux host, we avoid generating traffic that appears to have come from the MS

Outlook email client.

8. The demultiplexed traces are combined into a single trace, which is then broadcasted

to the environment.

60

5.1.2 Statistically Similar Temporal Features

In cases where real traffic is available, it can be used to build generative models of temporal

features. Modeling real traffic as opposed to Netflow data is beneficial because it allows for

more precise timing models. One approach we have used relies on analyzing TCP sessions to

gather per-session metrics including the total session length, average time between packets,

minimum time between packets, and maximum time between packets. We then use this

information to bound timing models when synthesizing session temporal features. For

example, for a given session, we record the packet times, calculate mean and standard

deviations between packets. We then sample the session to get a distribution of times

relative to the standard deviation. This distribution is used for binning the data. The

size of the bin is parameterized to control its granularity. In Chapter 5.4, we provide an

analysis on how the granularity of the bins influence performance. The distribution of times

relative to the standard deviation and how they are binned become the timing model for a

particular session. In practice, we have found our binning strategy to be sufficient. Other

approaches that rely on the creation of equiprobable bins [Gianvecchio and Wang, 2007]

may also be used 1.

We generate new random packet times using this model as a control for the minimum

and maximum times. This approach allows for an unbounded amount of variability in the

temporal features for synthesized flows. The variability can be controlled by parameters

that determine how closely the generated timing features conform to the session’s timing

distribution. This technique can also be used to control the performance. We provide an

evaluation statistical similarities of the synthesized flows to real flows using classification

techniques in Chapter 5.4.

5.1.3 Decoy Broadcaster

Decoy Broadcaster is the architectural component of our system that is responsible for

spreading the bait content inside a network segment. It is comprised of both hardware

and software entities. Figure 5.1 illustrates a decoy broadcaster inside the context of our

1This is a substantial thesis topic on its own being pursued by Yingbo Song [Song, 2011]

61

campus-wide wireless network. The underlying hardware consists of a low-cost, general-

purpose, wireless router with the ability to inject traffic. The device is strategically placed in

the vicinity of a legitimate access point (AP) so as to maximize the coverage of the replayed

traffic. Ideally, the bait content should be sniffable by all wireless clients inside the same

cell. An additional requirement of the decoy broadcaster is the support of monitor mode2

operation by its wireless NIC. Our preliminary experimentation revealed that monitor mode

is the only one that provides the flexibility to inject packets that meet the needs of our

architecture. In all other modes, injection either failed or it was limited. For example, in

managed mode we found that it was not possible to modify frame fields such as FromDS, ToDS,

or the MAC address, which may be important for creating realistic traffic. Furthermore,

it was not possible to inject anything other than data frames (e.g., ACKs, RTS/CTS).

The problem is that such limitations may create artifacts in the honeyflows that allow

sophisticated adversaries to identify and avoid the bogus traffic.

For our prototype implementation we used Accton MR3201A [Mini router, 2009] a mesh

router based on Atheros AR2315 chipset, with 32 MB DRAM and 8 MB flash. The device

comes pre-flashed with a modified version of OpenWRT [OpenWRT, 2009] —a Linux-

based firmware for embedded devices. However, in order to fully utilize the capabilities of

the device, we installed a custom OpenWRT image. Our configuration aims at free space

maximization and negligible CPU usage due to leftover services. The root filesystem of the

device is about 1.8 MB, leaving us with 5.2 MB of free space in the flash disk. Because of

the relatively large portion of free RAM (i.e., almost 24 MB of free memory) we can use

a fraction of it as a ramdrive in order to increase the decoy storage capacity. Therefore,

an additional 15 MB were put aside, using the tmpfs filesystem, giving us in total almost

20 MB of space for decoys. Accton’s wireless NIC uses the MadWifi [the madwifi project,

2009] driver that supports a wide set of features such as:

• Different operation modes: Station, Master, Ad-Hoc and so on, including the monitor

mode.

2Monitor mode (RFMON), is one of the six operational modes of an IEEE 802.11 compatible card. The

remaining five are: Master (AP), Managed (client associated to an AP, also known as Station), Ad-hoc,

Mesh, and Repeater.

62

• Multiple Base-Station IDs (BSSIDs) via different virtual interfaces on top of the

same NIC. That is, the Virtual Access Points (VAPs) feature, which supports virtual

interfaces that can even be in different modes.

• 4-address header support, dynamic frequency selection, background scanning.

The most important features are the VAPs and monitor mode support. As far as monitor

mode is concerned, we tweaked the MadWifi driver in order to suppress 802.11 ACK frames

(only in VAPs being in RFMON mode), since we have our own ACK frames recorded as part

of the decoy traffic, and ignore ACK timeouts in injected frames3. To inject the honeyflows

we ported Tcpreplay [Tcpreplay, 2009], a suite for replaying previously captured traffic for

network testing purposes. The typical injection workflow is specified as follows:

1. Create a new VAP in the Decoy Broadcaster and set it in Monitor mode.

2. Upload bait traffic into the Decoy Broadcaster.4

3. Use Tcpreplay to distribute the decoy traffic inside the wireless cell.

It is critical that the decoy repository on broadcasters be refreshed regularly. In some

cases, this is required to support the broadcasting of valid bait. For example, we use

authentication cookies (see Section 4.2) as one type of decoy. Since these are valid for only

a finite amount of time, they need to be routinely regenerated. Most importantly, however,

is that decoy traffic must be routinely updated so that it remains believable to attackers. If

the same traffic was continuously replayed, it would be easily distinguishable based on the

retransmissions of protocol header parts (e.g., TCP sequence numbers, IP TTL, TCP/UDP

source port numbers, IP ID), which should be unique for every session.

We considered various approaches for resolving this issue. At one extreme, we may have

a fully centralized solution, which involves preparing new honeyflows in the Decoy Traffic

3We inject whole sessions: traffic from all communicating parties including ACK frames and retransmis-

sions.

4This can be done either by having another VAP in managed mode and establish a communication

channel between the Decoy Broadcaster and the Decoy Distributor, or by directly utilizing the Ethernet

interface of the mini-router.

63

Generator (see Figure 5.1) and disseminating them to the proper Decoy Broadcasters

(i.e., certain MAC/IP addresses for certain cells to avoid having spatial inconsistencies).

At the other extreme, a decentralized approach can be employed for “on-the-fly” honeyflow

creation within the decoy broadcasters. Each option offers different tradeoffs. For example,

a benefit of the centralized approach is that it requires no intelligence at the decoy broad-

casters; they are only dummy bait traffic repeaters. Drawbacks of the centralized approach

include the imposition of additional overhead on the decoy traffic generator, scalability lim-

itations, and the lack of fine-grained control over injection (i.e., the delay between the time

that the generator decides to send a decoy for injection and the time the actual injection

takes place). The decentralized approach provides more flexibility since it leverages con-

tinuous bait generation with agile decoy broadcasters. Nonetheless, the packet processing

required to create honeyflows, demands devices with considerable capabilities. This trade-

off, though identified, has not been evaluated in this study and it will be the focus of future

research.

5.2 Detecting Snoopers

Our system injects a variety of different types of “bait” traffic into Wi-Fi channels in

order to entice, deceive, and alert us to the presence of malicious eavesdroppers. Enticing

and detecting attackers largely depends on attackers’ goals, whether they pilfer sensitive

information to sell on the black market, or perhaps, some form of espionage. The capacity to

expose otherwise elusive attackers on wireless networks is one of the primary contributions

of this work. Unfortunately, the ability to evaluate this contribution is constrained by the

infrequency of attacks in our university environment. Waiting for such an attack requires

an indeterminate amount of time and may not be practical. Therefore, in order to assess

the effectiveness of our system in realistic environments, we performed two studies. The

first experiment was performed at the Defcon ’09 hacking conference in Las Vegas, to test

whether the decoy injection framework would succeed in transmitting decoy credentials.

Additionally, we developed a program to simulate threats known to exist in the wild (e.g.,

massive cookie harvesting) and tested it in our campus network. The results from both

64

studies are presented and discussed below.

5.2.1 Defcon Experiment

Defcon’s yearly meeting includes the infamous wall of sheep [Wall of Sheep, 2009], which is

an interactive demonstration of what can happen when network users do not use the protec-

tion of encryption. Defcon staff eavesdrop the network traffic for unencrypted credentials,

which they later post on a publicly accessible wall as a good-natured reminder of what a

malicious person could do.

Throughout the conference we repeatedly injected decoy traffic and waited for some

decoy credentials to appear on the wall. One of our decoy credentials did indeed appear on

the wall of sheep 5.4, which is an indication of a successful decoy injection. Surprisingly, a

Gmail decoy alert was triggered after someone logged into one of our Gmail accounts from

an IP address in New Jersey, shortly after the account was used in Las Vegas. In that case,

we believe the decoy was the victim of a cookie hijacking attack, but we do not have strong

evidence for this. The Defcon staff post the collected information (although passwords are

only partially shown), but they do not use any credential. However, this does not exclude

other participants that were passively monitoring the wireless channel during the conference

from being malicious.

This experiment provides evidence that our system may detect when a snooper is using

automated tools for harvesting and exploiting credentials in the wild. Though we have per-

formed a detailed evaluation regarding the quality of our decoy traffic in believability terms

(see Section 5.3), we expect that a typical adversary will probably utilize automated tools

that massively hunt credentials or other interesting information (e.g., identity data, credit

card numbers). Unfortunately, the Wi-Fi bait traffic we broadcasted was not adequately

sniffed. We later learned that Defcon staff were monitoring the switch mirroring ports as

opposed to Wi-Fi radio channels. However, this is orthogonal to our experiment.

5.2.2 Massive Cookie Harvesting

As a practical and relevant alternative to evaluate real attacks, we have developed a program

to simulate threats known to exist in the wild [Pereira, 2007]. In particular, we model

65

Figure 5.4: Defcon ’09 Wall of Sheep.

attackers that attempt to harvest login cookies in mass (also known as SideJacking [Graham,

2007]), which are broadcasted in the network unencrypted and can be exploited by an

attacker to provide full access to users’ personal accounts and information. Any web site

that allows cookies in clear text(e.g., Yahoo Mail, MSN Hotmail) is potentially vulnerable

to this type of attack; without loss of generality we focus on Gmail. Our selection of Gmail

is partially due to the size of the Gmail user base (113 million registered users [Morse,

2009]), but also because Gmail provides the means to allow us monitoring access.

Our model attack program is called Gsnoop and it works by sniffing a specified network

connection to identify and record Gmail login cookies. Once a cookie is obtained, Gsnoop

uses the cookie to log into the account and read the author, subject, and date—the selection

of which is arbitrary and for demonstration purposes only—of the first 3 emails as proof

of account compromise. While this is fairly benign, the code could be easily extended to

do more malicious acts such as searching the inbox for other valuable credentials (as often

found), sending spam, deleting all contacts, and so forth.

To validate our decoys, we run Gsnoop on the university network, but in a restricted

mode so that it would not login to accounts indiscriminately (that would be unethical).

The host running Gsnoop was placed in monitor mode and physically located within twenty

feet of one of the Decoy Broadcasters to ensure sufficient decoy exposure. To conduct the

experiment, ten unique honeyflow sessions were injected by the broadcaster. The honeyflows

were generated to contain the authentication cookies for three different decoy identities.

66

 0

 20

 40

 60

 80

 100

1 2 3 4 5 m
ean

c
o
rr

e
c
t
(%

)

node pairs

real
bogus

Figure 5.5: DTT 1 Results: Real vs. Decoy.

Results from the attack simulation included exactly one alert for each of the decoys. The

alerts were triggered within ten minutes of the Gsnoop automated attack, validating that

the system worked as intended. The latency between the exploit time and detection time

was an artifact of how frequently the monitoring system was configured to poll for account

activity on the Gmail decoys. In addition to ensuring the validity of the bait cookies, this

also provided support for the structural correctness of the fabricated frames, as well as the

operational success of the decoy monitors. Although there were no false positives recorded

in this testing scenario, we have found that false positives can pose a problem for decoys in

general. We discuss this in Section 4.2

5.3 Believability of Bogus Traffic: A Decoy Turing Test

Alan Turing proposed [Turing, 1950] a method to demonstrate “artificial intelligence”

through the failure of human judges to distinguish between human and machine conver-

sational simulators. The imitation game as it was named, was conducted over a text-only

communication channel whereby the judge engaged in conversation with both a human and

machine. The machine was said to have passed the test if the judge could not reliably dis-

tinguish between it and the human. Following the notion of the original imitation game, we

designed a Decoy Turing Test (DTT) that relies upon human judges to distinguish between

67

 0

 20

 40

 60

 80

 100

1 2 3 4 5 m
ean

c
o
rr

e
c
t
(%

)

node pairs

real
bogus

Figure 5.6: DTT 2 Results: Real vs. Decoy.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

m
e
a
n

c
o
rr

e
c
t
(%

)

judge #id

Figure 5.7: DTT 1 Results: Users’ Correctness.

68

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

m
e
a
n

c
o
rr

e
c
t
(%

)

judge #id

Figure 5.8: DTT 2 Results: Users’ Correctness.

authentic and machine generated decoy network traffic. Their inability to reliably discern

one traffic source from the other attests to decoy believability.

We conducted two separate experiments that differed in the pool of judges and the

amount of time they were asked to spend with the experiment. In our first experiment,

human judges were solicited and selected based on their prior knowledge of networking

protocols and experience in examining network traces 5. The first experiment relied upon a

pool of 15 judges consisting of PhD’s and graduate students in the network security field, a

staff member from the department computing research facility, and a security professional

from an antivirus company. They were asked to spend at least 15 minutes – a minimal

amount of time on the task. For the second experiment, we relied on 19 students from a

network security class to participate as part of a homework assignment and we motivated

them with grades. We did not specify the amount of time they should spend, but it was

clear from the length of the responses that the second group put in considerable more time.

In both cases, the task for the judges required the analysis of network trace data, created

specifically for this experiment using the injection API. The test trace was created through

the process outlined in Chapter 5.1, but with slight modifications to enable a structured

study. We constructed our test data set including traffic from only 10 hosts, assuming the

5The IRB for this study is included in Chapter 9.

69

judges would dedicate limited time, and tolerate only a small volume of data.

To create the test data, we began by recording traffic from 5 hosts on a private net-

work. The private network was used so that we would not accidentally record other users’

traffic and skirt legal or ethical boundaries. Due to the fact that the network data were

ultimately going to be distributed to the judges (and perhaps elsewhere), we had users’ on

the private network assume “test” identities that were created for local email, FTP servers,

and Gmail accounts. The users were asked to engage one another in email conversations,

surf the web as they would normally, and perform FTP transactions. We recorded approxi-

mately 15 minutes of traffic in which there were samples of HTTP, Gmail account activity,

POP/IMAP, SMTP, and FTP traffic.

This network trace was then scrubbed of all non-TCP traffic to reduce the volume of

data we would be asking our judges to examine. The resulting trace was passed to the

honeyflow creation process as shown in Figure 5.2 to produce honeyflows for each of the 5

hosts. These honeyflows were loaded with the decoy credentials, given their own MACs and

valid university IP addresses, and finally interwoven with the authentic flows to create a file

containing all of the network trace data. The choice was made to give honeyflows distinct

IP addresses to simplify the task for the judges. For each of the resulting 10 IP addresses,

the judges were asked to make the binary decision: real or decoy. We requested them to

conduct their analysis and permitted them to use any tool to aid in making the decision.

5.3.1 Results and Discussion

Figures 5.5 and 5.6 summarize the results for each of 10 hosts in the two rounds of exper-

iments. The hosts are arranged in pairs in which the right bars correspond to decoys and

the left bars correspond to the authentic traffic on which decoys are based. The height

of the bars reflect the number of judges that correctly decided whether a given host was

real or decoy. Although there are some inconstancies in the results between the two graphs

with Figure 5.5 suggesting that judges were able to discern decoys more regularly than

authentic hosts (as shown by the height of the bars on the right) and Figure 5.6 suggesting

the opposite, the mean was approximately the same for both experiments. In addition, it

is important to take into consideration the judges’ overall correctness. Figure 5.7 and Fig-

70

ure 5.8 show the overall correctness for each of the fifteen judges in the first experiment and

nineteen judges in the second experiment. Overall, the first experiment judges were 49%

correct, on average, suggesting that we have achieved the goal of indistinguishable decoys.

Interviewing the judges we concluded that the bias for decoys in Figure 5.5 stemmed from

their tendency to guess “decoy” more frequently than not. In other words, decoy was the

default decision when a judge was uncertain. Since this tendency led them to tag real traffic

as decoys, one can surmise that the use of decoys in a network has an additional deterrent

value against knowledgeable adversaries. The judges in the second experiment performed

slightly better with 55% correctness. Despite their marginal success, the judges still failed

to distinguish the decoys almost half of the time, leaving plenty of opportunity to trick

them. Both results are statistically equivalent to 50% for significance p > .05.

One of the reasons for the discrepancy between the two results is likely because is the

judges in the second experiment spent far more time in their analysis, which was clear

from the length and quality of their explanations. As clear from Figure 5.8, four of the

second experiment judges successfully identified deficiencies in the decoys that allowed them

to distinguish decoys. The first issue had to do with obscure manufacturer names (e.g.,

Shandong New Beiyang Information Technology Co.) for some MACs used in decoy traffic,

which enabled a correct determination to be made about whether traffic was decoy or not.

The problem was that we randomly generated MAC addresses rather than using only MACs

from common vendors. The second issue uncovered by the judges was an invariant in the

TCP header for the decoy traffic. Two of the judges discovered that TCP window size was

not being correctly set. The first issue had to do with poor design choice while the second

was simply a bug. We have since fixed both of these problems, but the issues do speak to

the challenge of getting bogus traffic to look real, especially in the eyes of knowledgeable

judges willing to invest time to conduct a deep analysis.

Another challenge was dealing with judges that have insider knowledge. Our study did

include judges with knowledge of the department network topology and one who works for

the computing facility, but this knowledge did not help in distinguishing decoys. We should

also point out that between the two studies, there were actually 4 users that had 7 out of 10

correct, but their justification did not turn out to be a true means for distinguishing decoys.

71

For example, one of the judges said that the IPs of the destination hosts in the traffic did

resolve through reverse DNS; however, these same IPs were found in the real traffic. Hence,

this judge was simply lucky since this is not a true flaw to identify the decoys. Regardless,

the fact that some, but not all, decoys are correctly identified is promising, since we only

need a single bait to be taken for detection to occur.

5.4 Statistical and Information Theoretic Analysis

In this section, we present results of a statistical analysis of the generated network traces.

The goal was to see if a machine learning algorithm might be able to accurately classify

traffic as real or machine generated. An attacker may resort to such an algorithm if direct

observation alone cannot be used to distinguish real from generated. In particular, we focus

on the timing information of the generated traffic as an example of what attackers may

attempt to analyze.

5.4.1 Evaluation Data

The experiments were performed by first recording traffic from seven IP addresses on a

private network. We arranged it so that each of the seven IP addresses would primarily

communicate with a single type of protocol. This resulted in seven samples that containing

each of the various protocols including IMAP, FTP, SMTP, POP, and HTTP. The number

of sessions recorded for each protocol was variable with the HTTP sessions being the most

due to the way the browsers are implemented. It is typical for a browser to spawn many

sessions to gather the content of a single web page. Even though the API does not inject

decoys into encrypted traffic, we included HTTPS as an additional sample because we can

still model the timing information. The recorded samples were split so that half of the

TCP sessions could be used for training a classifier and half could be used for testing. The

sessions used for testing the classifier were also used by the API to build generative timing

models for the generated session times. These models were then used by the API to generate

new sessions. Once the new sessions were generated, we had a total of three network traces

to represent training, testing, and generated data. We then extracted session-level features

72

from each of traces that included total session time, average inter-arrival time for packets,

the standard deviations between times, minimum time between packets, and maximum

time. For purposes of feature extraction, we defined a session to be the time the first SYN

packet is identified between a set of host and port pairs to the time the last packet is

identified. We did not bother identifying FIN packets to accommodate sessions that may

end prematurely.

5.4.2 Classification Experiments

Our initial evaluation of the generated timing information was performed using classifiers

from Weka [Hall et al., 2009]. Many algorithms within the tool failed to be able to classify

the real traffic. Our tests indicated that these algorithms also failed to classify the generated

traffic. This is desirable because if it were not the case, an attacker may use such an

approach to identify the generated traffic. However, we did not feel the results warranted

representation beyond this note. Instead, we selected two algorithms based on their ability

to accurately classify real sessions for various protocols because many algorithms failed

at this task. We selected the J48 decision tree and BayeNet classifiers. In addition to

classifying real traffic correctly, we selected the decision tree algorithm because prior work

by Early et al. [Early et al., 2003] has shown them to be useful in classifying network traffic

for HTTP, FTP, Telnet, SMTP, and SSH protocols.

In selecting an algorithm for classification, it is common to test the algorithm using

k-fold validation on the training data. The result of which is an indication on how well one

expects the algorithm to correctly classify test data (i.e., that which has not been seen). We

conducted a 10-fold analysis whereby 10% of the data was tested against a model created

from the remaining data. The test was repeated ten times by varying the test data so that

all of the data was used for testing. The average number of instances classified correctly

under 10-fold analysis for the Decision Tree and BayesNet classifiers were 63% and 51%

respectively. For purposes of these experiments, the results are sufficient because our goal

is to show the statistical similarities between the generated and real traffic, as opposed to

whether they can be classified correctly.

The results of running the Decision Tree and BayesNet classifiers on the generated timing

73

data and real timing data are presented in Figs. 5.9 and 5.10, respectively. The Decision

Tree classifier had an average accuracy of 55.6% for real and 56.9% for generated traffic.

The BayesNet classifier had an average accuracy of 55.2% for real and 47.3% for generated

traffic. The close results for these two classifiers suggest that this particular type of analysis

would not be useful for an attacker attempting to distinguish the real from generated traffic.

5.4.3 Kolmogorov-Smirnov Tests

In our second experiment, we relied on the Kolmogorov-Smirnov test, which has been shown

to be useful in detecting some types of covert timing channels in network traffic [Gianvecchio

and Wang, 2007] [Peng et al., 2006]. The task of detecting covert channels is similar to ours

in that it requires identifying statistical differences between samples that are themselves

highly variable. The Kolmogorov-Smirnov test is a non-parametric test that can be used

to show that two samples come from the same distribution. An advantage of Kolmogorov-

Smirnov test over others (e.g., Chi-Square) is that it does not rely on assumptions about the

underlying distributions of the sample data and is intended for use when the distributions

are continuous.

Similar to tests conducted in [Gianvecchio and Wang, 2007], the aim of our experiments

were to see if we could detect statistical differences in the inter-arrival times between real

and generated traffic. We used the training and testing data described in 5.4.1 to obtain

threshold such that the false positive rate was .05. This was done experimentally by ex-

tracting the inter-arrival times for sets of 50 packets in both the training and test data and

scoring them with the Kolmogorov-Smirnov test. The lower the resulting score, the closer

the test sample is to the training set. We determined the score such that the false positive

rate was .05 and used this as the threshold for subsequent tests with generated timing data.

Scores for the generated timing data over this threshold were deemed true positives. That

is, if an attacker were using this test as a tool to distinguish real timing data from generated

timing data, the timing data scoring over this threshold would successfully be identified as

generated. Our choice to use the .05 false positive rate was to allow for enough resolution

in the data to show how varying bin lengths influence the true positive rate. We conducted

three tests with variable bin lengths for the generated traffic ranging from .001 to .1 sec-

74

Table 5.2: Kolmogorov-Smirnov test results for different binning thresholds.

Threshold Bin length (seconds) FP Rate TP Rate

.41 .001 .05 .06

.41 .01 .05 .11

.41 .1 .05 .27

onds. The results of the tests are presented in Table 5.2. The results indicate that the true

positive rate can be controlled by varying the bin lengths of the generated traffic. With a

bin length of .001, we obtained a .06 true positive rate meaning that 94% of the generated

traffic would go undetected using this test. Even with a specificity of .1 seconds, 73% of

the generated traffic would go undetected, making the attackers task difficult. Other tests

that we conducted with a false positive rate of .01 resulted in true positive rate under 1%

for all of the bin lengths, suggesting the challenge might even be more difficult.

5.4.4 Entropy Tests

Entropy is a common measure for the amount of disorder in a data set[Lee and Xiang,

2001]. It has also been used in the detection of covert timing channels [Peng et al., 2006].

It is commonly used to measure the number of bits required to encode the classification of

a data item. For a data set X containing possible classifications x1, x2, ..., xn, the entropy

of X is defined as:

H(X) =
n∑

i=0

Pr(x) log Pr(x)

For the timing data, we calculate the bin for a particular time as the approximate

distance from the mean in standard deviations. The classification of a time maps to its

bin. Figure 5.11, we present a comparison of entropy values for the actual and generated

data for each of the samples. The results suggest that there is no loss of information in our

generation process that would be useful by an adversary that is attempting distinguish real

from generated sessions. In fact, the results show that there is a slight gain of information in

the generated traffic. This is a consequence of the binning strategy used. These particular

results were generated using a bin length of .01. Decreasing the bin size has the effect of

75

 0

 20

 40

 60

 80

 100

H
TTP

S

H
TTP

IM
A
P

H
TTP

FTP

P
O

P

S
M

TP

c
o
rr

e
c
t
(%

)

protocol

real
generated

Figure 5.9: Decision Tree classification.

tightening (e.g., using .001) the bounds used for generating timing data, thereby decreasing

the amount of information.

5.5 Interference Measurements

Introducing decoy traffic into an operational network has the potential to interfere with

normal network activities in multiple ways. Our primary concern is that decoys may pollute

authentic data so that their legitimate usage becomes hindered by corruption or as a result

of confusion by legitimate users (i.e., they cannot differentiate real from fake). We address

this concern and minimize the risk of corrupting normal data by injecting frames that are

not addressed to legitimate hosts or users. Hence, only a passive eavesdropper will observe

them. Of secondary concern is the performance impact due to the increased burden on

network resources. Flooding Wi-Fi channels with bogus data comes at a performance cost

that can be measured from the side-effects to available bandwidth, packet error rate, and

channel contention. We posit that there is a tradeoff between the amount of deceptive data

we may inject to maximize the protection level, and the perceived performance as measured

by the impact on user applications. In this section, we present experimental results that

show our approach causes only minimal interference to ordinary users.

76

 0

 20

 40

 60

 80

 100

H
TTP

S

H
TTP

IM
A
P

H
TTP

FTP

P
O

P

S
M

TP

c
o
rr

e
c
t
(%

)

protocol

real
generated

Figure 5.10: BayesNet classification.

 0

 0.5

 1

 1.5

 2

H
TTP

S

H
TTP

IM
A
P

H
TTP

FTP

P
O

P

S
M

TP

E
n
tr

o
p
y

Protocol

real
generated

Figure 5.11: Average Entropy per session for generated and actual timing data.

77

5.5.1 Experimental Setup

In this section, we describe the setup for the interference testbed and the method used for

measuring interference.

5.5.1.1 Interference Testbed

To setup an interference testbed, Five hosts were employed for the needs of our study.

Hermes and Hades are identical Accton mini-routers flashed with our customized Open-

WRT firmware. Hermes acted as a legitimate AP for providing connectivity to the Internet

and to the rest of the university infrastructure. The selected radio mode was IEEE 802.11g

and the operating channel was verified with a monitoring utility to be idle (i.e., no other

WLANs operated on the same frequency) during the experiments. Hades was placed in

monitor mode and positioned nearby Hermes for broadcasting the decoy traffic (see Sec-

tion 5.1.3). Poseidon is a laptop that was used for measuring its performance degradation

during injection and Zeus is a workstation used to generate different channel loads. Finally,

compute02 and compute03 serve as traffic source/sink either for estimating the available

bandwidth on Poseidon, or assisting Zeus in channel load generation. Both of them belong

to an 8-node cluster (cluster.cs.columbia.edu) that is part of the departmental com-

puting facilities. Zeus and Poseidon were associated to Hermes and further connected to

compute cluster via the campus wired network.

5.5.1.2 Bandwidth estimation

The capacity of Hermes (i.e., Hermes Wi-Fi network) is approximated using the non-

intrusive tool pathrate [Dovrolis et al., 2004]. Different channel loads where emulated

using the invasive nuttcp [nuttcp, 2010] tool, whereas the available bandwidth of Poseidon

was estimated using wbest [Li et al., 2008]. We note that capacity is defined to be the

maximum throughput that a network path can provide to an application when there is

no competing traffic (i.e., cross traffic). Available bandwidth, on the other hand, is the

maximum throughput a path can provide to an application, given the path’s current cross

traffic load.

78

5.5.2 Results and Discussion

The testbed created for our experiment, the bandwidth estimation tools employed, as well as

our evaluation methodology are all described in great detail in Sections 5.5.1.1 and 5.5.1.2.

The two embedded devices (i.e., Hermes and Hades) that we utilized in our experiments

run our customized OpenWRT (v2.6.26 kernel) image, whereas everything else run the

GNU/Linux OS (v2.6.24 kernel). All our hosts were in multiuser mode, but no other user

tasks were running throughout the experiments. We performed our tests late at night so as

to ensure that the wired Ethernet would be unloaded and the wireless utilization would be

minimal.6

Initially, we used pathrate to estimate channel capacity (from Zeus to compute03). This

would give us an upper-bound of the wireless channel capacity, since pathrate estimates the

minimum link capacity among all links on a path. The measurement was repeated 15 times

in order to estimate the variance. The reported capacity was 20–22 Mbps. We performed

the same test again, but this time Zeus was directly connected to the wired Ethernet (i.e.,

bypassing the wireless link of Hermes). The reported capacity was 94–97 Mbps, which

confirms that the limiting factor was, indeed, the wireless link.

Following that we used wbest from compute02 to Poseidon, so as to estimate the avail-

able bandwidth of the latter. This was done with and without having decoy injection and

the resulting degradation in the available bandwidth of Poseidon is the actual performance

cost of decoy broadcasting, as observed from an application running on a single host. How-

ever, since the available bandwidth is highly coupled to the underlying channel load, and

in order to have more pragmatic results, we used the nuttcp tool and created contending

traffic so as to emulate different channel loads. Nuttcp created traffic between Zeus and

compute03 at various rates, using 1470-byte UDP datagrams. The actual rates were: 2.2

Mbps, 7.26 Mbps, 11 Mbps, 14.52 Mbps, 16.5 Mbps, and 19.8 Mbps, which correspond

to 10%, 33%, 50%, 66%, 75%, and 90%, respectively, of the previously measured wireless

channel capacity. Our choice of upper-bound (and not average) capacity results in overes-

6We performed our experiments in an idle frequency. However side channels were preoccupied and

the DSSS nature of the IEEE 802.11b/g standard imposes interference from operating devices in nearby

frequencies.

79

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

0 10 33 50 66 75 90

av
ai

la
bl

e
ba

nd
wi

dt
h

(M
bp

s)

channel load (% of C = 22Mbps)

without decoys
with decoy injection

Figure 5.12: Interference cost.

timating the bandwidth degradation due to decoy broadcasting; in other words, our results

are pessimistic. Decoy broadcasting was performed from Hades using Tcpreplay and all

experiments were repeated 15 times.

The results are illustrated in Figure 5.12. In general terms, there is a decrease in the

bandwidth as the channel load increases. However, generating traffic at rates greater than

66% of the channel capacity results in packet loss on Zeus (i.e., Zeus generated traffic

at 14.52 Mbps but the actual rate that compute03 reported was 7 Mbps). The MAC

layer of IEEE 802.11 gives a fair share to Zeus and Poseidon—the available bandwidth

fluctuates between 11 and 12 Mbps. Apparently, the performance degradation due to beacon

broadcasting is negligible and the confidence intervals indicate that the difference between

the two scenarios is statistically insignificant.

The regulating factor in the whole process is the actual rate at which injection is per-

formed. Notice that we evaluate our proposal under a realistic scenario. The decoy traffic

was comprised by 828 packets in total and included an HTTP login into a Gmail account,

an FTP login, and an IMAP login. Tcpreplay reported 0.04 Mbps (12pps) since it replays

80

 540

 560

 580

 600

 620

 640

 660

 680

 700

 720

0 10 33 50 66 75 90

pa

ck
et

s
su

cc
es

sf
ul

ly
in

je
ct

ed

channel load (% of C = 22Mbps)

Figure 5.13: Packets successfully injected.

the traffic by maintaining the corresponding timing information. Replaying at higher rates

will not give us any benefit as Figure 5.13 suggests: number of packets that were injected

by Hades and successfully intercepted by Zeus. We used one VAP (see Section 5.1.3) for

monitoring the injected packets and a different one for connecting to Hermes and generating

traffic. Even at moderate loads we cannot successfully inject the whole set of decoys due to

the fact that we suppressed retransmissions and ACKs. The number of packets successfully

injected however are a considerable portion of the total 828 set of packets, and hence they

demonstrate that there is a relatively high probability of successfully conveying them to a

potential snooper. The confidence intervals indicate that the channel load does not signif-

icantly affect the number of packets that we can successfully inject. This is mostly due to

the slow rate that we used during the replay process.

The experimental testbed, though simple, indicated that deceptive traffic can be broad-

casted at negligible cost. Yet, the implications of large-scale deployments on campus-wide

Wi-Fi networks cannot be asserted without further experimentation. Mobility, multi-rate

support, diversity in traffic patterns (i.e., different packet sizes, burst vs. bulk transfers),

81

and the dynamic nature of the wireless medium in general would affect the absolute cost

of decoy broadcasting. However, our results are encouraging in that we can perform decep-

tive traffic injection successfully at a small cost. This will allow us to further investigate

larger-scale deployments.

5.6 Legal Considerations

As we already noted in the previous sections, our study relied on protocol specific tem-

plates that were manually created and used as input to the decoy API. To increase the

diversity of the bogus content, live network traces could be used instead. While employing

this approach, numerous legal considerations must be made. More specifically, several US

federal privacy laws7 limit access to network data. The Wiretap Act [18 U.S.C §2511 P1,

2010] regulates the collection of electronic communications contents and in general, this law

prohibits third parties from intercepting and recording traffic. The Pen Register and Trap

and Trace Act is similar [18 U.S.C §§3121-3127, 2010], but regulates the monitoring of non-

content header information for electronic communications. In both of these statutes, there

exist several provider exceptions that permit employees of a network operator to record

communications to the extent necessary to protect the operator. We believe that this ex-

ception would enable our approach of using live network traces as a basis for decoy traffic to

be legally deployed in a corporate environment. A more thorough treatment of legal issues

surrounding the recording of traffic can be found in [Ohm et al., 2007] and [Matwyshyn et

al., 2010].

5.7 Limitations and Open Problems

The focus of this study was limited to TCP traffic and was conducted offline. It is important

to point out that this excluded aspects of the 802.11 protocol and broadcast traffic. In our

case, it was prudent to exclude these because their inclusion may have overwhelmed the

volunteer judges to the point of not participating. However, we believe that our results for

the TCP traffic can be extended to the 802.11 protocol transmissions (e.g., management

7There are also state laws that vary by state.

82

frames, control frames, beacons), but it remains open an area for future work. We should

also note that in conducting the study offline, as we did, we may have limited the information

that might otherwise be available under real- world conditions. It might be possible for an

adversary to snoop multiple access points to try and correlate traffic in order to distinguish

real traffic from decoys. This scenario was outside the scope of our evaluation. Future work

may address this via a large-scale user study and through clustering analysis of captured

traces. We also note that an adversary could possibly determine visually that a particular

AP is not in use and use this knowledge to distinguish decoy network traffic. Although we

did not implement this, the problem can be easily fixed by only broadcasting decoy traffic

when there is real traffic.

The believability of our honeyflows stems from the “record, modify, replay” model.

Replaying recorded flows can potentially expose sensitive information, but it is information

that has already been exposed on the network (although a compromise may have occurred

after initial exposure). In employing this strategy, one must consider the tradeoffs (i.e., the

replay risk) against the benefit of being able to detect an intruder when you may not have

been able to otherwise.

Much of the realism and believability of our generated network traffic was derived orig-

inal recorded traffic. A significant challenge remains in finding a way to generate traffic

without relying on templates and recorded traffic.

5.8 Decoy Networking Summary

Decoy trap-based security defenses, and deception in general, are powerful tools against a

wide range of threats in wireless environments. In this chapter, we have demonstrated a sys-

tem that shows the feasibility of automatically generating large amounts of believable decoy

information and showed that it was possible without interfering with normal operations.

We used human subjects to evaluate the believability of the generated decoys and showed

that is difficult to distinguish from the real thing; our experienced judges achieved only 49%

accuracy on average, equivalent to random guessing. We also demonstrated decoy efficacy

against automated tools, designed to harvest and exploit credentials in mass by sniffing

83

network transmissions. Moreover, we evaluated our system in a real wireless network that

someone was monitoring and successfully detected eavesdropping and exploitation attempts.

Considerable work remains to address the potential challenges that active adversaries may

pose, such as those that may snoop multiple access points to try and correlate traffic, or

those that may use additional sources (like an administrator) to discern decoys without

testing them.

84

Chapter 6

Decoy Host System

In this chapter, we consider attacks against a host system in which an attacker lacks long-

term physical access, but has the capability to install malicious software which may be used

for long term reconnaissance or to steal information of value. The creation and rapid growth

of an underground economy that trades in stolen digital credentials has spurred the growth

of crime-driven bots that harvest sensitive data from unsuspecting users. This form of

malevolent software employs a variety of techniques ranging from web-based form grabbing

and key stroke logging, to screenshots and video capture for the purposes of pilfering data

on remote hosts to automate financial crime [Holz et al., 2009; Sthlberg, 2007]. The targets

of such malware range from individual users and small companies to the most wealthiest

organizations [top, 2009] and recent studies indicate that bot infections are on the rise and

up to 9% of the machines in an enterprise are now bot-infected [Higgins, 2009].

Traditional crimeware detection techniques rely on comparing signatures of known ma-

licious instances to identify unknown samples, or on anomaly-based detection techniques

in which host behaviors are monitored for large deviations from a baseline. Unfortunately,

these approaches suffer a large number of known weaknesses. Signature-based methods can

be useful when a signature is known, but due to the large number of possible variants,

learning and searching all possible signatures to identify unknown binaries is intractable

[Song et al., 2007]. On the other hand, anomaly-based methods are susceptible to false

positives and negatives, limiting their potential utility. Consequently, a large amount of

existing crimeware now operate undetected by antivirus software. A recent study focused

85

of Zeus1 (the largest botnet with over 3.6 million PC infections in the US alone [Messmer,

2009]), revealed that the malware bypassed up-to-date antivirus software 55% of the time

[zeu, 2009].

Another drawback of conventional host-based antivirus software is that it typically moni-

tors from within the host it is trying to protect, making it vulnerable to evasion or subversion

by malware; we see an increasing number of malware attacks that disable defenses such as

antivirus software prior to undertaking some malicious activity [Ilett, 2005].

In this work, we introduce BotSwindler, a novel system designed for the proactive de-

tection of credential stealing malware on VM-based hosts. BotSwindler relies upon an

out-of-host software agent to drive user simulations that are meant to convince malware

residing within the guest OS that it has captured legitimate credentials. By the nature of

its out-of-host operating position, the simulator is tamper resistant and difficult to detect

by malware residing within the host environment. We posit that malware that detects

BotSwindler would need to analyze the behavior of its host and decide whether it is ob-

serving a human or not. In other words, the crimeware would need to solve a Turing Test

[Turing, 1950]. We assert that if attackers are forced to spend their time looking at the

actions on each infected host one by one to determine if they are real or not in order to steal

information, BotSwindler would be a success; the attackers’ task does not scale. To generate

simulations, BotSwindler relies on a formal language that is used to specify a simulation of

human user’s sequence of actions. The language provides a flexible way to generate variable

simulation behaviors that appear realistic. Simulations can be tuned to mimic particular

users by using various models for keystroke speed, mouse speed and the frequency of errors

made during typing.

One of the challenges in designing an out-of-host simulator lies in the ability to detect the

underlying state of the OS. That is, to verify the success or failure of mouse and keyboard

events that are passed to the guest OS. For example, if the command is given to open a

browser and navigate to a particular URL, the simulator must validate that the URL was

successfully opened before proceeding with the next command. To aid in the accuracy and

1Zeus uses key-logging techniques to steal sensitive data such as user names, passwords, account numbers.

It can be purchased on the black market for $600, complete with support and maintenance [abu, 2009].

86

realism of the simulations, we developed a low overhead approach, called virtual machine

verification (VMV), for verifying whether the state of the guest OS is in one of a predefined

set of states.

BotSwindler aims to detect crimeware by deceptively inducing it into an observable

action during the exploitation of monitored information injected into the guest OS. To

entice attackers with information of value, the system supports a variety of different types

of bait credentials including decoy Gmail and PayPal authentication credentials, as well as

those from a large financial institution 2. Our system automatically monitors the decoy

accounts for misuse to signal exploitation and thus detect the host infection by credential

stealing malware.

BotSwindler presents an instance of a system and approach that can be used to deal with

information-level attacks, regardless of their origin. In our prototype, we rely on credentials

for financial institutions because they are good examples for which we can easily evaluate,

but the approach is aimed at any kind of large-scale automated harvesting of “interesting”

data — where “interesting” depends on both the environment and the malware. Although

we demonstrate our system with three types of credentials, the system can be extended to

support any type of credential that can be monitored for misuse. As one of the contributions

of this work, we consider different applications of BotSwindler including how it could be

applied practically in an enterprise environment with simulations and decoys adapted to

the specific deployment setting. In part of doing so, we discuss how BotSwindler can be

deployed to service hosts that include those which are not VM-based, making this approach

broadly applicable.

We have implemented a prototype version of BotSwindler using a modified version of

QEMU [Bellard, 2005] running on a Linux host. User simulation is implemented using X11

libraries and interaction with the graphical frame buffer. We demonstrate our prototype

through experiments with crimeware on a Windows guest, but BotSwindler can operate

on any guest operating system supported by the underlying hypervisor or virtual machine

monitor (VMM).

2By agreement, the institution requested that its name be withheld.

87

6.0.1 Overview of Results

To demonstrate the effectiveness of BotSwindler, we tested our prototype against real crime-

ware samples obtained from the wild. Our results from two separate experiments with

different types of decoy credentials show that BotSwindler succeeds in detecting malware

through attackers’ exploitation of the monitored bait. In our first experiment, through

experiments with 116 Zeus samples, we received 14 distinct alerts using PayPal and Gmail

decoys. In a second experiment with 59 different Zeus samples, we received 3 alerts from

our banking decoys.

The long-term viability of BotSwindler defense largely depends on the believability of

the bait-injecting simulations by the attackers. We performed a computational analysis

to see if attackers could employ machine learning algorithms on keystrokes to distinguish

simulations. We present results from experiments running Naive Bayes and Support Vector

Machine (SVM) classifiers on real and generated timing data to show that they produce

nearly identical classification results making this kind of analysis ineffectual for an adversary.

To show that adversaries resorting to manual inspection of the user activities would be

sufficiently challenged, we evaluated the believability of user simulations via a decoy Turing

Test in which human judges were tasked with trying to distinguish BotSwindler’s actions

from those of a real human. The failure of the judges to distinguish suggests BotSwindler’s

simulations are convincingly human-like. In our study with 25 human judges evaluating 10

videos of BotSwindler actions and of a human, the judges’ average success rate was 46%,

indicating the simulations provide a good approximation of human actions.

Finally, recognizing that attackers may try to distinguish simulated behavior via perfor-

mance metrics, we evaluated the overhead of our approach by measuring the cost imposed

by the virtual machine verification (VMV) technique. Our results indicate that VMV im-

poses no measurable overhead, making the technique difficult to detect by malware using

performance analysis.

In summary, the primary contributions of this chapter include:

• BotSwindler architecture: It introduces BotSwindler, a novel, accurate, efficient,

and tamper-resistant zero-day crimeware detection system. BotSwindler relies on the

use of decoy injection whereby bogus information is used to bait and delude crimeware,

88

causing it to reveal itself during the exploitation of the monitored information.

• VMSim language: It introduces VMSim, a new language for expressing simulated

user behavior. VMSim facilitates the construction and reproduction of complex user

activity, including specifying aggregate statistical behavior.

• Virtual Machine Verification (VMV): It introduces virtual machine verification,

a low overhead approach for verifying simulation state. VMV enables robust out-of-

host user action simulation through graphical state verification.

• Real malware detection results: It presents results to show the effectiveness

of BotSwindler in detecting real malware when decoy PayPal, Gmail, and banking

credentials are injected, stolen, and exploited by the attackers.

• Statistical and information theoretic analysis: It presents the results of a com-

putational analysis on generated keystroke timing data to show it would be difficult

to detect simulations through analysis with machine learning algorithms or entropy

measurements.

• Believability user study results: It presents user study results that show the

believability of simulations created with BotSwindler’s VMSim language.

• Performance Overhead results: It shows that BotSwindler imposes no measurable

overhead, hence making itself undetectable via timing measurement methods.

6.1 BotSwindler Components

The BotSwindler architecture, as shown in Fig. 6.1, consists of two primary components

including a simulator engine, VMSim, and a virtual machine verification component. An-

other aspect of BotSwindler (although not shown in the figure) are the monitored decoys

that we employ for detecting malware. These components are described in the next three

sections.

89

Guest Operating

System

Virtualization Layer

VMV

Host Operating System

VMSim

User Actions

Decoys

Verification

Figure 6.1: BotSwindler architecture.

6.1.1 VMSim

BotSwindler’s user simulator component, VMSim, performs simulations that are designed

to convince malware residing inside the VM that command sequences are genuine. We posit

that successfully creating a sequence of actions that tricks the malware into stealing and

uploading a decoy credential can be achieved only if two essential requirements are met:

1. the simulator process remains undetected by the malware

2. the actions of the simulator appear to be generated by a human

We approach the first requirement by decoupling the location of where the simulation

process is executed and where its actions are received. To do this, we run the simulator

outside of a virtual machine and pass its actions to the guest host by utilizing the X-

Window subsystem on the native host. The second requirement is addressed through a

simulation creation process that entails recording, modifying, and replaying mouse and

keyboard events captured from real users. To support this process, we leverage the Xorg

Record and XTest extension libraries for recording and replaying X-Window events. The

product is a simulator that runs on the native host producing human-like events without

introducing technical artifacts that could be used to alert malware of the BotSwindler

facade.

90

<ActionType> : := <WinLogin> <ActionType>

| <CoverType> <ActionType> | <CarryType> <ActionType>

| <WinLogout> | <Veri fyAct ion> <ActionType> | e

<CoverAction> : := <BrowserAction> <CoverAction>

| <WordAction> <CoverAction> | <SysAction> <CoverAction>

<BrowserAction> : := <URLRequest> <BrowserAction>

| <OpenLink> <BrowserAction> | <Close>

<WordAction> : := <NewDoc> <WordAction>

| <EditDoc> <WordAction> | <Close>

<SysAction> : := <OpenWindow> | <MaxWindow>

| <MinWindow> | <CloseWindow>

<Veri fyAct ion> : := Img1 | Img2 | . . . | ImgN | Unknown

<CarryAction> : := <PayPalInject> | <Gmail Inject>

| <CCInject> | <UnivInject> | <BankInject>

Figure 6.2: VMSim language.

VMSim relies on formal language to specify the sequence of actions in the simulations.

Representative details of the formal language are provided in Fig. 6.2 (many details are omit-

ted due to space limitations). The language provides a flexible way to generate variable

simulation behaviors and workflows, but more importantly it supports the use of cover and

carry actions; carry actions result in the injection of decoys (described in Sect. 4.2), whereas

cover actions include everything else to support the believability of carry traffic. For exam-

ple, cover actions may include the opening and editing of a text document (WordActions)

or the opening and closing of particular windows (SysActions). The VerifyAction allows

VMSim to interact with VMV (described in Sect. 6.1.2) and provides support for condi-

tional operations, synchronization, and error checking. Interaction with the VMV is crucial

for the accuracy of simulations because a particular action may cause random delays for

which the simulation must block on before proceeding to the next action.

91

The simulation creation process involves the capturing of mouse and keyboard events

of a real user as distinct actions. The actions that are recorded map to the constructs of

the VMSim language. Once the actions are implemented, the simulator is tuned to mimic a

particular user by using various biometric models for keystroke speed, mouse speed, mouse

distance, and the frequency of errors made during typing. These parameters function as

controls over the language shown in Fig. 6.2 and aid in creating variability in the simulations.

Depending on the particular simulation, other parameters such as URLs or other text that

must be typed are then entered to adapt each action. VMSim translates the language’s

actions into lower level constructs consisting of keyboard and mouse functions, which are

then output as X protocol level data that can be replayed via the XTest extensions.

To construct biometric models for individuals, we have extended QEMU’s VMM to

support the recording of several features including keycodes (the ASCII code representing

a key), the duration for which they are pressed, keystroke error rates, mouse movement

speed, and mouse movement distance. Generative models for keystroke timing are created

by first dividing the recorded data for each keycode pair into separate classes where each

class is determined by the distance in standard deviations from the mean. We then calculate

the distribution for each keycode sequence as the number of instances of each class. We

adapt simulation keystroke timing to profiles of individual users by generating random times

that are bounded by the class distribution. Similarly, for mouse movements we calculate

user specific profiles for speed and distance. Recorded mouse movements are broken down

into variable length vectors that represent periods of mouse activity. We then calculate

distributions for each user using these vectors. The mouse movement distributions are used

as parameters for tuning the simulator actions. We note that identifying the complete set

of features to model an individual is an open problem. Our selection of these features is to

illustrate a feasible approach to generating statistically similar actions and represent just a

small subset of the sources for human variability. In addition, these features have been useful

for verifying the identify of individuals in keystroke and mouse dynamics studies [Monrose

and Rubin, 1997; Ahmed and Traore, 2007]. More sophisticated models could be created

by considering aspects such as the particular task a simulation executing and types of

mouse movement, which have been shown to be a sources of variability [Shneiderman, 1984;

92

Jay et al., 2007].

In Sect. 6.2 we provide a statistical and information theoretic analysis of the generated

simulated times.

One of the advantages of using a language for the generation of simulation workflows is

that it produces a specification that can be ported across different platforms. This allows the

cost of producing various simulation workflows to be amortized over time. In the prototype

version of BotSwindler, the task of mapping mouse and keyboard events to language actions

is performed manually. The mappings of actions to lower level mouse and keyboard events

are tied to particular host configurations. Although we have not implemented this for the

prototype version of BotSwindler, the process of porting these mappings across hosts can

be automated using techniques that rely on graphical artifacts like those used in the VMV

implementation and applying geometric transformations to them.

Once the simulations are created, playing them back requires VMSim to have access to

the display of the guest OS. During playback, VMSim automatically detects the position of

the virtual machine window and adjusts the coordinates to reflect the changes. Although

the prototype version of BotSwindler relies on the display to be open, it is possible to

mitigate this requirement by using the X virtual frame buffer (Xvfb) [xvf, 2009]. By doing

so, there would be no requirement to have a screen or input device.

6.1.1.1 Statistically Similar Temporal Features

In cases where real key-stroke timing data is available, it can be used to build generative

models for VMSim’s temporal features. One approach we have used for building these

models relies on analyzing key-stroke timing data to gather metrics. In particular, we

models using keystroke bi-grams (e.g., in the word “the”, we model times between t-h and

h-e.) that take in account how long a key is pressed and the time between key strokes. This

can be done for all combination of keys. For a given bi-gram, we use the recorded times to

calculate the mean and standard deviations for key-press times and the time between presses

for a given individual. We then calculate a distribution of times relative to the standard

deviation. This becomes the timing model for a particular individual. We then generate

new random key-stroke times using this model as a control for the minimum and maximum

93

times. This approach allows for an unbounded amount of variability in the temporal features

for synthesized key-strokes. The variability can be controlled by parameters that determine

how closely the generated timing features conform to the session’s timing distribution. We

provide an evaluation statistical similarities of the synthesized key-stroke times to recorded

times using classification techniques in 6.2.

6.1.2 Virtual Machine Verification

The primary challenge in creating an of out-of-host user simulator is to generate human-

like events in the face of variable host responses. This task is essential for being able to

tolerate and recover from unpredictable events caused by things like the fluctuations in

network latency, OS performance issues, and changes to web content. Conventional in-host

simulators have access to OS APIs that allow them to easily to determine such things. For

example, simulations created with the popular tool AutoIt can call its WinWait function,

which can use the Win32 API to obtain information on whether a window was successfully

opened. In contrast, an out-of-host simulator has no such API readily available. Although

the Xorg Record extensions do support synchronization to solve this sort of problem, they

are not sufficient for this particular case. The Record extensions require synchronization on

an X11 window as opposed to a window of the guest OS inside of an X11 window, which is

the case for guest OS windows of a VM3.

We address this requirement by casting it as a verification problem to decide whether

the current VM state is in one of a predefined set of states. In this case, the states are

defined from select regions of the VM graphical output, allowing states to consist of any

visual artifact present in a simulation workflow. To support non-deterministic simulations,

we note that each transition may end in one of several possible next states. We formalize the

VMV process over the set of transitions T , and set of states S, where each t0, t1, ..., tn ∈ T

can result in the the set of states st1, st2, ..., stn ⊆ S. The VMV decides a state verified for

a current state c, when c ∈ sti.

The choice for relying on the graphical output allows the simulator to depend on the same

3This was also a challenge when we tested under VMware Unity, which exports guest OS windows as

what appear to be ordinary windows on the native host.

94

// i n i t i a l i z e x l e f t , xr ight , ybottom , ytop to be a

// bounding box around the v e r i f i c a t i o n image

f o r (x = x l e f t ; x < xr i gh t ; x++) {

f o r (y = ytop ; y < ybottom ; y++) {

// Load the p i x e l s from the guest and v e r i f i c a t i o n image

cg = g e t p i x e l (monitor screen , x , y) ;

cm = g e t p i x e l (gue s t s c r e en , x , y) ;

// I f t h i s i s not a match , s ee i f the l i m i t i s reached

i f (((cg & fmtg−>Rmask) != (cm & fmtg−>Rmask)) | |

((cg & fmtg−>Gmask) != (cm & fmtg−>Gmask)) | |

((cg & fmtg−>Bmask) != (cm & fmtg−>Bmask)))

i f (bad p ixe l count > th r e sho ld)

re turn no match ;

e l s e

bad p ixe l count++;

}

}

Figure 6.3: VMV pseudocode of the monitor function.

graphical features a user would see and respond to, enabling more accurate simulations. In

addition, information specific to a VM’s graphical output can be obtained from outside of

the guest without having to solve the semantic gap problem [Chen and Noble, 2001], which

requires detailed knowledge of the underlying architecture. A benefit of our approach is

that it can be ported across multiple VM platforms and guest OS’s. In addition, we do not

have to be concerned with side effects of hostile code exploiting a system and interfering

with the Win32 API like traditional in-host simulators do, because we do not rely on it.

In experiments with AutoIt scripts and in-host simulations, we encountered cases where

scripts would fail as a result of the host being infected with malware.

95

The VMV was implemented by extending the Simple DirectMedia Layer (SDL) com-

ponent of QEMU’s [Bellard, 2005] VMM. Specifically, we added a hook to the sdl update

function to call a VMV monitor function. Figure 6.3 shows pseudocode for the verification

procedure that is invoked. The code performs a pixel comparison between the guest screen

and a verification image. Instead of failing after a single mismatch, the procedure uses an

established threshold of bad pixels to account for minor discrepancies that may occure. For

example, the presence of a mouse pointer on the screen would cause a verification failure if

we did not allow for it. Hooking this code into into the sdl update function results in the

VMV being invoked every time the VM’s screen is refreshed. The choice of invoking the

VMV only during sdl update was both to reduce the performance costs and because it is

precisely when there are updates to the screen that we seek to verify states (it is a good

indicator of user activity).

States are defined during a simulation creation process using a pixel selection tool (acti-

vated by hotkeys) that we built into the VMM. The pixel selection tool allows the simulation

creator to select any portion of a guest OS’s screen for use as a state. In practice, the states

should be defined for any event that may cause a simulation to delay (e.g., network lo-

gin, opening an application, navigating to a web page). The size of the screen selection

is left up to the discretion of the simulation creator, but typically should be minimized as

it may impact performance. In Sect. 6.4 we provide a performance analysis to aid in this

consideration.

6.2 Statistical and Information Theoretic Analysis

In this section we present results from the statistical analysis of generated keystroke timing

information. The goal of these experiments was to see if a machine learning algorithm

(one that would be available to a malware sample to determine whether keystrokes are

real or not) might be able to classify keystrokes accurately into user generated or machine

generated. For these experiments, we relied on Killourhy and Maxion’s benchmark data set

[Killourhy and Maxion, 2009]. The data set was created by having 51 subjects repeatedly

type the same 10 character password, 50 times in 8 separate sessions, to create 400 samples

96

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30 35 40 45 50

c
o
rr

e
c
t
(%

)

subject #id

actual
 vmsim

Figure 6.4: SVM classification.

for each user. Accurate timestamps were recorded by using an external clock. Using this

publicly available real user data ensures that experiments can be repeated.

6.2.1 Classification Experiments

For our initial evaluation of VMSim’s generated timing information, we used Weka [Hall et

al., 2009] to conduct classification experiments. We divided the benchmark data set in half

and used 200 password timing vectors from each user to train Naive Bayes and Support

Vector Machine (SVM) classifiers. We selected these classifiers because they represent

opposite ends of the spectrum in terms of their classification abilities. To evaluate the

strength of the models, we conducted a 10-fold analysis whereby 10% of the data is tested

against a model created from the remaining data. The test is repeated ten times by varying

the test data so that all of the data is used for testing. The average number of instances

classified correctly under 10-fold analysis for the Naive Bayes and SVM classifiers were 75%

and 76% respectively.

To generate the simulation data, we used the remaining 200 timing vectors from each

user were used as input to VMSim’s generation process to generate 200 new timing vectors

for each user. The same 200 samples were used for testing against the generated samples

in the classification experiments. Note that we only used fields corresponding to hold times

97

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30 35 40 45 50

c
o
rr

e
c
t
(%

)

subject #id

actual
 vmsim

Figure 6.5: Naive Bayes classification.

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

5 10 15 20 25 30 35 40 45 50

n
u
m

b
e
r

o
f
b
it
s

subject #id

actual
 vmsim

Figure 6.6: Entropy of generated and actual timing data.

98

Detector FP Rate TP Rate

Euclidean .05 .11

Manhattan .05 .10

Scaled Manhattan .05 .03

Table 6.1: Average true positive rates for three anomaly detectors tested against the simu-

lated keystroke timing data.

and inter-key latencies because the rest were not applicable to this work (they can also

contain negative values). The results of running the SVM and Naive Bayes classifiers on

the generated data and real data are presented in Figs. 6.4 and 6.5, respectively. The

results are nearly identical for these two classifiers suggesting that this particular type of

analysis would probably not be useful for an attacker attempting to distinguish the real

from generated actions.

In Fig. 6.6, we present a comparison of entropy values (the amount of information or

bits required to represent the data) [Lee and Xiang, 2001]for the actual and generated data

for each of the 200 timing vectors of the 51 test subjects. The results suggest that there is

no loss of information in our generation process that would be useful by an adversary that

is attempting distinguish real from generated actions.

6.2.2 Anomaly Detection Experiments

In a second set of experiments, we relied on several classic anomaly detection techniques

including the Euclidean distance [Duda et al., 2000], Manhattan distance, and scaled Man-

hattan distance [Araújo et al., 2005]. Each of these algorithms (among others) were evalu-

ated against one another in [Killourhy and Maxion, 2009]. The scaled Manhattan distance

was shown to have the best equal error rate among all algorithms tested. We selected it for

this reason and arbitrarily selected two others for comparison.

Our evaluation was performed by dividing the benchmark data set in half and using 200

password timing vectors from each user as training data. The remaining 200 timing vectors

from each user were used as input to VMSim’s generation process to generate 200 new

99

 0

 20

 40

 60

 80

 100

5 10 15 20 25 30 35 40 45 50

c
o
rr

e
c
t
(%

)

subject #id

Figure 6.7: True positive rates for anomaly detection using the Euclidean distance and a

threshold set with a .05 FP rate.

 0

 20

 40

 60

 80

 100

5 10 15 20 25 30 35 40 45 50

c
o
rr

e
c
t
(%

)

subject #id

Figure 6.8: True positive rates for anomaly detection using the Manhattan distance and a

threshold set with a .05 FP rate.

100

 0

 20

 40

 60

 80

 100

5 10 15 20 25 30 35 40 45 50

c
o
rr

e
c
t
(%

)

subject #id

Figure 6.9: True positive rates for anomaly detection using the (scaled) Manhattan distance

and a threshold set with a .05 FP rate.

timing vectors for each user. The same 200 samples were then used to establish thresholds

for each of the algorithms using a .05 false positive rate. We chose to use the .05 false

positive rate (as opposed to .01) to allow for greater resolution within the true positive

results. The results of each of the algorithms tested on the individual users are presented

in Figure 6.7 for the Euclidean distance, Figure 6.2.2 for the Manhattan distance, and

Figure 6.2.2 for the scaled Manhattan distance. Table 6.2.2 presents the mean true positive

rates for each of the algorithms on the generated timing vectors. Overall, the average true

positive rate across all of the algorithms tested was less than 10% suggesting that these

techniques alone would not be very effective in distinguishing the generated timing data.

6.3 Decoy Turing Test

We now discuss the results of a Turing Test [Turing, 1950] to demonstrate BotSwindler’s

performance regarding the humanness, or believability, of the generated simulations. The

point of this experiments is to show that adversaries resorting to manual inspection of

the user activities would be sufficiently challenged. Although the simulations are designed

to delude crimeware, here we focus on convincing humans, a task we posit to be a more

difficult feat, making the adversaries task of designing malware that discerns decoys far more

101

difficult. To conduct our initial study, we formed a pool of 25 human judges, consisting of

security-minded PhDs, graduate-level students, and security professionals. Their task was

to observe a set of 10 videos that capture typical user actions performed on a host and

make a binary decision about each video: real or simulated (i.e., whether the video shows

the actions of a real user or those of a simulator). 4.

Our goal was to demonstrate the believability of the simulated actions by showing fail-

ure of human judges to reliably distinguish between authentic human actions and those

generated with BotSwindler. Our videos contained typical user actions performed on a host

such as composing and sending an email message through Gmail, logging into a website of

a financial institution such as Citibank or PayPal, and editing text document using Word-

pad. For each scenario we generated two videos: one that captured the task performed by

a human and another one that had the same task performed by BotSwindler. Each video

was designed to be less than a minute long since we assumed that our judges would have

limited patience and would not tolerate long-running simulations.

The human generated video samples were created by an independent user who was

asked to perform sets of actions which were recorded with a desktop recording tool to

obtain the video. Similar actions by another user were used to generate keystroke timing

and error models, which could then be used by VMSim to generate keystroke sequences.

To generate mouse movements, we rely on movements recorded from a real user. Using

these, we experimentally determine upper and lower bounds for mouse movement speed

and replay the movements from the real user, but with a new speed randomized within

the determined limits. The keyboard and mouse sequences were merged with appropriate

simulator parameters such as credentials and URLs to form the simulated sequence which

was used to create the decoy videos.

Figure 6.10 summarizes the results of our initial study for each of the 10 videos. The

videos are grouped in per-scenario pairs in which the left bars correspond to simulated tasks,

while the right bars correspond to the tasks of authentic users on which the simulations are

based. The height of the bars reflects the number of judges that correctly identified the

4A screenshot of the webpage presented to the judges and the IRB approval for this study can be found

in Chapter 9.

102

given task as real or simulated. The overall success rate was ∼46%, which indicates that

VMSim achieves a good approximation of human behavior. The ideal success rate is 50%,

which suggests that judges cannot differentiate whether a task is simulated or real.

Figure 6.11 illustrates the overall performance of each judge from our first study. The

judges’ correctness varies greatly from 0% up to 90%. This variability can be attributed to

the fact that each judge interprets the same observed feature differently. For example, since

VMSim uses real user actions as templates to drive the simulation, it is able to include

advanced “humanized” actions inside simulations, such as errors in typing (e.g., invalid

typing of a URL that is subsequently corrected), TAB usage for navigating among form

fields, auto-complete utilization, and so forth. However, the same action (e.g., TAB usage

for navigating inside the fields of a web form) is assumed by some judges as a real human

indicator, while some others take it as a simulation artifact. This observation is clearly a

“toss up” as a distinguishing feature. In this study, feven the highly successful judges could

not achieve a 100% accuracy rate. This indicates that given a diverse and plentiful supply

of decoys, our system will be believable at some time. In other words, given enough decoys,

BotSwindler will eventually cause the malware to reveal itself.

We conducted a second study to see if the order in which the videos were presented to

the judges would make a difference. This time, instead of presenting judges with both real

and simulated videos for each scenario, we only gave them a single video for each scenario

that was either real or simulated. We also randomized the order in which the videos were

presented to the judges 5 to control for any bias that ordering may introduce.

The second study relied on a pool of twenty judges. The first ten judges were presented

with a list of 5 videos randomly selected between those showing real user actions and those

generated by VMSim. Judges 11-15 were given all real videos and judges 16-20 were given

videos of simulated actions with both sets serving as control groups. The results for each of

the judges are presented in Figure 6.12. Overall, their accuracy was 52%, reaffirming results

obtained in the first study and suggesting that the order of the videos was inconsequential.

We note that when looking at the control groups alone there appears to be a bias for judges

to choose real. The control group containing only simulated videos had an average of 20%

5The JavaScript used for the randomization is presented in Chapter 9.

103

 0

 20

 40

 60

 80

 100

C
itibank

G
m

ail

P
aypal

P
aypal #2

W
ordpad

m
ean

c
o
rr

e
c
t
(%

)

video pairs

bogus
real

Figure 6.10: Decoy Turing Test results: real vs. simulated.

correct (most judges chose real) whereas the control group given all real videos had an

average of 72% correct. The fact that we only presented judges with a single video for

each scenario (as opposed to one real and one simulated) may have contributed to this

result. This trend was not apparent in the first study. Moreover, in considering the overall

results for the 20 judges, the bias was not evident. Both studies produced results that are

statistically equivalent to 50% for significance p > .05.

The overall results indicate that simulations are highly believable by humans. In cases

where they may not be, it is important to remember that the task of fooling humans is

far harder than tricking malware, unless the adversary has solved the AI problem and

designed malware to answer the Turing Test. Furthermore, if attackers have to spend their

time looking at the actions one by one to determine if they are real or not, we consider

BotSwindler a success because that approach does not scale for the adversary.

6.4 Virtual Machine Verification Overhead

The overhead of the VMV in BotSwindler is controlled by several parameters including

the number of pixels in the screen selections, the size of the search area for a selection, the

number of possible states to verify at each point of time, and the number of pixels required to

104

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

m
e
a
n

c
o
rr

e
c
t
(%

)

judge #id

Figure 6.11: Judges’ overall performance in our initial study in which judges were presented

with real and bogus videos for each of the five senarios.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

c
o
rr

e
c
t
(%

)

judge id

Figure 6.12: Judges’ overall performance in our second study in which the order of the

videos were randomized and judges were presented with only a single video for each of five

scenarios.

105

match for positive verification. A key observation responsible for maintaining low overhead

is that the majority of the time, the VMV process results in a negative verification, which

is typically obtained by inspecting a single pixel for each of the possible states to verify.

The performance cost of this result is simply that of a few instructions to perform pixel

comparisons. The worst case occurs when there is a complete match in which all pixels are

compared (i.e., all pixels up to some predefined threshold). This may result in thousands

of instructions being executed (depending on the particular screen selection chosen by the

simulation creator), but it only happens once during the verification of a particular state. It

is possible to construct a scenario in which worse performance is obtained by choosing screen

selections that are common (e.g., found on the desktop) and almost completely matches

but results in a negative VMV outcome. In this case, obtaining a negative VMV result may

cost hundreds of thousands of CPU cycles. In practice, we have not found this scenario to

occur; moreover, it can be avoided by the simulation creator.

Table 6.2: Overhead of VMV with idle user.
Min. Max. Avg. STD

Native OS .48 .70 .56 .06

QEMU .55 .95 .62 .07

QEMU w/VMV .52 .77 .64 .07

Table 6.3: Overhead of VMV with active user.
Min. Max. Avg. STD

Native OS .50 .72 .56 .06

QEMU .57 .96 .71 .07

QEMU w/VMV .53 .89 .71 .06

In Table 6.2, we present the analysis of the overhead of QEMU6 with the BotSwindler

extensions. The table presents the amount of time, in seconds, to load web pages on our

test machine (2.33GHz Intel Core 2 Duo with 2GB 667MHz DDR2 SDRAM) with idle user

activity. The results include the time for a native OS, an unmodified version of QEMU

6QEMU does not support graphics acceleration, so all processing is performed by the CPU.

106

(version 0.10.5) running Windows XP, and QEMU running Windows XP with the VMV

processing a verification task (a particular state defined by thousands of pixels).

In Table 6.3, we present the results from a second set of tests where we introduce rapid

window movements forcing the screen to constantly be refreshed. By doing this, we ensure

that the BotSwindler VMV functions are repeatedly called. The results indicate that the

rapid movements do not impact the performance on the native OS, whereas in the case of

QEMU they result in a ∼15% slowdown. This is likely because QEMU does not support

graphics acceleration, so all processing is performed by the CPU. The time to load the web

pages on QEMU with the VMV is essentially the same as without it. This is true whether

the tests are done with or without user activity. Hence, we conclude that the performance

overhead of the VMV is negligible.

6.5 Detecting Real Malware with Bait Exploitation

To demonstrate the efficacy of our approach, we conducted two experiments using BotSwindler

against crimeware found in the wild. For the first experiment, we injected Gmail and Pay-

Pal decoys, and for second, we used decoy banking logins. The experiments relied on Zeus

because it is the largest botnet in operation. Zeus is sold as a crimeware kit allowing ma-

licious individuals to create and configure their own unique botnets. Hence, it functions as

a payload dissemination framework with a large number of variants. Despite the abundant

supply of Zeus variants, many are no longer functional because they require active command

and control servers to effectively operate. This requirement gives Zeus a relatively short life

span because these services become inactive (e.g., they are on a compromised host that is

discovered and sanitized). To obtain active Zeus variants, we subscribed to an active feed

of binaries at the Swiss Security blog, which has a Zeus Tracker [abu, 2009] and Offensive

Computing 7.

In our first experiment, we used 5 PayPal decoys and 5 Gmail decoys. We deliberately

limited the number of accounts to avoid upsetting the providers and having our access

removed. After all, the use of these accounts as decoys requires us to continuously poll the

7http://www.offensivecomputing.net

107

http://www.offensivecomputing.net

servers for unauthorized logins as described in Sect. 4.2.1, which could become problematic

with a large number of accounts. To further limit the load on the services, we limited the

BotSwindler monitoring to once every hour.

We constructed a BotSwindler sandbox environment so that any access to www.paypal.

com would be routed to a decoy website that replicates the look-and-feel of the true PayPal

site. This was done for two reasons. First, if BotSwindler accessed the real PayPal site,

it would be more difficult for the monitor to differentiate access by the simulator from an

attacker, which could lead to false positives. More importantly, hosting a phony PayPal

site enabled us to control attributes of the account (e.g., balance and verified status) to

make them more enticing to crimeware. We leveraged this ability to give each of our decoy

accounts unique balances in the range of $4,000 - $20,000 USD, whereas in the true PayPal

site, they have no balance. In the case of Gmail, the simulator logs directly into the real

Gmail site, since it does not interfere with monitoring of the accounts (we can filter on IP)

and there is no need to modify account attributes.

The decoy PayPal environment was setup by copying and slightly modifying the con-

tent from www.paypal.com to a restricted lab machine with internal access only. The

BotSwindler host machine was configured with NAT rules to redirect any access directed

to the real PayPal website to our test machine. The downside of using this setup is that we

lack a certificate to the www.paypal.com domain signed by a trusted Certificate Authority.

To mitigate the issue, we used a self-signed certificate that is installed as a trusted certifi-

cate on the guest. Although this is a potential distinguishing feature that can be used by

malware to detect the environment, existing malware is unlikely to check for this. Hence,

it remains a valid approach for demonstrating the use of decoys to detect malware in this

proof of concept experiment. The banking logins used in the second experiment do not

have this limitation, but they may not have the same broad appeal to attackers that make

PayPal accounts so useful.

The experiments worked by automating the download and installation of individual

malware samples using a remote network transfer. For each sample, BotSwindler conducted

various simulations designed from the VMSim language to contain inject actions, as well as

other cover actions. The simulator was run for approximately 20 minutes on each of the

108

www.paypal.com
www.paypal.com
www.paypal.com
www.paypal.com

116 binaries that were tested with the goal of determining whether attackers would take

and exploit the bait credentials. Over the course of five days of monitoring, we received

thirteen alerts from the PayPal monitor and one Gmail alert. We ended the study after five

days because the results obtained during this period were enough to convince us the system

worked8. The Gmail alert was for a Gmail decoy ID that was also associated with a decoy

PayPal account; the Gmail username was also a PayPal username and both credentials were

used in the same workflow (we associate multiple accounts to make a decoy identity more

convincing). Given that we received an alert for the PayPal ID as well, it is likely both sets

of credentials were stolen at the same time. Although the Gmail monitor does provide IP

address information, we could not obtain it in this case. This particular alert was generated

because Gmail detected suspicious activity on the account and locked it, so presumably the

intruder never got in.

We attribute the fewer Gmail alerts to the economics of the black market. Although

Gmail accounts may have value for activities such as spamming, they can be purchased

by the thousands for very little cost9 and there are inexpensive tools that can be used

to create them automatically. Hence, attackers have little incentive to build or purchase

a malware mechanism, and to find a way to distribute it to many victims, only to net

a bunch of relatively valueless Gmail accounts. On the other hand, high-balance verified

PayPal accounts represent something of significant value to attackers. The 2008 Symantec

Global Internet Security Threat Report [Symantec, 2008] lists bank accounts as being worth

$10-$1000 on the underground market, depending on balance.

For the PayPal alerts that were generated, we found that some alerts were triggered

within an hour after the corresponding decoy was injected, where other alerts occurred

days after. We believe this variability to be a consequence of attackers manually testing

the decoys rather than testing through some automatic means. In regards to the quantity

of alerts generated, there are several possible explanations that include:

• as a result of the one-to-many mapping between decoys and binaries, the decoys are

8We ended the study after 5 days, but a recent examination of the monitoring logs revealed alerts still

being generated months after.

9We have found Gmail accounts being sold at $20 per 1000.

109

exfiltrated to many different dropzones where they are then tested

• the decoy accounts are being sold and resold in the underground market where first

the dropzone owner checks them, then resell them to others, who then resell them to

others who check them

While the second case is conceivable for credentials of true value, our decoys lack any

balance. Hence, we believe that once this fact is revealed to the attacker during the initial

check, the attackers have no reason to keep the credentials or recheck them (lending support

for the first case). We used only five PayPal accounts with a one-to-many mapping to

binaries, making it impossible to know exactly which binary triggered the alert and which

scenario actually occurred. We also note that the number of actual attacks may be greater

than what was actually detected. The PayPal monitor polls only once per hour, so we do

not know when there are multiple attacks in a single hour. Hence, the number of attacks

we detected is a lower bound. In addition, despite our efforts to get active binaries, many

were found to be inactive, some cause the system to fail, and some have objectives other

than stealing credentials.

In the second experiment, we relied on several bank accounts containing balances over

$1,000 USD. In contrast with the PayPal experiments, this experiment relied on an actual

bank website with authentic SSL certificates. The bank account balances were frozen so

that money could not actually be withdrawn. We ran the simulator for approximately 10

minutes on 59 new binaries. Over the course of five days of monitoring, we received 3 alerts

from the collaborating financial institution. The point of these experiments is to show that

decoy injection can be useful tool for detecting crimeware that can be difficult to detect

through traditional means. These results validate the use of financial decoys for detecting

crimeware. A BotSwindler system fully developed as a deployable product would naturally

include many more decoys and a management system that would store information about

which decoy was used and when it was exposed to the specific tested host.

110

Figure 6.13: Enterprise Deployment of BotSwindler

6.6 Applications of BotSwindler in an Enterprise

Beyond the detection of malware using general decoys, BotSwindler is well suited for use

in an enterprise environment where the primary goal is to monitor for site-specific creden-

tial misuse and to profile attackers targeting that specific environment. Since the types of

credentials that are used within an enterprise are typically limited to business applications

for specific job functions, rather than general purpose uses, it is feasible for BotSwindler

to provide complete test coverage in this case. For example, typical corporate users have a

single set of credentials for navigating their company intranet. Corporate decoy credentials

could be used by BotSwindler in conducting simulations modeled after individuals within

the corporation. These simulations may emulate system administrative account usage (i.e.,

logging in as root), access to internal databases, editing of confidential documents, navi-

gating the internal web, and other workflows that apply internally. Furthermore, software

monocultures with similar configurations, such as those found in an enterprise, may simplify

the task of making a single instance of BotSwindler operable across multiple hosts.

Within the enterprise environment, BotSwindler can run simulations on a user’s system

when it is idle (e.g., during meetings, at night). Although virtual machines are common in

enterprise environments, in cases where they are not used, they can be created on demand

from a user’s native environment. In Figure 6.13 we show one possible application of

BotSwindler is in deployment as an enterprise service that runs simulations over exported

111

copies of multiple users’ disk images. In another approach, a user’s machine state could be

synchronized with the state of a BotSwindler enabled virtual machine [Cully et al., 2008].

Network

Bluetooth

Figure 6.14: Personal workstation environment in which decoys are injected over the Blue-

tooth protocol from a nearby location.

As an example of an alternative approach, we demonstrated how BotSwindler could

be extended to support the Bluetooth protocol in a personal workstation environment.

Figure 6.14 shows a depiction of this architecture in which decoys are injected from a

central location to several workstations in the nearby vicinity. The decoys are injected

over the Bluetooth proxy Bluemaemo10. The primary challenge with this architecture lies

in verifying the success and failure of simulated actions. Since this architecture does not

rely on virtualization, verification must be performed in another manor. An alternative

approach to performing the verification can be done using traffic analysis techniques to

detect deviations as error conditions. In particular, network level introspection is performed

by looking at the IPs of the traffic, the number of conversations, the number of exchanged

request/response messages, and the number of bytes transferred in each message. Despite

the fact that the traffic is encrypted, it turns out that there are differences that can be

observed at the network level when failures occur. The obvious drawback of this approach

is that it can only work on a subset of actions – those that induce network level observables.

An analysis of the drawbacks of this approach as well as implementation details can be

found in [Pappas et al., 2010].

10Webstie: http://wiki.maemo.org/Bluemaemo

112

These applications of BotSwindler can enable the approach to tackle the problem of mal-

ware performing long-term corporate reconnaissance. For example, malware might attempt

to steal credentials only after they have been repeatably used in the past. This elevates the

utility of BotSwindler from a general malware detector to one capable of detecting targeted

espionage software.

The application of BotSwindler to an enterprise would require adaptation for site-specific

things (e.g, internal URLs), but use of specialized decoys does not preclude the use of general

decoys like those detailed in Sect. 4.2. General decoys can help the organization identify

compromised internal users that could be, in turn, the target of blackmail, either with

traditional means or through advanced malware [Bond and Danezis, 2006].

6.7 Limitations and Open Problems

Our approach of detecting malware relies on the use of deception to trick malware to capture

decoy credentials. As part of this work, we evaluated the believability of the simulations,

but we did so in a limited way. In particular, our study measured the believability of short

video clips containing different user workflows. These types of workflows are adequate for the

detection of existing threats using short-term deception, but for certain use cases (such as

the enterprise service) it is necessary to consider long-term deception, and the believability

of simulation command sequences over extended periods of time. For example, adversaries

conducting long-term reconnaissance on a system may be able to discover some invariant

behavior of BotSwindler that can be used to distinguish real actions from simulated actions,

and thus avoid detection. To counter this threat, more advanced modeling is needed to be

able to emulate users over extended periods of time, as well as a study that considers the

variability of actions over time. For long-term deception, the types of decoys used must also

be considered. For example, some malware may only accept as legitimate those credentials

that it has seen several times in the past. We can have “sticky” decoy credentials of course,

but that negates one of their benefits (determining when a leak happened).

Malware may also be able to distinguish BotSwindler from ordinary users by attempting

to generate bogus system events that cause erratic system behavior. These can potentially

113

negatively impact a simulation and cause the simulator to respond in ways a real user would

not. In this case, the malware may be able to distinguish between authentic credentials and

our monitored decoys. Fortunately, erratic events that result in workflow deviations or

simulation failure are also detectable by BotSwindler because they result in a state that

cannot be verified by the VMV. When BotSwindler detects such events, it signals the host

is possibly infected. The downside of this strategy is that it may result in false positives.

As part our future work we will investigate how to measure and manage this threat using

other approaches that ameliorate this weakness.

6.8 Host System Summary

BotSwindler is a bait injection system designed to delude and detect crimeware by forcing it

to reveal itself during the exploitation of monitored decoy information. It relies on an out-of-

host software agent to drive user-like interactions in a virtual machine aimed at convincing

malware residing within the guest OS that it has captured legitimate credentials. As part

of this work we have demonstrated BotSwindler’s utility in detecting malware by means of

monitored financial bait that is stolen by real crimeware found in the wild and exploited by

the adversaries that control that crimeware. We have presented the results of experiments

that show how BotSwindler’s simulated workflows can be used to induce malware into

observable network action, which can then be detected. In anticipation of malware seeking

the ability to distinguish simulated actions from human actions, we designed our system to

be difficult to detect by the underlying architecture and the believable actions it generates.

To demonstrate the believability of the simulations, we conducted a Turing Test that showed

we could succeed in convincing humans about 46% of the time. We assert that if attackers

are forced to spend their time looking at the actions on each host it infects one by one

to determine if they are real or not in order to steal information, BotSwindler would be a

success; the crimeware’s task does not scale.

114

Chapter 7

Educating Users and Measuring

Organizational Security

In the previous chapters, we demonstrated systems that were intended to deceive attackers

by convincing them something is real when in-fact it is not. These systems, when successful,

expose attacks that might otherwise go unnoticed. In this chapter, we focus on reversing the

task by creating decoys that mimic attackers’ actions as a means of measuring organizational

security and educating users. Unlike the previous chapters where the goal was to detect

actions by malicious insiders or attackers, here we focus on the task of detecting innocent

actions by insiders that may put an organization at risk.

Social attacks include those that occur when an attacker uses any of a variety social

attack vectors that may range from email and telephone to in-person encounters. According

to the 2010 Verizon Data Breach Investigations Report [Baker et al., 2010], social attacks

were used in 28% of the breaches for 2009 and nearly a quarter of these attacks occurred

due to phishing. In these types of attacks, victims are sent spoofed emails that appear to

be benign notifications from a bank, a social networking site, or a software upgrade. When

victims take the bait, they are often greeted with some form of malicious software that

attempts to install itself on victim’s machine. Although there have been many technological

advances that seem to hold promise in stopping these attacks, so far, none of them have

proven 100% effective allowing the problem to continue. In fact, the vulnerability posed by

115

phishing is often exploited by crimeware distributors such as those addressed in Chapter 6.

The defense approach we are advocating in this chapter involves better educating users

to be cautious of suspicious emails. Although traditional training can be beneficial, it is

often not enough. Our technique involves testing users’ vulnerability using a variety of

decoy emails; those that fall victim to our phony phishing attacks are informed so that they

may learn and change their behavior later. Subsequent tests of the same users show that

this method works, although sometimes it takes several iterations of testing and teaching.

In addition to training users, our technique provides a valuable metric that can be used

by organizations to asses their own security and monitor for improvements. The field of

computer and communications security begs for a foundational science to guide our designs

of systems and to reveal the safety, security, and possible fragility of the complex systems

we depend upon today [Stolfo et al., 2011]. To achieve this goal we must devise suitable

metrics that can be used to objectively compare and evaluate alternative designs and the

security posture of the systems and organizations we have developed. For example, it is very

important for Chief Security Officers and the top management of modern organizations, in

business and government, to be given the tools they need to answer these fundamental

questions: Is my organization secure? Are the personnel sufficiently educated and trained

to minimize the risks to the organization? Is my organization complying with strict regu-

lations on managing and safeguarding sensitive data? How do I measure the security risk

of a new technology or service provided to our customers? These and many other related

questions are often answered qualitatively, if at all, but rarely are hard measurements pro-

vided to objectively and scientifically answer these questions. It is especially important to

answer these questions longitudinally over time, to understand whether the organizations

security posture has improved through employee training or the introduction of new se-

curity technologies, policies and practices, or not. With formal metrics, for the first time

it would be possible to measure the return on investment of any new security technology

fielded. Furthermore, a solid metric may be applied as a means of assessing the strength of

one organization relative to others.

The following subsections, we provide an overview of the system designed to create

the decoy emails. We then present the results of two rounds of experiments conducted

116

Figure 7.1: Components of the Phony Phish System.

at Columbia University in which approximately 4000 staff members and students were

targeted for training with the phony phishing emails. The approved Columbia University

IRB protocol is presented in Chapter 9.1.

7.1 Phony Phish System

The goal of the Phony Phish System is to provide an automatic means to generate and send

benign phishing emails that can be used to measure an organization’s security and educate

users. The system consists of several components as shown in Figure 7.1.

Crawler Module: This component was designed to crawl a directory and obtain a list

of target identities to perform the experiments on. For the experiments described in 7.2,

this module was used to search the Columbia University directory, select users, their role

within the university, and which department they belong to.

117

Email Generator: The email generator integrated all of the components and was used to

deliver emails for the experiments. This component takes real email as input and performs

processing on them to change names and using the Stanford Named Entity Recognition 1

engine. It also functions to anonymize user identify information through the use of unique

hashes. For the generation of beacon’ed documents, the email generator relies on the Decoy

Document Distributor introduced in chapter 4.

Web Application: A web application is used to collect user responses when they click on

links and submit forms containing credentials. It tracks responses using a base 64 encoded

query string that is attached to user requests. The system does not the store the identify

of users, only the time at which the link was clicked, the department that the user belongs

to, and the role of a user within the organization.

7.2 Experimental Analysis and Results

Experiments were conducted by sending 500 emails for each of four different types of decoy

emails. Using standard statistical techniques [Krejcie and Morgan, 1970], this sample size

was determined to be significant for measuring a single population parameter (i.e., will a

user open an email) with a 5% margin of error and 95% confidence for the approximately

70,000 IDs in the Columbia University directory. A second consideration for the choice of

using 500 was for practical reasons. Our intent was to have a sample size large enough

to draw scientifically significant conclusions without burdening an unnecessary number of

subjects. Although we had permission from the university, the subjects were unwitting

participants. The nature of this kind of experiment has the potential to cost users in both

time and aggravation. Given that this was our first attempt at such an experiment, we

decided we would start with 500 emails for each of the four types and adjust as necessary.

The decoy emails were modeled after various types of phishing attacks that occur in the

wild. All of the emails were sent using an external email account from a popular webmail

provider. Users that fell victim to the phony phishing emails were presented with the

1http://nlp.stanford.edu/ner/index.shtml

118

following message:

The Columbia University IDS Lab is conducting experiments designed to measure the se-

curity posture of large organizations and to educate users about safe practices so that they

avoid falling prey to malicious emails. The emails automatically generated and sent to users

of Columbias network and email system are designed to test whether users violate basic se-

curity policies. Although our emails are completely benign, please be aware that many emails

are sent that are designed to trick unsuspecting users into giving up identity information.

The four different types of emails and their results are summarized below:

• Email with internal URLs: The content of these emails were from email received

with an external source, but the URLs were changed to point to our IDS severs. The

goal of these emails were to see how many users bothered to look at the address of

the recipient before opening the email.

• Email with external URLs: The content of these emails was modified from emails

received with an external source. The emails were designed to lure those interested in

obtaining the Apple iPad. The URLs were changed to point to our external servers

in the .info domain.

• Forms to obtain credentials: The content of these emails contained links to forms

asking users for credentials to see how many users were willing to expose their cre-

dentials. Credentials were not stored.

• Beacon Documents: These emails contained PDF attachments that emitted a bea-

con to our servers when opened. The beacons were designed so that every user emitted

a unique response enabling us to track them. An evaluation of the beacons is provided

in Chapter 4.2.3.

Table 7.1 and Table 7.2 provide an overview of all of the results obtained from two

rounds of experiments. Over the course of several weeks, offenders were repeatedly targeted

until they stopped falling victim. The results between the two rounds of experiments were

fairly consistent. The most important point that can be gleaned from the data:

119

Table 7.1: The number of responses for each round for the first experiment to measure the

user response to Phony Phish.

Decoy Type 1st Round 2nd Round 3rd Round 4th Round

Email with internal URLs 52 2 0 NA

Email with external URLs 177 15 1 0

Forms to obtain credentials2 39/20 4/1 0 NA

Beacon Documents 45 0 NA NA

Table 7.2: The number of responses for each round for the second experiment to measure

the user response to Phony Phish.

Decoy Type 1st Round 2nd Round 3rd Round 4th Round

Email with internal URLs 69 7 1 0

Email with external URLs 176 10 3 0

Forms to obtain credentials 69/50 10/9 0 NA

Beacon Documents 71 2 0 NA

120

In all cases, users can be trained to be cautious of suspicious looking emails,

but sometimes it takes several iterations of testing. In our experiments, the

slowest learners took at most four iterations as shown in 7.2.

Some other observations are that it appears users are less likely to respond to emails

that appear to be from internal sources, but have an external sender address. These emails

were indeed suspicious because of this, but we do not have a good way to account for the

differences in the content. For example, the external emails (row 2) appear pertain to the

Apple iPad. At the time the emails were sent out, the emails would have been appealing to

the masses. On the other hand, the internal emails (row 1) resembled those distributed by

the university and are likely less appealing to the masses. Hence, there is insufficient data

to make any conclusion concerning these differences.

The number of users that actually entered their credentials to the bogus forms seemed

alarmingly high. We did not record the credentials and we did not validate them to ensure

they were valid. However, we believe it is likely that at least some of the users entered valid

credentials.

7.3 Metrics Conclusion

The previous sections provided an overview of our system designed to create phony phishing

emails. We presented the results of two rounds of experiments conducted at Columbia Uni-

versity in which approximately 4000 staff members and students were targeted for training

using the bogus phishing emails. The results presented in the previous section suggest that

users can be trained using decoy technology to be cognizant of potential threats. Apply-

ing the same set of organizations laterally across multiple organizations can be a useful in

measuring one organization’s security posture relative to another’s.

121

Part III

Conclusions

122

Chapter 8

Conclusions

This dissertation introduced many concepts, methods, and architectures aimed at trapping

a wide variety of potential attackers with varying levels of sophistication. The systems

presented in this dissertation introduced scalable and automated approaches toward a trap-

based defensive system. They cause attackers to have to expend considerable effort to

identify realistic useful information from bogus information that are intended to deceive.

Naturally, the probability of exposing a malicious insider with trap-based defense tactics

increases with the amount of decoy information that is generated and disseminated. As

part of this dissertation, we have shown that network and host decoys can be used to detect

attackers.

In summary, the main contributions of the dissertation include the following:

• Generally Applicable Properties: We have introduced a novel set of properties

to guide in the design of decoy systems. These properties serve as goals for decoys

and systems described in this dissertation.

• Automatic Generation of Decoys: A large-scale automated creation and man-

agement system for deploying decoys that can be used to detect malicious activity.

This provides a means for ordinary users to deploy honey documents without having

to setup sophisticated honeypot systems and sensors.

• Decoy Networking: We have demonstrated a system that shows the feasibility of

automatically generating large amounts of believable network decoys. We presented

123

results to show that this can be done without interfering with normal operations. We

used human subjects to evaluate the believability of the generated decoys and showed

that is difficult to distinguish from the real thing; our experienced judges achieved

only 52% accuracy on average, nearly equivalent to random guessing. We provided

a statistical analysis to show that the timing of the generated traffic is statistically

similar to that of the real traffic. We demonstrated decoy efficacy against automated

tools, designed to harvest and exploit credentials in mass by sniffing network trans-

missions. Moreover, we evaluated our system in a real wireless network that someone

was monitoring and successfully detected eavesdropping and exploitation attempts.

• Decoy Host System: For the decoy host system, we created BotSwindler, a bait

injection system designed to delude and detect crimeware causing it to reveal itself

during the exploitation of monitored decoy information. It relies on an out-of-host

software agent to drive user-like interactions in a virtual machine aimed at convincing

malware residing within the guest OS that it has captured legitimate credentials. As

part of this work we have demonstrated BotSwindler’s utility in detecting malware

by means of monitored financial bait that is stolen by real crimeware found in the

wild and exploited by the adversaries that control that crimeware. We have presented

the results of experiments that show how BotSwindler’s simulated workflows can be

used to induce malware into observable network action, which can then be detected.

In anticipation of malware seeking the ability to distinguish simulated actions from

human actions, we designed our system to be difficult to detect by the underlying

architecture and the believable actions it generates. To demonstrate the believability

of the simulations, we conducted a Turing Test that showed we could succeed in

convincing humans about 46% of the time. We assert that if attackers are forced to

spend their time looking at the actions on each host it infects one by one to determine

if they are real or not in order to steal information, BotSwindler would be a success;

the crimeware’s task does not scale.

• Security Metrics: We introduced an expanded role for decoys to show that they can

also be useful for educating users and measuring an organization’s security posture.

124

The field of computer and communications security begs for a foundational science to

guide our designs of systems and to reveal the safety, security, and possible fragility

of the complex systems we depend upon today. As we have shown, the use of decoys

is a promising direction for gathering security metrics and training users on their

innocent mistakes. We presented the results of two rounds of experiments conducted

at Columbia University in which approximately 4000 staff members and students

were targeted for training using the bogus phishing emails. The results presented in

the previous section suggest that users can be trained using decoy technology to be

cognizant of potential threats.

The use of decoy technology as a cyber defense strategy is relatively immature, but it

is an area for which their are significant opportunities for defenders. Although the threats

and adversaries may vary, in each context where a system is threatened, decoys can be used

to deny critical information to adversaries making it harder for them to achieve their target

goal.

125

Part IV

Appendices

126

Chapter 9

Experimental Details

This Appendix includes the IRBs and miscellaneous code referenced in the previous chap-

ters.

9.1 IRB Approvals

Research studies that rely on human subjects for testing require approval from the university

institutional board (IRB). Figure 9.1 presents the approval from the IRB for the Turing

Test studies in Chapters 5 and 6.3. Figure 9.2 presents the approval from the IRB for the

user studies presented in Chapter 7.

9.2 BotSwindler Study Description

Figure 9.3 presents a screenshot of the webpage used for the study in Chapter 6.3. An

abbreviated version of the JavaScript that was used to randomize the order of the links to

videos is presented in Chapter 9.4.

127

Printed On: 08/30/2008 at 14:06 page 1 of 1

Columbia University Human Subjects Study Description Data Sheet
Protocol: IRB-AAAC4240(Y1M00) Protocol Status: Approved Effective Date: 05/28/2007

Expiration Date: 05/27/2009

Originating Department: COMPUTER SCIENCE (167)

Submitting To: Morningside

Title: Insider Threat/Masquerader Detection

Sponsor Protocol Version#:

Abbreviated title: Insider Threat Detection

IRB of record: Columbia University Morningside

IRB number used by the

IRB of record:

Affiliated Institutions: -Standard Columbia Submission
Protocol Begin Date: 05/01/2007
Protocol End Date: 11/30/2009

05/27/2009

Principal Investigator: Salvatore Stolfo (167)

Study Description

The study will assess proposed statistical features used to represent the behavior of a typical computer user and to use
said features to model a specific user's actions. We seek to augment typical computer security features (such as user
names and passwords or pins) with behavior information to authenticate a user and prevent unwanted harmful actions.

Printed On: 08/30/2008 at 14:06 page 1 of 1

Figure 9.1: Columbia University IRB for Turing Test user studies

128

Morningside Institutional Review Board
Protocol Number: #IRB-AAAE9056

Principal Investigator: Salvatore Stolfo
Originating Department: COMPUTER SCIENCE - 167

IRB Approval Date: 01/21/2010
Expiration Date: 01/20/2012

Title: Measuring the Security Posture of Large Financial Enterprises: The Human Factor

01/20/2012
This is to certify that the above noted protocol has been approved by the Columbia University Morningside IRB and is valid through 01/20/2012.

Figure 9.2: Columbia University IRB for the metrics user study

129

BotSwindler Evaluation

 The rapid growth of the underground economy that trades in stolen digital credentials has
spurred the growth of crimeware-driven bots that harvest sensitive data from unsuspecting users.
This form of malevolent software employs a variety of techniques from web-based form grabbing
and key stroke logging, to screenshots and video capture for purposes of pilfering data on remote
hosts to automate financial crime.
 We designed and implemented a virtual machine based bait injection system designed to delude
and detect crimeware by forcing it to reveal itself during the exploitation of monitored information.
BotSwindler relies upon an out-of-host software agent to drive user simulations that that are meant
to convince malware residing within the guest OS that it has captured legitimate credentials.

 The important question that needs to be answered, however, is the following: are the synthetic
simulations believable? That is, can simulations be distinguished from authentic user actions? This
is where we need your help.

Below you can find links to five (5) videos. Each one contains either the captured actions of a real
user performing a specific task or it is the result of our synthesis. We ask you to assume an
adversarial role; observe each video and try to determine if it is real or not.

•For each scenario in the lower right, record the name and click on the video. It will open in a new window.
•Decide which of the videos are real and which are bogus. Please remember to record the name.
•Give a reason for your decision. For example, if there was some anomaly state it, or if you could not decide, you

can state that you simply guessed.
•Please do not discuss the results with your peers until the experiment is complete because we may ask them to

help in the evaluation, too.

Send your results via email

To: bmbwen_at_cs.columbia.edu
Subject: VM Believability Study

Body:

citi_0.avi real/bogus reason

citi_1.avi real/bogus reason

 ...

Scenario I
A-Paypal 0b

Scenario II
A-Citi 0

Scenario III
A-Wordpad 1

Scenario IV
A-Paypal 1

Scenario V
A-Gmail 1

Figure 9.3: The description of the user study given to each of the participants.

130

<s c r i p t language=”JavaScr ipt”>

var u r l s = new Array (5) ;

f o r (var i = 0 ; i < 5 ; i++) {

u r l s [i] = new Array (2) ;

}

u r l s [0] [0] = ”<a h r e f=” p a t h t o c i t i 0 . av i”>A−C i t i 0 ”

u r l s [0] [1] = ”<a h r e f=” p a t h t o c i t i 1 . av i”>A−C i t i 1”

u r l s [1] [0] = ”<a h r e f=”path to gma i l 0 . av i”>A−Gmail 0”

u r l s [1] [1] = ”<a h r e f=”path to gma i l 1 . av i”>A−Gmail 1”

. . .

// Sort the ar rays randomly

u r l s . s o r t (func t i on () { re turn 0 .5 − Math . random ()})

f o r (var i = 0 ; i < 5 ; i++) {

u r l s [i] . s o r t (func t i on () { re turn 0 .5 − Math . random () }) ;

}

</s c r i p t>

<body><dl>

<dt>Scenar io I</dt>

<dd><s c r i p t type=”text / j a v a s c r i p t”>document . wr i t e (u r l s [0] [0]) ;

</s c r i p t> </dd>

<dt>Scenar io I I</dt>

<dd><s c r i p t type=”text / j a v a s c r i p t”>document . wr i t e (u r l s [1] [0]) ;

</s c r i p t ></dd>

. . .

</dl></body></html>

Figure 9.4: JavaScript to randomize the links to videos in the BotSwindler study.

131

Part V

Bibliography

132

Bibliography

[18 U.S.C §2511 P1, 2010] 18 U.S.C §2511 P1. Title 18, part 1, chapter 119, 2010. http:

//www.law.cornell.edu/uscode/18/2510.html.

[18 U.S.C §§3121-3127, 2010] 18 U.S.C §§3121-3127. Title 18, part 2, chapter 206,

2010. http://www.law.cornell.edu/uscode/html/uscode18/usc_sup_01_18_10_II_

20_206.html.

[abu, 2009] abuse.ch zeus tracker, November 2009.

[Ahmed and Traore, 2007] Ahmed Awad E. Ahmed and Issa Traore. A New Biometric

Technology Based on Mouse Dynamics. IEEE Transactions on Dependable and Secure

Computing (TDSC), 4(3):165–179, 2007.

[Akritidis et al., 2007] Periklis Akritidis, W Y Chin, Vinh The Lam, Stelios Sidiroglou,

and Kostas G Anagnostakis. Proximity breeds danger: Emerging threats in metro-area

wireless networks. In Proceedings of the 16th USENIX Security Symposium, pages 323–

338, August 2007.

[AntiSniff, 2009] AntiSniff. L0pht Heavy Industries, 2009. http://packetstormsecurity.

org/sniffers/antisniff/.

[Araújo et al., 2005] Ĺıvia C. F. Araújo, Luiz H. R. Sucupira Jr., Miguel G. Lizárrage,

Lee L. Ling, and João B. T. Yabu-Uti. User authentication through user authentica-

tion through typing biometrics features. IEEE Transactions on Signal Processing, 53

Issue:2:851–855, 2005.

133

http://www.law.cornell.edu/uscode/18/2510.html
http://www.law.cornell.edu/uscode/18/2510.html
http://www.law.cornell.edu/uscode/html/uscode18/usc_sup_01_18_10_II_20_206.html
http://www.law.cornell.edu/uscode/html/uscode18/usc_sup_01_18_10_II_20_206.html
http://packetstormsecurity.org/sniffers/antisniff/
http://packetstormsecurity.org/sniffers/antisniff/

[Baker et al., 2010] Wade Baker, Mark Goudie, Alexander Hutton, C. David Hylender, Jelle

Niemantsverdriet, Chistopher Novak, David Ostertag, Chistopher Porter, Mike Rosen,

Bryan Sartin, and Peter Tippett. 2010 Data Breach Report. Technical report, Verizon

Risk Team and the United States Secret Service, 2010.

[Beck and Tews, 2009] Martin Beck and Erik Tews. Practical attacks against wep and wpa.

In Proceedings of the 2nd ACM Conference on Wireless Network Security (WiSec), pages

79–86, March 2009.

[Bell and Whaley, 1982] J. Bell and B. Whaley. Cheating and Deception. Transaction Pub-

lishers, New Brunswick, NJ, 1982.

[Bellard, 2005] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proc. of

USENIX Annual Technical Conference, pages 41–46, Anaheim, CA, USA, April 2005.

[Bittau et al., 2006] Andrea Bittau, Mark Handley, and Joshua Lackey. The final nail in

wep’s coffin. In Proceedings of the 27th IEEE Symposium on Security and Privacy, pages

386–400, May 2006.

[Bond and Danezis, 2006] Mike Bond and George Danezis. A pact with the devil. In Proc.

of the New Security Paradigms Workshop (NSPW), pages 77–82, Dagstuhl, Germany,

September 2006.

[Borders et al., 2006] Kevin Borders, Xin Zhao, and Atul Prakash. Siren: Catching evasive

malware. In Proc. of the IEEE Symposium on Security and Privacy (S&P), pages 78–85,

Oakland, CA, USA, May 2006.

[Chandrasekaran et al., 2007] Madhusudhanan Chandrasekaran, S. Vidyaraman, and

S. Upadhyaya. Spycon: Emulating user activities to detect evasive spyware. In Proc.

of the Performance, Computing, and Communications Conference (IPCCC), pages 502–

509, New Orleans, LA, USA, May 2007.

[Chen and Noble, 2001] Peter M. Chen and Brian D. Noble. When virtual is better than

real. In Proc. of the 8th Workshop on Hot Topics in Operating System (HotOS), pages

133–138, Washington, DC, USA, May 2001.

134

[Clark and Wilson, 1987] D.D. Clark and D.R. Wilson. A comparison of commercial and

military computer security policies. pages 184–194, 1987.

[Core Security, 2010] Core Security. Core impact pro, 2010.

[Cracknell et al., 2008] Phil Cracknell, Konstantin Gavrilenko, and Andrew Vladimirov.

The wireless security survey of new york city. White paper 4th edition, RSA, The Security

Division of EMC, 2008.

[Cully et al., 2008] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm

Hutchinson, and Andrew Warfield. Remus: High availability via asynchronous virtual

machine replication. In Proc. of the USENIX Symposium on Networked Systems Design

and Implementation (NSDI), pages 161–174, San Francisco, CA, USA, April 2008.

[Detristan et al., 2003] T. Detristan, T. Ulenspiegel, M.S., and Von Underduk. Polymorphic

shellcode engine using spectrum analysis. Phrack 11, 61-9, 2003.

[Dovrolis et al., 2004] Constantinos Dovrolis, Parameswaran Ramanathan, and David

Moore. Packet-dispersion techniques and a capacity-estimation methodology.

IEEE/ACM Transactions on Networking (TON), 12(6):963–977, December 2004.

[Duda et al., 2000] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classi-

fication. Wiley-Interscience, 2000.

[Early et al., 2003] James P. Early, Carla E. Brodley, and Catherine Rosenberg. Behavioral

authentication of server flows. In Proceedings of the 19th Annual Computer Security

Applications Conference (ACSAC), page 4, 2003.

[Egele et al., 2007] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn

Song. Dynamic spyware analysis. In Proc. of the USENIX Annual Technical Conference,

pages 233–246, Santa Clara, CA, USA, June 2007.

[Garfinkel and Rosenblum, 2003] Tal Garfinkel and Mendel Rosenblum. A virtual machine

introspection based architecture for intrusion detection. In Proc. of Network and Dis-

tributed Systems Security Symposium (NDSS), San Diego, CA, USA, February 2003.

135

[Gianvecchio and Wang, 2007] Steven Gianvecchio and Haining Wang. Detecting covert

timing channels: an entropy-based approach. In Proceedings of the 14th ACM conference

on Computer and communications security, pages 307–316, 2007.

[Graham, 2007] Robert Graham. Sidejacking with hamster. Technical report, Errata Secu-

rity, 2007.

[Grundschober and Dacier, 1998] Stephane Grundschober and Marc Dacier. Design and

implementation of a sniffer detector. In Proceedings of the 1st International Workshop

on the Recent Advances in Intrusion Detection (RAID), September 1998.

[Hall et al., 2009] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter

Reutemann, and Ian H. Witten. The WEKA Data Mining Software: An Update. ACM

SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

[Higgins, 2009] Kelly Jackson Higgins. Up to 9 percent of machines in an enterprise are

bot-infected, September 2009.

[Holz et al., 2009] Thorsten Holz, Markus Engelberth, and Felix Freiling. Learning More

about the Underground Economy: A Case-Study of Keyloggers and Dropzones, volume

5789 of Lecture Notes in Computer Science (LNCS), pages 1–18. Springer Berlin /

Heidelberg, September 2009.

[Hping,] Hping. Active Network Security Tool. http://www.hping.org.

[Ilett, 2005] Dan Ilett. Trojan attacks microsoft’s anti-spyware, February 2005.

[Jay et al., 2007] Caroline Jay, Mashhuda Glencross, and Roger Hubbol. Modeling the

effects of delayed haptic and visual feedback in a collaborative virtual environment. ACM

Transactions on Computer-Human Interaction, 14 No. 2, 2007.

[Jiang and Wang, 2007] Xuxian Jiang and Xinyuan Wang. “Out-of-the-Box” monitoring of

vm-based high-interaction honeypots. In Proc. of the 10th International Symposium on

Recent Advances in Intrusion Detection (RAID), pages 198–218, Cambridge, MA, USA,

September 2007.

136

http://www.hping.org

[Jones et al., 2006] Stephen. T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. Antfarm: Tracking processes in a virtual machine environment. In Proc. of the

USENIX Annual Technical Conference, pages 1–14, Boston, MA, USA, March 2006.

[Katz and Lindell, 2007] John Katz and Yehuda Lindell. Introduction to Modern Cryp-

tography: Principles and Protocols. Chapman & Hall/Crc Cryptography and Network

Security Series, 2007.

[Killourhy and Maxion, 2009] Kevin S. Killourhy and Roy A. Maxion. Comparing Anomaly

Detectors for Keystroke Dynamics. In 39th Annual International Conference on De-

pendable Systems and Networks (DSN), Los Alamitos, CA, USA, June-July 2009. IEEE

Computer Society Press.

[Krejcie and Morgan, 1970] R. V. Krejcie and D. W. Morgan. Determining sample size for

research activities. Educational and psychological measurement, 30:607–610, 1970.

[Krishnan et al., 2010] Srinivas Krishnan, Kevin Snow, and Fabian Monrose. Trail of bytes:

Efficient support for forensic analysis. In Proceedings of the 17th ACM conference on

Computer and Communications Security, pages 50–60, Chicago, Illinois, USA, 2010.

[Kumaraguru et al., 2007] Ponnurangam Kumaraguru, Yong Rhee, Alessandro Acquisti,

Lorrie F. Cranor, Jason Hong, and Elizabeth Nunge. Protecting people from phishing:

The design and evaluation of an embedded training email system. In Proceedings of

the SIGCHI conference on Human factors in computing systems (CHI ’07), San Jose,

California, 2007.

[Lee and Xiang, 2001] Wenke Lee and Dong Xiang. Information-Theoretic Measures for

Anomaly Detection. In IEEE Symposium on Security and Privacy (S&P), pages 130–

143, Washington, DC, USA, 2001. IEEE Computer Society.

[Li et al., 2007] Wei-jen Li, Salvatore Stolfo, Angelos Stavrou, Elli Androulaki, and Ange-

los D. Keromytis. A study of malcode-bearing documents. In Proceedings of the 4th

international conference on Detection of Intrusions and Malware, and Vulnerability As-

sessment DIMVA), pages 231–250, Berlin, Heidelberg, 2007. Springer-Verlag.

137

[Li et al., 2008] Mingzhe Li, Mark Claypool, and Robert Kinicki. Wbest: a bandwidth esti-

mation tool for ieee 802.11 wireless networks. In Proceedings of the 33rd IEEE Conference

on Local Computer Networks (LCN), pages 374–381, October 2008.

[Matwyshyn et al., 2010] Andrea Matwyshyn, Ang Cui, Angelos D. Keromytis, and S. J.

Stolfo. Ethics in security vulnerability research. IEEE Security and Privacy, Basic

Training (R. Ford and D. Frincke, Eds.), 2010.

[McGlasson, 2007] Linda McGlasson. Tjx update: Breach worse than reported. Article,

Bank Info Security, 2007.

[McRae and Vaughn, 2007] Craig M. McRae and Rayford B. Vaughn. Phighting the

phisher: Using web bugs and honeytokens to investigate the source of phishing attacks.

In Proceedings of the 40th Hawaii International Conference on System Sciences (HICSS),

pages 270c – 270c, Washington, DC, USA, 2007. IEEE Computer Society.

[Medina et al., 2002] Alberto Medina, Nina Taft, Kav Salamatian, Supratik Bhattacharyya,

and Christophe Diot. Traffic matrix estimation: Existing techniques and new directions.

ACM SIGCOMM Computer Communication Review, 32(4):161–174, October 2002.

[Messmer, 2009] Ellen Messmer. America’s 10 most wanted botnets, July 2009.

[Mini router, 2009] Mini router. Open-Mesh, 2009. http://www.open-mesh.com.

[Monrose and Rubin, 1997] Fabian Monrose and Aviel Rubin. Authentication via

Keystroke Dynamics. In 4th ACM Conference on Computer and Communications Se-

curity (CCS). ACM, April 1997.

[Morse, 2009] Andrew Morse. Google’s gmail service suffers another shutdown glitch. Ar-

ticle, Wall Street Journal, 2009.

[New York State Office of Cyber Security & Critical Infrastructure Coordination, 2005]

New York State Office of Cyber Security & Critical Infrastructure Coordination. Gone

phishing. A Briefing on the Anti-Phishing Exercise Initiative for New York State

Government. Aggregate Exercise Results for public release., 2005.

138

http://www.open-mesh.com

[nuttcp, 2010] nuttcp, 2010. ftp://ftp.lcp.nrl.navy.mil/u/bill/beta/nuttcp/.

[Ohm et al., 2007] Paul Ohm, Douglas C. Sicker, and Dirk Grunwalk. Legal issues sur-

rounding monitoring during network research. In Proceedings of the 7th ACM SIGCOMM

conference on Internet measurement, pages 141–148, San Diego, CA, USA, 2007. ACM.

[OpenWRT, 2009] OpenWRT. OpenWRT, 2009. http://www.openwrt.org.

[Oudot, 2004] Laurent Oudot. Wireless honeypot countermeasures. Technical report, Se-

curityFocus, 2004.

[Pappas et al., 2010] Vasilis Pappas, Brian M. Bowen, and Angelos D. Keromytis. Short

paper: Crimeware swindling without virtual machines. In Proceedings of the 13th Infor-

mation Security Conference (ISC), Boca Ratan, FL, USA, 2010. Springer.

[Payne et al., 2007] Bryan D. Payne, Martim Carbone, and Wenke Lee. Secure and flexible

monitoring of virtual machines. In Proceedings of the 23rd Annual Computer Security

Applications Conference (ACSAC 2007), December 2007.

[Peng et al., 2006] Pai Peng, Peng Ning, and Douglas S. Reeves. On the secrecy of timing-

based active watermarking trace-back techniques. In Proceedings of the 2006 IEEE Sym-

posium on Security and Privacy, 2006.

[Pereira, 2007] Joseph Pereira. How credit-card data went out wireless door. Article, Wall

Street Journal, 2007.

[Phishme.com, 2011] Phishme.com. Phishme.com, 2011.

[Richardson, 2009] R. Richardson. Csi computer crime and security survey. Technical

report, CERT, 2009.

[Scapy,] Scapy. http://www.secdev.org/projects/scapy/.

[Shneiderman, 1984] Ben Shneiderman. Response time and display rate in human perfor-

mance with computers, September 1984.

[Smith, 2000] R. M. Smith. Microsoft word documents that phone home. 2000.

139

ftp://ftp.lcp.nrl.navy.mil/u/bill/beta/nuttcp/
http://www.openwrt.org
http://www.secdev.org/projects/scapy/

[Sommers and Barford, 2004] Joel Sommers and Paul Barford. Self-configuring network

traffic generation. In Proceedings of the 4th ACM SIGCOMM Internet Measurement

Conference (IMC), pages 68–81, October 2004.

[Song et al., 2007] Yingbo Song, Michael E. Locasto, Angelos Stavrou, Angelos D.

Keromytis, and Salvatore J. Stolfo. On the infeasibility of modeling polymorphic shell-

code. In Proc. of the 14th ACM conference on Computer and Communications Security

(CCS), pages 541–551, Alexandria, VA, USA, 2007.

[Song, 2011] Yingbo Song. Network traffic-behavior modeling, synthesis, and anonymiza-

tion. Thesis Proposal, 2011.

[Spitzner, 2003a] Lance Spitzner. Honeypots: Catching the insider threat. In Proceedings of

the 19th Annual Computer Security Applications Conference (ACSAC), pages 170–179,

December 2003.

[Spitzner, 2003b] Lance Spitzner. Honeytokens: The other honeypot. Technical report,

SecurityFocus, 2003.

[Srivastava and Giffin, 2008] Abhinav Srivastava and Jonathon Giffin. Tamper-resistant,

application-aware blocking of malicious network connections. In Proc. of the 11th Inter-

national Symposium on Recent Advances in Intrusion Detection (RAID), pages 35–58,

Cambridge, MA, USA, September 2008.

[Stolfo et al., 2011] Sal Stolfo, Steven Bellovin, and David Evans. Measuring security. IEEE

Security & Privacy Magazine, pages 72–77, 2011.

[Stoll, 1988] Clifford Stoll. Stalking the wily hacker. Communications of the ACM,

31(5):484, May 1988.

[Sthlberg, 2007] Mika Sthlberg. The trojan money spinner. Technical report, F-Secure

Corporation, September 2007.

[Symantec, 2008] Symantec. Trends for july - december ’07. White paper, April 2008.

[Tcpreplay, 2009] Tcpreplay, 2009. http://tcpreplay.synfin.net/trac/.

140

http://tcpreplay.synfin.net/trac/

[The Honeynet Project, 2003] The Honeynet Project. Know your enemy: Sebek, a kernel

based data capture tool. Technical report, 2003.

[The Honeynet Project, 2010] The Honeynet Project, 2010. http://www.honeynet.org.

[the madwifi project, 2009] the madwifi project, 2009. http://madwifi-project.org.

[top, 2009] Researcher uncovers massive, sophisticated trojan targeting top businesses, July

2009.

[Tsow et al., 2006] Alex Tsow, Markus Jakobsson, Liu Yang, and Susanne Wetzel. Warkit-

ting: the drive-by subversion of wireless home routers. Journal of Digital Forensic Prac-

tice, 1(3):179–192, 2006.

[Turing, 1950] Alan Mathison Turing. Computing machinery and intelligence. Mind, New

Series, 59(236):433–460, October 1950.

[Vahdat et al., 2002] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan

Kostic, Jeff Chase, and David Becker. Scalability and accuracy in a large-scale network

emulator. ACM SIGOPS Operating Systems Review, 36:271–284, December 2002.

[Vishwanath and Vahdat, 2009] Kashi Venkatesh Vishwanath and Amin Vahdat. Swing:

Realistic and responsive network traffic generation. IEEE/ACM Transactions on Net-

working (TON), 17(3):712–725, June 2009.

[Wall of Sheep, 2009] Wall of Sheep, 2009. http://www.wallofsheep.com/.

[Willems et al., 2007] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward auto-

mated dynamic malware analysis using cwsandbox. In Proc. of the IEEE Symposium on

Security and Privacy (S&P), pages 32–39, Oakland, CA, USA, March 2007.

[xvf, 2009] Xvfb(1), November 2009.

[Yin et al., 2007] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin

Kirda. Panaroma: Capturing system-wide information flow for malware detection and

analysis. In Proc. of the 14th ACM conference on Computer and Communications Security

(CCS), pages 116–127, Alexandria, VA, USA, 2007.

141

http://www.honeynet.org
http://madwifi-project.org
http://www.wallofsheep.com/

[Yuill et al., 2004] Jim Yuill, Mike Zappe, Dorothy Denning, and Fred Feer. Honeyfiles:

Deceptive files for intrusion detection. In Proceedings of the 5th Annual IEEE SMC

Information Assurance Workshop (IAW), pages 116–122, June 2004.

[Yuill et al., 2006] J. Yuill, D. Denning, and F. Feer. Using deception to hide things from

hackers : Processes, principles, and techniques. Journal of Information Warfare, 5(3):26–

40, November 2006.

[Zalewski, 2006] Michal Zalewski. [the new p0f], 2006. http://lcamtuf.coredump.cx/

p0f.shtml.

[zeu, 2009] Measuring the in-the-wild effectiveness of antivirus against zeus. Technical re-

port, Trusteer, September 2009.

142

http://lcamtuf.coredump.cx/p0f.shtml
http://lcamtuf.coredump.cx/p0f.shtml

	1 Introduction
	1.1 Contributions
	1.2 Dissertation Organization

	I Related Work and Decoy Properties
	2 Related Work
	2.1 Decoy Properties
	2.2 Decoy Documents
	2.3 Decoy Networking
	2.4 Host-based Decoys
	2.5 Educating Users and Measuring Organizational Security

	3 Design Goals
	3.1 Threat Model - Level of Sophistication of the Attacker
	3.2 Decoy Properties
	3.3 Design Goals Summary

	II Decoy Systems
	4 Design and Generation of Decoys
	4.1 Decoy Documents
	4.1.1 Honeytokens
	4.1.2 Beacon Implementation
	4.1.3 Embedded Marker implementation

	4.2 Trap-based Decoys
	4.2.1 PayPal Decoy Analysis
	4.2.2 Gmail Decoy Analysis
	4.2.3 Beacon Implementation Tests

	4.3 Perfectly Believable Decoys
	4.3.1 Detecting Perfectly Believable Decoys

	4.4 Masquerade detection using Decoy Documents as Bait
	4.4.1 Experimental Setup
	4.4.2 Experimental Results

	4.5 Design and Generation of Decoys Summary

	5 Decoy Networking
	5.1 Platform Implementation
	5.1.1 Automated Decoy Traffic Generator
	5.1.2 Statistically Similar Temporal Features
	5.1.3 Decoy Broadcaster

	5.2 Detecting Snoopers
	5.2.1 Defcon Experiment
	5.2.2 Massive Cookie Harvesting

	5.3 Believability of Bogus Traffic: A Decoy Turing Test
	5.3.1 Results and Discussion

	5.4 Statistical and Information Theoretic Analysis
	5.4.1 Evaluation Data
	5.4.2 Classification Experiments
	5.4.3 Kolmogorov-Smirnov Tests
	5.4.4 Entropy Tests

	5.5 Interference Measurements
	5.5.1 Experimental Setup
	5.5.2 Results and Discussion

	5.6 Legal Considerations
	5.7 Limitations and Open Problems
	5.8 Decoy Networking Summary

	6 Decoy Host System
	6.0.1 Overview of Results
	6.1 BotSwindler Components
	6.1.1 VMSim
	6.1.2 Virtual Machine Verification

	6.2 Statistical and Information Theoretic Analysis
	6.2.1 Classification Experiments
	6.2.2 Anomaly Detection Experiments

	6.3 Decoy Turing Test
	6.4 Virtual Machine Verification Overhead
	6.5 Detecting Real Malware with Bait Exploitation
	6.6 Applications of BotSwindler in an Enterprise
	6.7 Limitations and Open Problems
	6.8 Host System Summary

	7 Educating Users and Measuring Organizational Security
	7.1 Phony Phish System
	7.2 Experimental Analysis and Results
	7.3 Metrics Conclusion

	III Conclusions
	8 Conclusions

	IV Appendices
	9 Experimental Details
	9.1 IRB Approvals
	9.2 BotSwindler Study Description

	V Bibliography
	Bibliography

