
Trust Management and Network Layer Security

Protocols

Matt Blaze1 and John Ioannidis1 and Angelos D. Keromytis2

1 AT&T Laboratories { Research
fmab,jig@research.att.com
2 Distributed Systems Labs

CIS Department, University of Pennsylvania
angelos@dsl.cis.upenn.edu

1 Introduction

Network-layer security among mutually trusting hosts is a relatively straightfor-
ward problem to solve. The standard protocol technique, employed in IPSEC
[KA98], involves \encapsulating" an encrypted network-layer packet inside a
standard network packet, making the encryption transparent to intermediate
nodes that must process packet headers for routing, etc. Outgoing packets are au-
thenticated, encrypted, and encapsulated just before being sent to the network,
and incoming packets are decapsulated, veri�ed, and decrypted immediately
upon receipt[IB93]. Key management in such a protocol is similarly straight-
forward in the simplest case. Two hosts can use any key-agreement protocol
to negotiate keys with one another, and simply use those keys as part of the
encapsulating and decapsulating packet transforms.

In many applications, security at the network later has a number of advan-
tages over security provided elsewhere in the protocol stack. Network semantics
are usually hidden from applications, which therefore automatically and trans-
parently take advantage of whatever network-layer security services their envi-
ronment provides. Especially importantly, the network layer o�ers a remarkable
exibility not possible at higher- or lower- abstractions: security can be con�g-
ured end-to-end (protecting tra�c between two hosts), route-to-route (protect-
ing tra�c passing over a particular set of links), edge-to-edge (protecting tra�c
as it passes between \trusted" networks via an \untrusted" one), or in any other
con�guration in which network nodes can be identi�ed as appropriate security
endpoints.

Fortunately, the design of encapsulation techniques for basic authentication
and con�dentiality services is not a conceptually di�cult problem, and network-
layer security protocols, such as IPSEC, have matured to the point of being
standardized and implemented by commercial vendors.

A harder problem, however, and one that current standards for network-layer
security do not address, is the management of the policy governing the handling
of packets on the way in to or out of a host running the encapsulation proto-
col. By itself, the security protocol protects packets from external tampering
and eavesdropping, but does nothing to enforce a policy as to which hosts are



authorized to exchange particular kinds of tra�c. In many con�gurations, espe-
cially when network-layer security is used to build �rewalls and virtual private
networks, such polices can be quite complex.

Central to the problem of engineering policy mechanisms for network security
is the tradeo� between expressiveness and performance. Unfortunately, many
con�gurations demand a high level of both.

In this position paper, we examine the problem of managing policy in net-
work-layer security protocols, and propose a trust-management architecture for
network-layer security that may satisfy both the expressibility and the perfor-
mance issues.

2 IPSEC Policy Architecture

Let us examine the architecture of network-layer security more closely, using
IPSEC as a speci�c example. In this environment, policy must be enforced when-
ever packets arrive at or are about to leave a network security endpoint (which
could be an end host, a gateway, a router, or a �rewall).

When an incoming packet arrives from the network, the security endpoint
�rst determines the processing it requires:

{ If the packet is not protected, should it be accepted? This is essentially
the \traditional" packet �ltering problem, as performed, e.g., by network
�rewalls.

{ If the packet was encapsulated under the security protocol:

� Is there correct key material (usually contained in a data structure called
a \security association") required to decapsulate it?

� Should the resulting packet (after decapsulation) be accepted? A second
stage of packet �ltering occurs at this point. Notice that a packet may
be successfully decapsulated and still not be accepted (e.g., a decapsu-
lated packet might contain an illegal network source IP address such as
127.0.0.1).

A security endpoint makes similar decisions when an outgoing packet is ready
to be sent:

{ Is there a security association (SA) that should be applied to this packet? If
there are several applicable SAs, which one should be selected?

{ If there is no SA available, how should the packet be handled? It may be
forwarded to some network interface, dropped, or queued until an SA is
made available, possibly after triggering some automated key management
mechanism such as the IPSEC ISAKMP protocol[HC98].

Observe that because these questions are asked on packet-by-packet basis,
policy �ltering must be performed, and any related security transforms applied,
quickly enough to keep up with network data rates. This implies that in all but
the slowest network environments there is insu�cient time to process elaborate



security languages, perform public key operations, consult large tables, or resolve
rule conicts in any sophisticated manner.

Implementations of network layer security services, including IPSEC and
most �rewalls, therefore, usually employ very simple, �lter-based languages for
con�guring their packet-handling policies. In general, these languages specify
routing rules for handling packets that match bit patterns in packet headers,
based on such parameters as incoming and outgoing addresses and ports, ser-
vices, packet options, etc.[MJ93]

However, packet-level �ltering { necessary as it might be { is not the inter-
esting problem.

3 Policy and Security Associations

A basic parameter of the packet processing problems mentioned in the previous
section is the question of whether a packet falls under the scope of some Security
Association (SA). SAs contain and manage the key material required to perform
network-layer security protocol transforms. How then, do SAs get created?

The obvious approach involves the use of a public-key or Needham-Schroeder
[NS78] based key distribution scheme as the basis for a protocol that creates a
new SA with whatever host attempts to communicate unsecured tra�c in a man-
ner that fails the packet-level security policy. At least one currently-distributed
IPSEC implementation does just this, with the aim of performing \opportunistic
encryption" whenever possible.

Unfortunately, protocols that merely arrange for packets to be protected un-
der security associations do nothing to address the problem of enforcing a policy

regarding the ow of incoming or outgoing tra�c. Recall that policy control is
a central motivation for the use of network-layer security protocols in the �rst
place.

In general, and rather surprisingly, security association policy is largely an
open problem { one with very important practical security implications and
with the potential to provide a solid framework for analysis of network security
properties.

Fortunately, the problem of policy management for security associations can
be distinguished in several important ways from the problem of �ltering individ-
ual packets. In particular:

{ SAs tend to be rather long-lived; there is \locality of reference" insofar as
hosts that have exchanged one packet are very likely to also exchange others
in the near future.

{ It is acceptable for SA creation to require substantially more resources than
can be expended on processing every packet (e.g., public key operations,
several packet exchanges, policy evaluation, etc.)

{ The \output" of negotiating an SA between two hosts can provide (among
other things) parameters for lower-level packet �ltering operations.

A trust-management system[BFL96], such as KeyNote[BFK99], may be of
value here.



4 A Trust Management Architecture for Network Layer

Security

The problem of controlling SAs in a network-layer security protocol is easy to
formulate as a trust-management problem. Trust-management systems are char-
acterized by:

{ A method for describing \actions," which are operations with security con-
sequences that are to be controlled by the system.

{ A mechanism for identifying \principals," which are entities that can be
authorized to perform actions.

{ A language for specifying application \policies," which govern the actions
that principals are authorized to perform.

{ A language for specifying \credentials," which allow principals to delegate
authorization to other principals

{ A \compliance checker," which provides a service for determining how an
action requested by principals should be handled, given a policy and a set
of credentials.

The trust-management approach has a number of advantages over other
mechanisms for specifying and controlling authorization, especially when secu-
rity policy is distributed over a network or is otherwise decentralized.

In the case of SA policy, the \actions" would represent the low-level packet
�ltering rules required to allow two hosts to conform one another's higher-level
policies.

This suggests a simple framework for trust management for Network- Layer
Security:

{ Each host has its own trust-management-controlled policy governing SA cre-
ation. This policy speci�es the classes of packets and under what circum-
stances the host will initiate SA creation with other hosts, and also what
types of SAs it is willing to allow other hosts to establish.

{ When two hosts discover that they require an SA, they each propose to one
another the \least powerful" packet-�ltering rules that would enable them to
accomplish their communication objective. Each host sends proposed packet
�lter rules, along with credentials (certi�cates) that support the proposal.
The trust structure of these credentials is entirely implementation depen-
dent, and might include the arbitrary web-of-trust, globally trusted third-
parties, or anything in between.

{ Each host queries its trust-management system to determine whether the
proposed packet �lters comply with local policy and, if they do, creates the
SA containing the speci�ed �lters.

Other SA properties might also be subject to trust management policy. For
example, the SA policy might specify acceptable cryptographic algorithms and
key sizes, the lifetime of the SA, logging and accounting requirements, etc.).



Our architecture divides the problem of policy management into two natural
components: packet �ltering, based on simple rules applied to every packet,
and trust management, based on negotiating and deciding which such rules are
trustworthy enough to install.

This distinction makes it possible to perform the per-packet policy opera-
tions at high data rates while e�ectively establishing more sophisticated trust-
management-based policy controls over the tra�c passing through a secure end-
point. Having such controls in place makes it easier to specify security policy for
a large network, and makes it especially natural to integrate automated policy
distribution mechanisms.

An important practical problem in introducing security policy mechanisms
is the transition from older schemes into the new one. Existing IPSEC security
policies, which are based only on packet �lters, quite easily �t into the trust
management framework. As the trust management mechanism is introduced,
�lter-based policies can be mechanically translated into trust-management poli-
cies and credentials.

5 Conclusions and Status

We have developed a number of trust management systems, and have started
examining the use of KeyNote in the engineering of network-layer security pro-
tocols. We are in the process of implementing an IPSEC architecture similar to
that described above; it is our hope that the formal nature of trust management
will make possible network security con�gurations with provable properties. One
of the most relevant features of trust management to SA management is the han-
dling of policy delegation.

Furthermore, because KeyNote is application-independent, it can be used
to \tie together" di�erent aspects of network security, beyond just IPSEC and
packet �ltering. For example, a more comprehensive network security policy
could specify what mechanisms are acceptable for remote access to a private cor-
porate network over the Internet; such a policy might, for example, allow the use
of cleartext passwords only if tra�c is protected with IPSEC or some transport-
layer security protocol (e.g., SSH [YKS+99]). Multi-layer policies would, of
course, require embedding policy controls into either an intermediate security
enforcement node (such as a �rewall) or into the end applications.

Finally, if trust-management policies and credentials are built into the net-
work security infrastructure it may be possible to use them as an \intermedi-
ate language" between the low-level application policy languages (e.g., packet-
�ltering rules) and higher-level policy speci�cation languages and tools. A trans-
lation tool would then be used to convert the high-level speci�cation to the
trust-management system's language (and perhaps vice-versa as well). Such a
tool could make use of formal methods to verify or enforce that the generated
policy has certain properties.

There are many open, and we believe, quite interesting and important prob-
lems here.



References

[BFK99] M. Blaze, J. Feigenbaum, and A. Keromytis. KeyNote: Trust Management
for Public-Key Infrastructures. In Proceedings of the 1998 Cambridge Se-

curity Protocols International Workshop, pages 59{63. Springer, LNCS vol.
1550, 1999.

[BFL96] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. In
Proc. of the 17th Symposium on Security and Privacy, pages 164{173. IEEE
Computer Society Press, Los Alamitos, 1996.

[HC98] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). Request
for Comments (Proposed Standard) 2409, Internet Engineering Task Force,
November 1998.

[IB93] John Ioannidis and Matt Blaze. The Architecture and Implementation of
Network-Layer Security Under Unix. In Fourth Usenix Security Symposium

Proceedings. USENIX, October 1993.
[KA98] S. Kent and R. Atkinson. Security Architecture for the Internet Proto-

col. Request for Comments (Proposed Standard) 2401, Internet Engineering
Task Force, November 1998.

[MJ93] Steven McCanne and Van Jacobson. A BSD Packet Filter: A New Architec-
ture for User-level Packet Capture. In Proceedings of the Annual USENIX

Technical Conference, pages 259{269, San Diego, California, January 1993.
Usenix.

[NS78] R. Needham and M. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993{998, De-
cember 1978.

[YKS+99] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH Proto-
col Architecture. Internet Draft, Internet Engineering Task Force, February
1999. Work in progress.


