
Scalable Resource Control in Active Networks

Kostas G. Anagnostakis, Michael W. Hicks, Sotiris Ioannidis,
Angelos D. Keromytis, and Jonathan M. Smith

Distributed Systems Laboratory
Department of Computer and Information Science, University of Pennsylvania

200 S. 33rd Street, Philadelphia, PA 19104-6389, USA
fanagnost,mwh,sotiris,angelos,jmsg@dsl.cis.upenn.edu

Abstract. The increased complexity of the service model relative to
store-and-forward routers has made resource management one of the
paramount concerns in active networking research and engineering. In
this paper, we address two major challenges in scaling resource manage-
ment to many-node active networks. The �rst is the use of market mech-
anisms and trading amongst nodes and programs with varying degrees of
competition and cooperation to provide a scalable approach to managing
active network resources. The second is the use of a trust-management
architecture to ensure that the participants in the resource management
marketplace have a policy-driven \rule of law" in which marketplace de-
cisions can be made and relied upon. We have used lottery scheduling
and the Keynote trust-management system for our implementation, for
which we provide some initial performance indications.

1 Introduction

Resource management is a major challenge for active networks because of their
increased exibility. Most processing in current networks is simple packet for-
warding, meaning that most packets require the small �xed cost of a routing table
lookup and a copy. In the grand vision of active networking, the network provides
services that are customizable by its users. This means that packet processing is
much more complicated because it is, at least in part, user-speci�ed. Therefore,
and in the absence of a more sophisticated resource management model, users
have the potential to unfairly consume shared resources. Furthermore, there is
no way for users to place demands on the quality (e.g., performance) of these
services. The need for a resource management infrastructure raises four ques-
tions:

1. What resources should be managed?

2. How are management policies speci�ed?

3. How are policies enforced?

4. What policies should be used?



Questions 1, 2 and 3 are well studied. Most researchers agree that an e�ective
approach should focus on controlling the physical resources of the network: node
CPU time, memory , disk space and network bandwidth. Some work has also
been done in policy speci�cation in general [3] and without concrete demon-
stration for Active Networks [20]. Finally, some projects have examined tech-
niques for enforcing resource usage, including namespace management [1, 12],
runtime access control [7], limited expressibility [11, 17], certi�cation [24], and
�ne-grained resource accounting [14, 6].

We believe that the central outstanding question in e�ective resource man-
agement is question 4, the speci�cation of scalable policies. In this paper, we
present a solution to this problem, consisting of two components. At the policy
level, we de�ne a distributed, market-based policy for resource allocation. This
is in sharp contrast to the more administrative-based policies proposed to date;
these policies inhibit interaction throughout the network because they are fun-
damentally local and proprietary. Instead, a market-based approach potentially
`opens up' the entire network, transforming it into an open service market. At
the mechanism level, we integrate KeyNote [3], a distributed trust-management

system, into the architecture of active elements. KeyNote is roughly similar to
Java's SecurityManager [7], in that it is an entity that authorizes decisions of
policy, but di�ers in that policy components may be delegated and distributed
as credentials, thereby facilitating greater scalability. KeyNote serves to specify
and uphold the `rule of law' that governs market interactions.

Market-based policies for resource management are not new; they have been
applied to bandwidth allocation [16], memory allocation [10], and CPU schedul-
ing [23]. Our approach was inspired by the work of Stratford and Mortier [18],
who propose a market-based approach to QoS-oriented resource management for
operating systems. In their work, dynamic pricing is used as a mechanism to en-
able applications to make policy-controlled adaptation decisions. Contracts may
be established between users and applications, and between applications and
resource managers to apportion resources. These contracts may be established
directly, or via third-party `resource traders'. We apply similar market-based
models to the active networking context. While the areas of trust management,
market-based systems and active networks are not new, it is their combination
that constitutes our novel contribution.

In the remainder of this paper, we present our design of an active network
infrastructure that implements market-based resource management. In Section 2
we provide an overview of our approach, elaborating on how market-based con-
trol and trust management can materialize a scalable framework for addressing
resource management issues in active networks. Section 3 presents the current
state of our implementation. Some �rst experiments and an example applica-
tion that expose the bene�ts of our work are described in Section 4. Section 5
provides impressions, conclusions and directions for further investigation.



2 Overview

In order to create a scalable framework for apportioning network resources, we
need two things: a scalable policy and a scalable way of expressing and enforcing
that policy. For the former, we look to specify a market-based policy; for the
latter, we use a decentralized trust-management system to express and distribute
that policy information to the enforcing elements.

In this section we present an overview of our approach, leaving the details to
the next section. We begin by explaining the merits of the market approach and
then describe how we use it in particular. We �nish by describing the bene�ts
of trust management and how it applies to our system.

2.1 Market-based control

A market can be de�ned as "... a set of interacting agents with individual goals

that achieve a coherent global behavior ..." [5]. Interaction takes place in the
form of buying, selling or trading of goods. Each agent implements a strategy for
achieving its goals through the interactions within the market. Economic theory
suggests that through the rational behavior of the agents and the competitive
process, the market converges to equilibrium where supply and demand match,
and near optimal allocations of goods are achieved. In general, agents can be
producers of goods, consumers of goods or both. The ones that act as producers
are concerned with setting prices in order to maximize pro�t while consumers
try to maximize perceived utility given speci�c budget constraints. This ability
to facilitate fair allocation with very little information (just the price) makes the
market an attractive framework for solving many complex problems.

For our purposes, the prime advantage of a market is its lack of centralized
control. Instead, control emerges from the individual goals and actions of the
agents and is thus inherently distributed among the elements of the market. The
decentralization property is crucial in the design of scalable systems: the system
is allowed to grow and change without bottleneck.

There are a number of other practical advantages of creating an active net-

work economy:

{ No assumptions are made on the cooperative or competitive nature of the
agents and their goals; there can be as many di�erent strategies as agents,
and each strategy may be more or less \sel�sh" and non-cooperative. In
active networks, we also consider sel�sh and untrusted users to be able to
execute network programs thereby consuming resources. The market-based
approach o�ers exibility in dealing with di�erent degrees of cooperation
and competition in the control process.

{ A market is abstract enough to capture resource control problems at any
scale, from lower layer resources such as CPU and bandwidth to higher layer
services such as secure connections, streams with guarantees on performance,
etc.

{ We can build upon this infrastructure to actually charge for network services.



We apply the market model to active network resource management. We
de�ne what constitutes the general terms agent, good and trade, as we have
described above.

The active network economy In the active network economy, the goods
traded are the physical resources of the active nodes, e.g., CPU, memory, network
capacity and secondary storage. Typically, the producing agents are the elements
of the nodes, and the consuming agents are active programs that wish to run on
the nodes and use the nodes' elements. We also de�ne a class of agents, called
service brokers, for mitigating access between producers and consumers. Service
brokers peddle resource access rights, the form of currency in our marketplace.
A resource access right is essentially a promise of a certain sort of service, e.g.,
a periodic slice of processing time, or a �xed amount of network bandwidth.
Resource access rights are themselves purchased by the users of active programs.
Service brokers may manage a number of producers' resources or may in fact be
implemented as part of the producer. Also, a single service broker can manage
resources from di�erent nodes across the active network, which constitutes a
highly valuable feature with regard to our concerns for scalability.

In our implementation, instead of authorizing access to physical resources
directly, we authorize access to functions that access those resources. Resource
access rights generally specify three things: what function may be called, when it
may be called and any restrictions on its arguments. For example, rather than
issuing a right to some slice of CPU time, we may issue a right to set a certain
scheduling priority. This is expressed as a right to call Thread.set priority

once with an argument that is less than some number. This approach also allows
us to generalize any active service as a good in our economy, rather than just
raw resources. On the other hand, if the underlying mechanisms are available
to enforce access to raw resources directly, as in [14], these rights can also be
accommodated.

Resource access rights are part of a more general policy that governs how
an active node may be used and by whom. Resource access rights are policy
that is sold on the market, and can be combined into a framework that also ac-
commodates administrative policies. In fact, administrative policy might govern
what market policies are to be made available under what conditions. The next
question is how to integrate these policies with mechanisms used for enforcing
them on the active nodes. For this task we have made use of a trust-management

system, KeyNote, which we describe next.

2.2 Trust Management

Since resource access rights are essentially policy rules governing the use of active
network resources, we must establish some basic requirements for the policy
scheme we use:

1. Decentralization in specifying (and enforcing) policies and access control
rules. This is preferable both to the individual entities that wish to specify



KeyNote-Version: 2

Authorizer: CPU_BROKER

Licensees: BOB

Conditions: (an_domain == "an_exec" && module0=="Thread"

&& module1= "set_prio" && arg1 < 30

&& @onetime == "yes") -> "ACCEPT";

Signature: "rsa-md5-hex:f00f5673"

Fig. 1. Example credential guaranteeing a user a share of the CPU.

their own policies, as well as to the entire economy, since a central point of
enforcement for all transactions would yield a system that does not scale.

2. Flexibility in establishing relationships between entities in the network on
varying time-scales. For example, service brokers may change relationships
with various producers, and therefore the resource access rights that they sell
should reect the change. Consumers should be able to choose appropriate
producers and buy from whomever they wish.

Trust Management is a novel approach to solving the authorization and (se-
curity) policy problem, introduced in [4]. Entities in a trust-management system
(called \principals") are identi�ed by public keys, and may generate signed pol-
icy statements (which are similar in form to public-key certi�cates) that further
delegate and re�ne the authorization they hold. This results in an inherently de-
centralized policy system; the system enforcing the policy needs to consider only
the relevant policies and delegation credentials, which the user has to provide.

In our system, resource access rights are implemented as policies initially
authorized by the resource producer. At the outset, these policies are applicable
to the service brokers, who may then delegate (all or part of) them to the
consumers who purchase them. Consumers then provide the policy credentials
to the producer when they want to access the service.

We have chosen to use KeyNote [3] as our trust management system. KeyNote
provides a simple notation for specifying both local policies and credentials.
Applications communicate with a \KeyNote evaluator" that interprets KeyNote
assertions and returns results to applications. The KeyNote evaluator accepts as
input a set of local policy and credential assertions and a set of attributes, called
an \action environment" that describes a proposed trusted action associated
with a set of public keys (the requesting principals), and �nally returns whether
proposed actions are consistent with local policy. In our system, we use the
action environment to store component-speci�c information (such as language
constructs, resource bounds, etc.) and environment variables such as time of day,
node name, etc., that are important to the policy management function.

As an example of a KeyNote credential, Figure 1 shows a resource access
right for a speci�c share of the CPU, as we described in the last subsection. The
credential indicates that BOB may call Thread.set prio once, at most, with the
condition that the argument is less than 30.



3 Implementation in ALIEN

Active extensions

Execution Environment

Node OS

System Libraries

Services +
Brokers

Core
functions

Resource
Schedulers

KN Active Loader

Fig. 2. The ALIEN Architecture and the new components: Keynote (KN Mod-
ule) and the resource schedulers, which are part of the Execution Environment,
and Brokers, which are implemented as active extensions.

So far we have described our approach in general; in this section we describe
our implementation, focusing on what policies we use and how they are enforced.
The space of allowable policies is inherently tied to that which can be enforced.
For example, a policy stating that a user may only use 10% of the CPU over a
certain period would be totally useless without a corresponding mechanism to
enforce that policy. In this sense, the available enforcement mechanisms estab-
lish the vocabulary for specifying policies. These enforcement mechanisms are
themselves dependent on what is made available in the implementation, which
we describe here.

Our implementation builds on the SwitchWare project's ALIEN [1] proto-
type, whose three-layer archticture is shown in Figure 2. In ALIEN, properly
authorized users may extend node processing with new code, termed active ex-

tensions, using an API de�ned by the core functions. These core functions present
an interface to node resources, essentially as an abstraction of the OS. The vis-
ible API is controlled by the Active Loader; currently, loaded code is allowed a
smaller API than statically linked functions enforced at load-time, for security
purposes. For example, loaded code does not have access to the local disk.

We have extended ALIEN to provide enforcement for our market-based poli-
cies, in two ways. First, we have modi�ed the Active Loader to control the visible
API of active extensions in a more �ne-grained manner. Extensions may either
have full access to a particular core function, partial access (that is, as long as
certain parameters are within certain limits) or no access. This decision is made
on a per-extension basis, according to policy. Access control is enforced at load-
time when possible, or else at run-time. Second, we have exposed some of the
functionality of the resource schedulers into the core functionality, so they may



be similarly controlled by the Active Loader. Resource schedulers control low
level functions, such as thread-scheduling, packet-scheduling, etc.

For the remainder of this section, we describe these two extensions to ALIEN.
Then we conclude with some of the details of how we implement Service Brokers.

3.1 Controlling Active Extensions

In ALIEN, active packets or extensions are received and handled by the Active
Loader, which manages the active node execution environment. It is the Active
Loader's task to instantiate the code received by dynamically linking it to the
environment and, if necessary, create a new thread for executing it.

We extended the dynamic linking process to perform policy compliance checks
on the module references and trigger one of three actions: accept or reject the
reference, indicate that further run-time checking on the reference arguments
is needed or initiate a policy-based replacement of a reference with a more ap-
propriate one. This last feature provides a very useful technique for translating
generic references to speci�c service implementations or service variants, accord-
ing to policy. It can be used, for example, to select between di�erent connection
oriented communication service stacks (Secure vs. Unsecure) or choose between
guaranteed or best e�ort service (by translating references to the Threadmodule
to either BEThread for best-e�ort or GSThread for guaranteed service).

This policy enforcement mechanism is implemented as follows. At dynamic
link time, the linker processes the bytecode object and extracts all references
to modules and functions that are external to the loaded object. For each such
reference, the KeyNote evaluator is queried, along with any appropriate creden-
tials. Each result type is associated with a speci�c action that has to be taken.
The currently implemented result types are:

{ ACCEPT: the reference is accepted unconditionally.

{ REJECT: the reference is not allowed.

{ REPLACE: the reference has to be replaced by another reference; e.g., a refer-
ence to a general packet-sending function is replaced by a rate-limited one.

{ CHECK-ARGS: there are restrictions on the arguments of the reference.

For the �rst three cases, the linker can perform the check and take necessary
actions, resulting in no run-time penalty. For the �nal case, checks must occur
at run-time, since function arguments are dynamic entities. Each such reference
is replaced by an anonymous function. This function contains instructions to
initiate a query to the KeyNote evaluator on the validity of the original func-
tions' arguments. An ACCEPT/REJECT reply is expected. A REJECT reply would
raise an Invalid_Argument exception, while ACCEPT would result in the anony-
mous function calling the original reference. These interactions with the policy
management element are shown in Figure 3.



Execution Environment

ACCEPT

Function + Arguments, Credentials, Node Environment

Application Specific Responses

Application Specific Environment, Credentials, Node Environment

patched
module

wrapper
module

Modules+Functions, Credentials, Node EnvironmentActive Extension
Incoming

REJECT

CHECK-ARGS
REJECT ACCEPT REPLACE

Active Loader

Trust Management
System

Keynote

Fig. 3. Interactions with the Keynote Trust Management System: Link-time,
Run-time, and application speci�c interactions are depicted.

3.2 Resource Schedulers

The task of resource schedulers is to coordinate access and control allocation
of shared resources such as CPU, memory, storage or network bandwidth. The
ALIEN implementation includes support for thread scheduling and memory al-
location as part of the Active Loader. Packet scheduling can be dealt with in
a similar fashion; however, since ALIEN is currently implemented in user-space
and relies on the operating system for scheduling packets, we do not address
such issues in this paper. We focus on the use of a market-based hierarchical
thread scheduler, and its interaction with the policy management and service
broker functions.

Hierarchical scheduling enables the coexistence of di�erent scheduling dis-
ciplines to �t the various application requirements. In practice, clients of the
scheduling process can be schedulers themselves, thus forming a scheduling tree.
It is also possible for users to attach their own schedulers to the hierarchy in
order to manage some share of the processing power.

At the root of the hierarchy, we use a market-based algorithm called lottery
scheduling [23]. In lottery scheduling, the notion of tickets [22] is introduced.
These are data structures that encapsulate resource access rights. Each ticket is
expressed in a certain currency that is signi�cant to the issuer and the holders. In
the case of lottery scheduling, tickets represent a share of the available processing
power. At each scheduling interval, tickets participate in a drawing. Each ticket's
probability of being selected is proportional to its share value. When a ticket is
selected, its owner is scheduled for execution1.

We implemented two kinds of second-level schedulers to provide best-e�ort
and guaranteed-share service disciplines. They are both based on lottery schedul-

1 One anonymous reviewer of non-technical background commented to this: \Remind
me not to buy one of your lottery tickets!"



Application

Application EDF

state

lottery
scheduler

40 60

lottery
scheduler

lottery
scheduler

Application
D

500180100

scheduler
EDFApplication

A B

C

GSThread BEThread

100 200

inflation

Fig. 4. A typical scheduling hierarchy.

ing but di�er in the way they manage their tickets. The guaranteed-share sched-
uler has to maintain a constant sum of ticket values that corresponds to a speci�c
share of the processing power. It may issue tickets to its client threads, but the
sum of the ticket values has to be conserved. In contrast to that, the best-e�ort
scheduler might continue to issue new tickets without maintaining a constant
sum. The new tickets cause ination, the share value of each ticket drops, and so
does performance of its owning thread. It is possible to implement price-adaptive
scheduling under the best-e�ort scheduler by monitoring performance and buy-
ing more tickets according to a utility function. A deadline-based scheduler can
also be built under the top-level lottery scheduler: its task would be to acquire
and release tickets according to its current demand for meeting deadlines. An
example scheduler hierarchy in our system is shown in Figure 4.

The ALIEN execution environment provides an interface to the built-in
scheduler in the Thread module. For the lottery scheduler, we retained the same
interface, with one new function added, set_ticket, which sets the tickets of
the current thread to a speci�c type and value. Credentials may control how
this function is called and with what arguments. However, it is the scheduler's
task to interpret the set_ticket call according to its own semantics. The call
might simply cause ination, trigger a call to acquire more resources from the
parent scheduler or be rejected. We implemented the lottery scheduler so that
it is customizable and reusable. Under appropriate circumstances, users may
override default functionality and implement the ticket management functions
themselves.



3.3 Service Brokers

Service brokers provide the necessary credentials for enabling a service, and
encapsulate service management functions. Conceptually, this function is equiv-
alent to the trading function as described in [15, 13, 8, 9]. The Internet Di�serv
architecture [2] also considers the Bandwidth Broker [21, 19] for managing net-
work bandwidth. From the policy perspective, brokers are principals to which
authority is delegated for managing a speci�c policy subspace. The implementa-
tion issues here are how the broker that is responsible for a service is identi�ed
and how users can communicate with brokers.

Since authority over some policy subspace is delegated to some broker, there
exists information in the policy management system | in the form of creden-
tials | that indicates this delegation. This information can be obtained by users
and, through this service-principal-broker association, users can then establish
communication with the broker. We implemented a broker communication mod-
ule (BCM) whose task is to relay communication between brokers and users.
The BCM allows users to �nd the appropriate broker (among those that have
registered with the BCM) for the resources they need to consume, query those
brokers on the availability and price of various services and acquire such services
by providing the appropriate credentials.

4 System Demonstration

In this section we share some �rst experiences with our resource management
system. First, we focus on the market-based CPU scheduler and demonstrate its
ability to meet arbitrary user demands in various situations. We then describe
the implementation of an active web proxy that exploits all di�erent aspects of
our architecture to their full extent.

4.1 Evaluation of the market-based scheduler

In this experiment, a number of threads execute on the active node and consume
CPU cycles. At each thread's initialization, it is assigned a �xed amount of
tickets for a speci�c scheduling class. Since we implemented two service classes,
GSThread and BEThread, their schedulers hold tickets of the root scheduler:
GSThread has allocated 500 and BEThread 300, which notes a 5:3 ratio of CPU
resource shares between these two classes. The starting times, service class and
ticket amount for each thread in our scenario and the consumption of CPU cycles
over time for all threads are shown in Figure 5.

We observe that the three guaranteed service threads are successfully isolated
from the other threads that arrive over time. Also, after the best-e�ort class
becomes empty, its share also becomes available. Note that thread 3 takes double
the share that 1 and 2 have, exactly as de�ned by their ticket values. Note also
that fairness is preserved in the best-e�ort class, in that all threads receive equal
share of service since they have equal ticket values.



BE/100

0 200 400 600 800 1000 1200
Time (seconds)

100

0

CPU share %

BE/100 4

10

BE/100 9

BE/100 8

7

BE/100 6

BE/100 5

GS/200

GS/400 3

2

1

GS/200

BE/100

Start ID Type Tickets Load

0.00 1 GS 200 100
8.85 2 GS 200 100
30.89 3 GS 400 400
43.98 4,5,6 BE 100 40

7,8,9
55.98 10 BE 100 40

Fig. 5. CPU resource consumption for a number of di�erent threads. Thread
characteristics are shown in the table, where Load is the amount of CPU time
the threads need to complete.

���
���
���

���
���
���

���
���
���
���

���
���
���
���

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

Time (seconds)
150100500 200 250 300 350 400

CPU share %

5 (15%)

4 (20%)

1 (20%)

3

2 (20%)

20

40

60

80

100

Start ID Type Load Goal

5.0 1 BE 300 20 %
25.0 2 BE 80 20 %
0.0 3 BE 360 -
80.0 4 BE 80 20 %
150.0 5 BE 100 15 %

Fig. 6. CPU resource consumption for the second experiment; characteristics
are shown in the table, where Goal is the thread's target processing share while
adapting to the system's changing conditions. The threads that dynamically
adjust their ticket values are clearly visible.



This simple experiment demonstrates thread isolation and di�erential service
quality. However, no interactions take place between schedulers and threads, ex-
cept for acquiring tickets at thread creation time. The next experiment features
threads that dynamically acquire or release tickets according to a speci�c goal.
Threads wish to maintain constant performance, while being clients of the best-
e�ort service class. Periodically the threads evaluate their performance (process-
ing rate) and readjust their ticket allocation to reect their goal. Other threads
that have no such requirements simply acquire tickets at creation time only. The
characteristics of threads in this experiment and the threads' CPU over time are
shown in Figure 6.

One can clearly see the ones that try to adapt to the environment. Figure 7
shows the number of tickets for each thread. More elaborate strategies can be
used that consider budget constraints and utility. It is also possible to allocate
a GSThread ticket share as a secured minimum performance and BEThread
tickets for further performance gains. Through these two simple experiments we
give some insight into the exibility, scalability, and applicability of our system,
o�ered by a market-based approach to lower-level resource scheduling. In the
next section, instead of being focused on a speci�c function of our system we
utilize all the components we implemented.

50

100

150

200

250

400

300

350

0
50 100 150 200 250 300 350

Time (seconds)

Thread 1

Thread 2

Thread 4

Thread 5

Tickets

Thread 3

Fig. 7. Ticket allocation over time for the 4 threads that dynamically allocate
CPU power.



4.2 The active web proxy

To validate our system design and evaluate its impact, we implemented a web
proxy server as an active extension that is loaded by users on active nodes. The
following characteristics of this application are essential:

{ The user must be authorized to install the active extension, and the active
extension should be able to access the modules and functions it needs. Such
authority is granted to the user by some administrator, or by interaction with
the market, for acquiring credentials. Users must then provide the necessary
credentials for the web proxy to be able to act on their behalf, i.e., with
their own resource access rights.

{ Network-level access control is needed to indicate which server addresses the
proxy is allowed to connect to as well as which client addresses are allowed
to connect to the proxy. In the active node's local policy, the Tcp module
is mapped to the Kntcp module (through a REPLACE credential), a wrapper
module to Tcp. Kntcp is implemented so that every connection is subject to
access checks. This could also be done using a CHECK-ARGS policy to check the
arguments of the connect, accept or bind functions. Credentials supplied
by the user authorize the proxy to \talk to" certain addresses.

{ CPU resources are consumed and should therefore be controlled through the
market-based scheduler and the service broker function. Determining the ap-
propriate brokers and credentials to use is implemented in the exception han-
dlers that deal with failures during linking. These handlers contact the BCM
module to determine the relevant available services and costs, and acquire
the relevant credentials (which authorize the proxy to link with the selected
thread-scheduling service) from the selected broker. The linking process is
then restarted with the newly-acquired credentials until another exception
is raised or linking is successfully completed.

The active web proxy can then proceed to service requests. While this ex-
periment proves our concept, its development provided a few interesting obser-
vations. First, directly writing a large number of KeyNote credentials might not
be the easiest way to specify policy. A higher-level language that can then be
compiled into a number of KeyNote credentials could be more useful. Second, a
potential performance bottleneck that could negatively a�ect scalability is the
instant creation of credentials by the service brokers. On a 500 MHz Pentium
III processor, signing a credential takes 8msec which corresponds to 124:36 cre-
dentials/second2. There are methods to overcome this limitation such as having
pre-issued credentials, using lighter cryptographic algorithms or employing hard-
ware support.

5 Conclusions

We have addressed the problem of scalable resource management in active net-
working and , based on the scalability of market-based mechanisms, developed
2 Verifying a credential is much faster, at 10:71�sec, or 93457:94 credentials/second.



a novel system architecture for allocating and adjusting resource allocations
in a system of communicating active network nodes. We have used a trust-
management policy system, KeyNote, which allows us to ensure that resource
allocations are controlled and enforced under speci�ed policy constraints. We be-
lieve that the resulting system is the �rst system which has provided a network-
level resource management framework for active networking, moving beyond the
node architecture considerations which have occupied much of the design e�orts
in �rst-generation active networking research.

We believe that the system architecture described herein has considerable
applications outside active networking. For example, it might serve as an equally
powerful resource management paradigm in inter-networks where RSVP or other
integrated services notions are used to control resources. While we have focused
on active networking as our immediate concern, we intend to investigate the
applicability of this system architecture to a wider set of distributed resource
management problems. We believe that the scalability and security of this system
are powerful attractions and that these fundamentals can be preserved across
many changes of the environment.

Acknowledgements

This work was supported by DARPA under Contracts F39502-99-1-0512-MOD
P0001 and N66001-96-C-852. We thank the members of the Distributed System
Laboratory and the reviewers for their helpful comments and fruitful discussions
before and during the course of this work.

References

[1] D. S. Alexander. ALIEN: A Generalized Computing Model of Active Networks.
PhD thesis, University of Pennsylvania, September 1998.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Archi-
tecture for Di�erentiated Services. Technical report, IETF RFC 2475, December
1998.

[3] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The keynote trust
management system version 2. Internet RFC 2704, September 1999.

[4] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. In Proc.
of the 17th Symposium on Security and Privacy, pages 164{173. IEEE Computer
Society Press, Los Alamitos, 1996.

[5] Scott Clearwater. Why market-based control? In Scott Clearwater, Ed. , Market-
Based Control: A Paradigm for Distributed Resource Allocation, pages v{xi. World
Scienti�c Publishing, 1996.

[6] Grzegorz Czajkowski and Thorsten von Eicken. JRes: A Resource Accounting
Interface for Java. In Proceedings of the 1998 ACM OOPSLA Conference, Van-
couver, BC, October 1998.

[7] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation. Addi-
son Wesley, Reading, 1996.

[8] Object Management Group. A Discussion of the Object Management Architecture.
January 1997.



[9] Object Management Group. Trading Object Service Speci�cation. In OMG Doc
97-12-23, March 1997.

[10] Kieran Harty and David Cheriton. A Market Approach to Operating System
Memory Allocation. In Scott Clearwater, Ed. , Market-Based Control: A Paradigm
for Distributed Resource Allocation, pages 126{155. World Scienti�c Publishing,
1996.

[11] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. PLAN: A
Programming Language for Active Networks. Technical Report MS-CIS-98-25,
Department of Computer and Information Science, University of Pennsylvania,
February 1998.

[12] Michael Hicks and Angelos D. Keromytis. A Secure PLAN. In Stefan Co-
vaci, editor, Proceedings of the First International Working Conference on Ac-
tive Networks, volume 1653 of Lecture Notes in Computer Science, pages 307{314.
Springer-Verlag, June 1999. Extended version at http://www.cis.upenn.edu/

~switchware/papers/secureplan.ps.
[13] E. Kovacs and S. Wirag. Trading and Distributed Application Management: An

Integrated Approach. In Proceedings of the 5th IFIP/IEEE International Work-
shop on Distributed Systems: Operation and Management, October 1994.

[14] Paul Menage. RCANE: A Resource Controlled Framework for Active Network
Services. In Proc. of the 1st International Working Conference on Active Networks,
June 1999.

[15] M. Merz, K. Moeller, and W. Lamersdorf. Service Trading and Mediation in Dis-
tributed Computing Systems. In Proc. IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), pages 450{457, 1994.

[16] Mark S. Miller, David Krieger, Norman Hardy, Chris Hibbert, and E. Dean Trib-
ble. An Automated Auction in ATM Network Bandwidth. In Scott Clearwater, Ed.
, Market-Based Control: A Paradigm for Distributed Resource Allocation, pages
96{125. World Scienti�c Publishing, 1996.

[17] Jonathan T. Moore. Safe and EÆcient Active Packets. Technical Report MS-
CIS-99-24, Computer and Information Science, The University of Penns lyvania,
1999.

[18] Richard Mortier Neil Stratford. An Economic Approach to Adaptive Resource
Management. In Proc. of Hot topics in Operating Systems, 1999.

[19] K. Nicols, V. Jacobson, and L. Zhang. A Two Bit Di�erentiated Services Archi-
tecture for the Internet. Internet Draft, November 1998.

[20] Morris Sloman and Emil Lupu. Policy Speci�cation for Programmable Networks.
In International Working Conference on Active Networks (IWAN), 1999.

[21] Andreas Terzis, Jun Ogawa, Sonia Tsui, Lan Wang, and Lixia Zhang. A Proto-
type Implementation of the Two-Tier Architecture for Di�erentiated Services. In
Fifth IEEE Real-Time Technology and Applications Symposium, Vancouver, BC,
Canada, June 1999.

[22] C. A. Waldspurger and W. E. Weihl. An Object-Oriented Framework for Modular
Resource Management. In Proc. of the 5th International Workshop on Object
Orientation in Operating Systems, pages 138{143, October 1996.

[23] C.A. Waldspurger and W.E. Weihl. Lottery Scheduling: Flexible Proportional
Share resource management. In Proc. of the First Symposium on Operating System
Design and Implementation, pages 1{11, November 1994.

[24] David Wetherall. Active Network Vision and Reality: Lessons from a Capsule-
based System. In Proceedings of the 17th ACM Symposium on Operating System
Principles, Kiawah Island, SC, December 1999.


