
Implementing IPsec �

Angelos D. Keromytis

University of Pennsylvania { angelos@dsl.cis.upenn.edu

John Ioannidisy

AT&T Labs { Research { ji@research.att.com

Jonathan M. Smith

University of Pennsylvania { jms@central.cis.upenn.edu

August 1, 1997

Abstract

The IP Security protocols are su�ciently mature to bene�t
frommultiple independent implementations and worldwide
deployment. Towards that goal, we implemented the pro-
tocols for the BSD/OS, Linux, OpenBSD and NetBSD1.
While some di�erences in the implementations exist due to
the di�erences in underlying operating system structures,
the design philosophy is common. A radix tree, namely the
one used by the BSD code for routing purposes, is used to
implement the policy engine; a transform table switch is
used to make addition of security transformations an easy
process; a lightweight kernel-user communication mecha-
nism is used to pass key material and other con�guration
information from user space to kernel space, and to report
asynchronous events such as requests for new keys from
kernel space to a user-level keying daemon; and two dis-
tinct ways of intercepting outgoing packets and applying
the IPsec transformations to them are employed. In this
paper, the techniques used in our implementations are ex-
plained, di�erences in approaches are analysed, and hints
are given to potential future implementors of new trans-
forms.

1 IP security

Traditional approaches to system security have focused on
high level, application dependent solutions. Regardless,
network layer security has been accepted as a necessary ele-

�Copyright c
1997, Angelos D. Keromytis, John Ioannidis and
Jonathan M. Smith. Permission is granted to redistribute this docu-
ment in electronic or paper form, provided that this copyright notice
is retained. This code was originally developed in Greece. Further
work on this topic is being made possible by DARPA under Contracts
#DABT63-95-C-0073, #N66001-96-C-852, with additional support
from Hewlett-Packard and Intel Corporations.

yThis work was done before this author joined AT&T.
1The BSD/OS and Linux versions were developed in Greece by

John Ioannidis between Fall of 1995 and Winter of 1997; the NetBSD
port was done by Angelos Keromytis in December of 1996, also in
Greece. Development on the NetBSD port continues at the Univer-
sity of Pennsylvania. The OpenBSD port was originally done by
Angelos Keromytis and Niels Provos.

ment in a multi layer security architecture. Early attempts
at this have been the SP3 [SP3] and NLSP [NLSP] proto-
cols, and others [Anderson]. In November 1992, various
members of the IETF (Internet Engineering Task Force)
decided to design and deploy a protocol suitable for the
large-scale Internet environment, which uses IP as the net-
work protocol [IP]. The �rst such experimental protocol
was swIPe [SWIPE], and although it never quite caught on,
it proved that the concept was sound and the goal achiev-
able. A few years later, the IETF IPSEC Working Group
developed a set of speci�cations [Arch] and in December
1995 in Dallas held the �rst interoperating session between
several vendors and individuals who had implementations
of the proposed standard. The proposed standard was also
adopted by the IPv6 [IPv6] Working Group as manda-
tory for the next generation Internet network protocol. A
number of RFCs (Request For Comments) and Internet
Drafts describe the IPsec architecture and speci�cs[AH]
[ESP] [AHMD5] [AHSHA] [ESPDES] [ESP3DES] [IPIP].
Since the original set of documents, the Working Group
has published new RFCs and Internet Drafts which de�ne
new transforms, modes of operation and APIs (Applica-
tion Programmer Interfaces). [HMACMD5] [HMACSHA]
[CAST128] [DESX] [SAPI] [PFKEY] Reader familiarity
with some of those documents is assumed.
In this paper we describe our implementation of the

IPsec architecture. John Ioannidis developed the �rst
implementation in November 1995. The code was later
ported to NetBSD and OpenBSD, and the new trans-
forms were added by Angelos D. Keromytis. John Ioanni-
dis wrote the Linux implementation as part of the SWAN
project. Niels Provos continues integration of IPsec, key
management2with the OpenBSD operating system.

2 Our implementation

Our implementation includes kernel patches for process-
ing incoming and outgoing IP datagrams, maintaining the
transforms database and the policy table, setting a virtual

2The Photuris daemon.[PHOTURIS]



link's3 security properties through setsockopt() calls, as
well as a set of tools for con�guring the policy table.

2.1 Transforms and policy databases

The transforms database, which holds information such
as session keys, replay counters, SPIs and other transform
speci�c information4, is implemented as a hash table inside
the kernel. The elements are referenced by SPI5, remote
IP address and security protocol (since that is a unique
identi�er of a security association). Entries that belong
to the same security association are modi�ed to point to
each other, forming a doubly linked list. This allows fast
lookup and packet processing, while minimizing routing
table lookups.
The reason routing table lookups are performed is be-

cause we implemented our policy engine using the Radix
tree code available in the BSD kernel6, which is also used
by the routing infrastructure. This code decides whether
some IPsec transforms should be applied to an outgoing
packet. Using the Radix tree code has some advantages:

� reuse of existing code, which in turn means:

{ smaller kernel size

{ faster development

{ less debugging need be done

� the Radix tree code has been optimized over the years

� it allows for policy decision with multiple fall backs,
due to the way it works [Stevens].

This last item is the most important. It means that we
can have a general policy for communicating with a speci�c
host, but then can override it for speci�c packet 
ows. Cur-
rently, decisions can be made based on source/destination
IP addresses, protocol number and source and destination
ports (if the transport protocol in use is TCP [TCP] or
UDP [UDP]). An example of a policy that can be ex-
pressed easily in this implementation is:

� all packets from IP1 to IP2 should be processed using
the SPI chain starting with SPI1

� all packets from IP1 to IP2 with transport protocol
ICMP [ICMP] should be processed using the SPI chain
starting with SPI2

� all packets from IP1 to IP2 with transport protocol
TCP should be processed using the SPI chain starting
with SPI3

3A connection or, more generally, a packet 
ow.
4It is imperative that this information is not accessible by a normal

user.
5An SPI (Security Parameters Index) is a 32-bit value which can

be interpreted, along with the peer's IP address and the security pro-
tocol in use (ESP or AH), as an identi�er of the speci�c parameters
of a security association.

6For Linux, we had to port the Radix tree code. We named it
Radij, but the functionality is the same.

� all packets from IP1 to IP2 with transport protocol
TCP and source port P1 and destination port P2

should be processed using the SPI chain starting with
SPI4

New test �elds can be added in this scheme, without
modifying the lookup code.

2.2 Virtual interfaces

Both the BSD and the Linux implementations implement
a virtual interface (enc0 for BSD, ipsecn, where n is 0, 1,
... for Linux), which has several uses:

� assist packet �ltering: when used in a packet �ltering
�rewall, the interface can be used as a means of se-
lecting packets that have gone through IPsec process-
ing. This allows a �rewall to only permit authenti-
cated/encrypted tra�c, without having to change the
internals of the packet �lter itself.

� (for Linux only): provide a means to send packets to
the IPsec code; in the next subsection we shall explain
why we had to use a virtual interface for this, and what
our approach was in the BSD code.

� (for Linux only): allow us to implement the transport-
layer mode of IPsec. The lack of an ip output() rou-
tine in Linux made this a non-trivial exercise.

In BSD, the enc0 interface is implemented like the loop-
back interface, except that no input routine is de�ned, as
it is not needed. See the next sections for more details on
the Linux implementation.

2.3 Incoming packets

Incoming IP packets that have a Next Protocol �eld in-
dicating ESP, AH, or IP-in-IP are delivered by ip intr()
to ah input(), esp input() or ipe4 input7 respectively.
These routines lookup the outer SPI of the IP packet (the
one corresponding to the last IPsec transform applied) in
the transforms database. If an entry is found for an SA
(Destination Address, SPI, Security Protocol), the packet
and the relevant entry is passed to the appropriate rou-
tine which performs the necessary (cryptographic) trans-
forms. If more than one SPI applies (recursively) to the
packet, the appropriate routines are called in turn. When
the transforms are applied to the received packet, 
ags in-
dicating what security services were used are set in the
mbuf8 chain header. This lets the transport layer's input
routines compare the expected level of security to the ac-
tual security services used for the packet and drop it if the
security level was insu�cient.

7A slightly modi�ed ipip input() is used if the kernel is compiled
with multicasting support.

8mbufs are a data structure used to keep networking data, such
as packets, in the BSD kernel. A large packet is kept in a linked list
of such structures, called an mbuf chain.



If these routines fail, the packet is discarded and the
failure is logged. Additional measures might be taken in
future releases. Various statistics are kept, and can be seen
via the netstat command or the kernfs/procfs interface on
some platforms. A sysctl interface has also been provided,
to turn debugging messages on or o� if the kernel has been
compiled with the appropriate options.

2.4 Outgoing packet processing

The BSD and Linux implementations di�er in the way they
handle outgoing packets, due to the di�erences of their
network stacks.

2.4.1 Outgoing packet processing in BSD

In this implementation, the ip output() routine is
\tapped"; shortly after it is called, a lookup in the pol-
icy database is performed. The result of that query is
either no action, in which case the packet is sent out as
is, or the beginning of an SPI chain which de�nes the
set of transforms that should be applied to the packet
before it is sent on the network. In the latter case, the
appropriate routines are called successively. If no failure
is reported, statistical counters and the internal state are
updated. Finally, the modi�ed packet is sent to the ap-
propriate virtual interface's output routine, along with a

ag indicating that IPsec processed the packet. It will
then be re-processed by ip output(), just for fragmenta-
tion and next-hop route discovery (since the destination
address might have changed as a result of tunneling).

The mbuf chain 
ags can also be set by the transport9

layer's output routine so that the packet is not sent to the
network unless certain security services are used (authen-
tication and/or con�dentiality).

2.4.2 Outgoing packet processing in Linux

Since Linux doesn't have an ip output() routine or its
equivalent, we decided to change the way the policy engine
works: for packets that need to go through the IPsec code,
routing entries are created that point to one of the virtual
interfaces. These virtual interfaces are matched on a one-
on-one basis with real network interfaces. This allowed us
to push security processing to these pseudo-device drivers,
without radically modifying the routing code.

However, since Linux does not use the Radix tree for its
routing table, we were not able to route based on arbitrary
�elds in the packet, as we did in BSD. This means that if
there exists a security association with a remote host for a
speci�c packet 
ow (for example, a TCP connection), all
packets to that host will be delivered to an ipsec interface,
which then has to decide which of these packets should be
further (cryptographically) processed. This processing is
done by performing a lookup in a Radij tree that contains

9This includes UDP and TCP, but also ICMP and raw sockets.

the more detailed policy information. Otherwise, the out-
put routine of the ipsec interface behaves like the BSD
ip output()10.

Using virtual interfaces in this way has the advantage
of presenting a more realistic MTU to the TCP proto-
col. It is not clear however what the MTU that should
be reported in the interface structure is. Small MTUs will
cause no fragmentation due to IPsec processing, but will
decrease throughput by reducing the actual data size in
the packets. Large MTUs (close to the real network MTU)
maximize the e�ective bandwidth, but may cause fragmen-
tation. However, since the greatest performance cost in
software IPsec implementations is the cryptographic algo-
rithms, it is unclear whether fragmentation will further
degrade network performance. Determining the MTU dy-
namically (for each packet sent) would require extensive
modi�cations of the TCP code and impose additional de-
lays in outgoing packet processing for all such packets.

2.5 Kernel interfaces

For communication between user processes and the kernel,
we implemented two mechanisms:

� the PF ENCAP[PFENCAP] protocol family, which
works similarly to the PF ROUTE. It is used for ma-
nipulating the transforms database (setting up new
security associations, modifying and deleting them).
It is used by the manual keying utilities, as well as po-
tential key management daemons. In Linux, we used
Netlink instead, which is a generic kernel communi-
cation mechanism. This mechanism allows the kernel
to ask the key management daemons to establish a
security association with a remote host.

� a setsockopt()/getsockopt() interface. This allows
processes to set the security properties of their packet

ow(s) and get information about system defaults.
The options are set in the protocol control block of
the socket. Subsequent calls to connect() or send()
will cause either use of existing SPIs or a noti�cation
to the key management daemon (through PF ENCAP
or PF KEY) to negotiate a security association with
the remote host.

2.6 Management utilities

A number of utilities that take advantage of the
PF ENCAP interface were written to allow for manual key
setup, which is a requirement for all IPsec conforming im-
plementations. These utilities initialize, modify and delete
the state kept in the kernel transform and policy databases,
the latter using the PF ROUTE socket mechanism.

10Although some details of the BSD implementation, such as the
service 
ags, have not yet been included.



2.7 Future work

We plan on adding soft state to the tunnel endpoints, so
that Path MTU [PMTU] discovery information can �nd its
way back to the sender, in the presence of multiple encap-
sulation in the network. An additional possible optimiza-
tion for Path MTU discovery would be to check what the
�nal size of a packet about to be processed is; if it is larger
than the MTU of the network interface and the DF (Don't
Fragment) 
ag is set, there's no need to actually do the
cryptographic processing. Instead, the appropriate ICMP
message can be sent back. We also plan to modify TCP's
initial MSS resolution to improve performance in the pres-
ence of fragmentation caused by IPsec imposed headers.
Finally, there is thought of implementing the PF KEY ker-
nel communication draft, as an alternative to PF ENCAP.

100 1000

Packet size (in bytes)

10 ms

100 ms

Figure 1. ping performance with IPsec

No IPsec
HMAC-MD5
3DES-MD5

0

1000

2000

3000

4000

5000

T
hr

ou
gh

pu
t

Figure 2. blasting over UDP (cpu time)

DES-SHA1
DES-MD5
SHA1
MD5
None

0

500

1000

1500

T
hr

ou
gh

pu
t

Figure 3. TCP transfer (real time)

DES-SHA1
DES-MD5
SHA1
MD5
None

3 Performance measurements

Performance parameters of interest include latency and
throughput. We measured latency using ping. The mea-
surement con�guration consisted of two machines running
our software. The �rst was a 166MHz Pentium equipped
with a 100Mbit/sec ethernet card, the second a 120MHz
Pentium with a 10Mbit/sec ethernet card. We did the test
for di�erent packet sizes (512, 1024, 4096 and 8192 bytes of
payload) and di�erent IPsec transforms, pinging from the
P166 to the P120. The results can be seen in Figure 1. No-
tice that the scale is logarithmic. The graph shows that the
cost of authenticating packets does not really downgrade
response time, but that encryption (especially triple-DES)
is a major bottleneck.
The results from the Linux implementation are similar,

which is not surprising since the computationally intensive
part (encryption) remains the same.
In the second test, we measured how fast the P166 ma-

chine could "push" 15MB of data to the network, using
UDP, while applying di�erent transforms on the packets.
The size of the packets was 1KB. The results are shown in
Figure 2.
In a third test, we transfered 15MB of randomly cho-

sen data from the P166 to a 50MHz SPARC LX with
a 10Mbit/sec ethernet card. We used ttcp to measure
throughput, with TCP as the transport protocol. The re-
sults are in Figure 3.
It would be interesting to do the same tests using some

hardware cryptographic device (a DES chip), but the cur-
rent regulations (ie. ITAR) make this di�cult.

4 Conclusion

We described the IPsec architecture and some of the im-
portant parts of our implementation(s) for the BSD and
Linux kernels. Since most of the existing implementations
are proprietary, we believe this paper will help potential
developers in designing and implementing the standards
in the future.
Our BSD IPsec implementation is freely avail-

able to all US citizens. A somewhat older ver-
sion of it is available to everyone, and can be
found at ftp://ftp.funet.�/pub/unix/security/net/ip/, �le



BSDipsec-pl1.tar.gz. The code found in that archive was
written while the �rst two authors were in Greece. The
Linux implementation is available at the same directory,
�le ipsec-0.5.tar.gz. Most recently, work is being done in
the OpenBSD project, which has incorporated our BSD
implementation in their base distribution11. There is still
work to be done on our implementation, as new transforms
and interfaces are de�ned and standardized.

5 Acknowledgments

Most of the code was written in Athens, Greece, and in Dis-
tributed Systems Lab, University of Pennsylvania. Thanks
to Niels Provos for pointing out problems in our code and
working hard to both �x them and integrate the code in
the OpenBSD kernel. Bill Arbaugh provided many useful
comments on earlier versions of this paper.

References

[SWIPE] \The Architecture and Implementation of
Network-Layer Security Under Unix", Ioannidis,
J. and Blaze, M., Fourth Usenix Security Sympo-
sium Proceedings, October 1993

[PFENCAP] \The ENCAP Key Management Protocol, Ver-
sion 1", Ioannidis, J., Keromytis, A. D. and
Provos, N., Work in Progress

[AH] \IP Authentication Header", Atkinson, R., RFC
1826, August 1995

[AHSHA] \IP Authentication using Keyed SHA", Metzger,
P. and Simpson, W., RFC 1852, October 1995

[ESP3DES] \The ESP Triple DES-CBC Transform", Metzger,
P., Karn, P. and Simpson, W., RFC 1851, Octo-
ber 1995

[ESP] \IP Encapsulating Security Payload",
Atkinson, R., RFC 1827, August 1995

[AHMD5] \IP Authentication using Keyed MD5", Metzger,
P. and Simpson, W., RFC 1828, August 1995

[ESPDES] \The ESP DES-CBC Transform", Metzger, P.,
Karn, P. and Simpson, W., RFC 1829, August
1995

[Arch] \Security Architecture for the Internet Protocol",
Atkinson, R., RFC 1825, August 1995

[UDP] \User Datagram Protocol", Postel, J.B., RFC
768, August 1980

[TCP] \Transmission Control Protocol", Postel, J.B.,
RFC 793, September 1981

[IP] \Internet Protocol", Postel, J.B., RFC 791,
September 1981

[IPv6] \Internet Protocol, Version 6 (IPv6) Speci�ca-
tion", Deering, S. and Hinden, R., RFC 1883,
January 1996

11For more information, see http://www.openbsd.org/

[HMACMD5] \HMAC-MD5 IP Authentication with Replay
Prevention", Oehler, M. and Glenn, R., RFC
2085, February 1997

[HMACSHA] \HMAC-SHA IP Authentication with Replay
Prevention",Madson, C. and Glenn, R., draft-ietf-
ipsec-auth-hmac-sha196-00.txt, Work in Progress

[DESX] \The ESP DES-XEX3-CBC Transform",
Simpson, W. A. and Baldwin, R.,
draft-ietf-ipsec-ciph-desx-00.txt, Work in Progress

[CAST128] \The ESP CAST128-CBC Algorithm", Pereira,
R. and Carter, G., draft-ietf-ipsec-ciph-cast128-
cbc-00.txt, Work in Progress

[IPIP] \IP in IP Tunneling", Simpson, W., RFC 1853,
October 1995

[PMTU] \Path MTU Discovery", Mogul, J. and Deering,
S., RFC 1191, November 1990

[ICMP] \Internet Control Message Protocol", Postel, J.,
RFC 792, September 1981

[MD5] \The MD5 Message-Digest Algorithm", Rivest,
R., RFC 1321, April 1992

[DES] \NBS FIPS PUB 46 - Data Encryption Standard",
National Bureau of Standards, U.S. Department of
Commerce, January 1977

[Stevens] \TCP/IP Illustrated Volume 2 - The Implementa-
tion", Wright, Gary R. and Stevens, W. Richard,
Addison-Wesley, 1995

[SAPI] \A Simple IP Security API Extension to BSD
Sockets", McDonald, D. L., draft-mcdonald-
simple-ipsec-api-01.txt, Work in Progress

[Anderson] \A Protocol for Secure Communication in Large
Distributed Systems", Anderson, D. P. et al,
Technical Report UCB/UCSD 87/342, University
of California, Berkeley, February 1987

[SP3] \NISTIR 90-4250: Secure Data Network Systems
(SDNS) Network, Transport and Message Security
Protocols", National Institute of Standards and
Technology, February 1990

[NLSP] \ISO-IEC DIS 11577 - Information Technology
- Telecommunications and Information Exchange
Between Systems - Network Layer Security Proto-
col", ISO/IEC JTC1/SC6, November 1992

[PFKEY] \PF KEY Key Management API, Version 2", Mc-
Donald, D. L., Metz, C. W. and Phan B. G., draft-
mcdonald-pf-key-v2-03.txt, Work in Progress

[PHOTURIS] \Photuris: Session Key Management Protocol",
Karn, P. and Simpson, W. A., draft-simpson-
photuris-14.txt, Work in Progress


