
High-Speed I/O: The Operating System As A Signalling
Mechanism

Position paper

Matthew Burnside
Computer Science Department

Columbia University
mb@cs.columbia.edu

Angelos D. Keromytis
Computer Science Department

Columbia University
angelos@cs.columbia.edu

ABSTRACT
The design of modern operating systems is based around the con-
cept of memory as a cache for data that flows between applica-
tions, storage, and I/O devices. With the increasing disparity be-
tween I/O bandwidth and CPU performance, this architecture ex-
poses the processor and memory subsystems as the bottlenecks to
system performance. Furthermore, this design does not easily lend
itself to exploitation of new capabilities in peripheral devices, such
as programmable network cards or special-purpose hardware accel-
erators, capable of card-to-card data transfers.

We propose a new operating system architecture that removes
the memory and CPU from the data path. The role of the operating
system becomes that of data-flow management, while applications
operate purely at the signaling level. This design parallels the evo-
lution of modern network routers, and has the potential to enable
high-performance I/O for end-systems, as well as fully exploit re-
cent trends in programmability of peripheral (I/O) devices.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Input/Output

General Terms
Design, Security, Performance, Languages.

Keywords
Operating Systems, Data Streaming, Architecture

1. INTRODUCTION
Modern computing has become network-centric, with the utility

of certain services measured in terms of aggregate throughput to
the clients. Such applications include web-based services, database
query processing, video and audio on demand, etc. The common
characteristic of all these applications is their demand on all aspects
of the server system, i.e., hard drives, memory, processor, internal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGCOMM 2003 Workshops, August 25–29, 2003, Karlsruhe, Ger-
many.
Copyright 2003 ACM 1-58113-748-6/03/0008 ...$5.00.

bus, network interface, etc. Furthermore, because of the computa-
tional complexity in some of these services’ components, hardware
accelerator cards are often employed to improve performance. Ex-
amples of such cards include SSL/TLS/IPsec accelerators, general-
purpose cryptographic engines, MPEG encoders, digital signal pro-
cessors (DSPs), and so on.

(6)

User address space

Web server Web server

Operating system Operating system

Kernel address space

(1)

(2)

(3) (4)
(5)

Network Network

Hard disk Crypto NIC Hard disk Crypto NIC

(1)

(2)

(3)

(4)
(5)

Figure 1: Current operating system I/O design. Typical operating
systems follow the design on the left, which gives applications complete
control over data-flow at the expense of performance. Occasionally,
operating systems take advantage of specific features (such as a crypto
accelerator in the network stack) in a semi-transparent way, as shown
on the right.

From the operating system point of view, these devices are viewed
as data transformation units. The role of the operating system then
is to create a virtual pipeline of such devices to achieve the appli-
cation’s goals. This can be achieved in one of two ways, shown
in Figure 1. In a typical operating system design, shown on the
left, the operating system exports device functionality directly to
the application, which is responsible for managing the flow of data
among the various peripherals. While this is perhaps the most flexi-
ble approach, it suffers from two obvious performance bottlenecks:
data must be copied several times between the peripherals and main
memory, often over a shared bus (e.g., PCI), and the same data must
be copied between the application and kernel address space, also re-
quiring two context switches per data unit. The effective bandwidth
of the I/O bus is 1/n where n is the number of peripherals the
flow of data must pass through. In slightly more advanced designs,
shown on the right sub-figure, the operating system directly takes
advantage of hardware accelerators transparently. In this case, the
application is responsible for providing hints as to the desired pro-
cessing. We describe such a design in Section 3. The advantage of
this approach is that it reduces the amount of memory-to-memory

data copying and minimizes context switches. Note also that this
approach can make efficient use of programmable peripherals, but
does not depend on them.

However, in both designs, the use of main memory and CPU
cycles are the limiting factor [61]. This is a fundamental limitation
in the current scheme of composing different devices and it calls for
a new I/O-centric operating system architecture that moves away
from the concept of “main memory as data repository”, shown in
Figure 2. Such a rethinking is made all the more necessary by the
increasing divergence between memory and CPU/network speeds,
as shown in Figure 3.

Memory−I/O bus (e.g., PCI)

Main memory

Web

Server

DATA

OS Kernel

Hard
Disk

MPEG
encoder Accelerator

Crypto Network

Interface

Network

Figure 2: Main memory as data repository.

We propose a new operating system architecture, shown in Fig-
ure 5. In our scheme, the operating system becomes a manager
of data flows among the various peripheral devices. Thus, it sub-
sumes a role equivalent to that of a network switch — a shift from
the early-router design that was also driven by the need for higher
performance. Applications are limited exclusively to the signaling
plane. They are responsible for initializing and tearing down flows,
specifying the performance policies that govern these flows, and
exception handling. The operating system must implement these
policies by acting as a resource scheduler. The actual data transfers
occur directly between cards.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

M
H

z

Year

CPU Speed
Memory Bus Speed

Figure 3: CPU speed vs. memory speed (x86 processor series) Note
that the high-end memory buses (333-800MHz) have a throughput
which is 1/3 of their rate speed. Source: http://www.intel.com/

We define a flow to be any stream of data, as small as a single
packet. However, since there are costs associated with creating and

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

M
bp

s

Year

Network Bandwidth

Figure 4: Network bandwidth from 1987-2003.

tearing down a flow, realistically, we will only discuss those flows
where the number of packets is high enough to make the flow cre-
ation cost negligible.

It is often the case that operating systems and applications do not
simply shift data around but perform some simple operations, such
as header processing. It would appear that this would make impos-
sible a realization of our architecture. Observe, however, that many
modern peripheral devices support a considerable amount of pro-
grammability, e.g., the Intel IXP family of network cards. Similar
functionality has been proposed for hard drives and controllers [2,
3, 56]. We can utilize such functionality to inject code snippets that
implement simple operations such as header processing. Prelimi-
nary work in this direction has been promising [28]. Furthermore,
our architecture easily takes advantage of such programmable pe-
ripherals, as opposed to the awkward manner in which they are used
by current operating systems. Even when programmability is not a
feature, scatter-gather I/O can be used to compose the data with net-
work headers without having to copy the data into main memory.
Finally, the proposed architecture allows us to efficiently take ad-
vantage of interconnection buses that allow for point-to-point data
transfer between devices, such as daisy-chain FireWire or USB.

In the remainder of this paper, we expand on our vision of this
new operating system architecture, identifying the main new com-
ponents and their functionality. We describe some early work aimed
at optimizing the performance of cryptographic operations as used
by common network-security protocols such as SSL/TLS [19] and
SSH, which motivated our re-thinking of operating system design.
We close the paper by discussing related work.

2. ARCHITECTURE
To implement our proposed architecture, we need several new

components in the operating system:

• A signaling API that applications such as web servers use
to initialize flows across a series (pipeline) of peripheral de-
vices, and specify the performance requirements of such flows.
Since the API must be able to accommodate a wide variety
of devices accessible through a small number of different bus
architectures (PCI/PCI-X, FireWire, USB, etc.), we believe
that a procedural approach is inflexible. Instead, we envi-
sion a simple language and associated runtime environment,
along the lines of BPF [43], which will control the data flow
operations. We call this the Flow Management Language
(FML). Another possibility is to leverage on prior work in

Kernel

Web Server

Crypto
card

Hard
disk

Network

1
User memory

Kernel memory

stack

2 3

NIC

Figure 5: Operating system as a data-switch.

service composition for programmable infrastructures [68,
30]. FML programs will interact with devices through the
runtime environment and a standardized driver-side API. The
minimal operations that must be supported are device status
and capability sensing, programming the direct memory ac-
cess (DMA) controllers on the various peripherals, and ex-
ception handling.

Obviously, FML must be safe to execute inside the operat-
ing system. We believe that an approach similar to [34],
which extends the processing capabilities of BPF while re-
taining the safety guarantees, can be applied to FML. Other
techniques described in that work can be used to validate the
rights of applications to reserve and use system resources.

Finally, if the runtime environment (interpreter) proves to be
a performance bottleneck, we can use just-in-time (JIT) com-
pilation techniques to convert the FML programs to machine
code. We do not expect this to be necessary, however, since
FML does not need to “touch” data (as, for example, BPF
does) and thus should not be in the data-path.

• Since we expect multiple applications, or instances of the
same application, to run on the same system, we must pro-
vide a resource scheduler to coordinate the various virtual
pipelines that process the different data flows. The scheduler
must take into consideration not only the performance re-
quirements of each individual flow and application, but also
the relative speeds of the various devices that process a flow.
Generally speaking, the peak performance of a flow will be
ultimately limited by the speed of the slowest device that
must process the data (discounting for the moment bus con-
tention, interrupt latency, and other external factors as other
potential performance-limiting factors).

Note, however, that if there are considerable discrepancies
between the maximum throughput of various devices (e.g.,
a 10 Gbps network interface supported by a 1 Gbps cryp-
tographic accelerator), it is likely that the slow component
will be replicated to exploit increased performance through
parallelization. Even if a particular flow must remain tied
to a specific device, e.g., because processing requires state
dependent on previous operations — as is the case for some
compression algorithms, we can improve aggregate through-
put through replication and load balancing.

Thus, our scheduler (and FML) must be able to take into
consideration the potential for parallel scheduling, as well

as the “global” system requirements [39]. Recent work in
global flow scheduling [31] seems directly applicable here,
and we propose to investigate further.

• As we already mentioned, our approach makes use, and in
some cases requires, the use of programmable peripherals
such as smart network interface cards (e.g., the IXP family
of NICs) and hard drive controllers. Such capabilities can
be used to avoid using the main processor altogether, or to
implement needed functionality that is not otherwise avail-
able in the system, e.g., cryptographic processing on a pro-
grammable network interface [28]. Dynamic code genera-
tion (DCG) techniques can be used to program these periph-
erals on the fly, and adapt them to specific tasks1. One chal-
lenge in using such capabilities is how to maintain the orig-
inal semantics of the operating system network stack. One
potential approach is to generate the code that runs on the
programmable devices from the same code that the operat-
ing system itself uses.

• Even when programmable peripherals are not available per
se, features such as TCP data-checksumming are increas-
ingly being found on modern network interfaces. Such fea-
tures allow the operating system to avoid having to “touch”
the data, which would require their transfer to main memory.
Instead, the operating system can use scatter-gather DMA to
compose (and decompose) packets as they travel across de-
vices. Depending on the specifics of the network protocols
used, this composition can be done in two ways. First, pro-
tocol headers can be attached to the data as they are DMA’ed
between devices, if the receiving device (and all subsequent
devices of that flow) supports “pass-through” processing2 .
However, some devices, e.g., certain image-processing de-
vices, do not support pass-through. For these, the operating
system must build the appropriate headers separately from
the data, and “join” the two at the last step before it is trans-
mitted to the network.

• Finally, the operating system and the FML runtime must be
able to handle exceptions. Generally, such exceptions fall
in one of two categories: data-processing errors (e.g., de-
vice failure or data corruption) or external exceptions (e.g., a
TCP Reset or a Path MTU Discovery ICMP response from a
router [45]).

The former category is in some sense the easiest to handle:
the FML program managing a flow can address the exception
in one of several ways.

1. It can try to re-start the device, or re-issue the data, if
the fault was transient. In some cases (e.g., corrupt data
from a video camera), the error may simply be ignored,
if it is not persistent.

2. The flow can be redirected to use a different device.
This can be another instance of the failed device, or
it may be a different type of device which, when re-
programmed, can offer the lost functionality.

1For example, for a given TCP connection, the entire TCP/IP stack
could be dynamically compiled and compressed, with all lookups
and variables set to constants, and then the stack offloaded to a
programmable NIC
2That is, process only part of the data while passing through the
remaining data untouched. This is common in cryptographic accel-
erators used for IPsec and SSL/TLS processing.

3. The application can be notified about the failure and left
to determine the appropriate course of action.

4. The flow may be switched to using the operating sys-
tem code for data processing, trading functionality for
performance.

5. If everything else fails, the flow will be terminated and
a notification will be sent to the application.

The second type of exception can be handled by the FML
program itself, the application, or the operating system stack.

It is interesting to note that, based on the above discussion, the
“traditional” network stack implemented by current operating sys-
tems will remain useful for a number of reasons: as a fail-over when
a device fails, for processing requests involving small amounts of
data (which does not justify the overhead of setting up a flow and
using up the relevant resources), for exception handling (driven by
the FML program), and as a template for the dynamic code gener-
ation (e.g., [15, 55]) and specialization mechanism [1, 12, 62].

We believe that additional functionality will be required by the
operating system and the components we described above, but such
will be identified as we progress our implementation of the archi-
tecture. We next describe some preliminary work we have done in
the OpenBSD kernel, that lays the foundations for our architecture.

3. ACCELERATING CRYPTOGRAPHIC
PROTOCOLS

We briefly describe some preliminary work in realizing our new
operating system architecture. This work was motivated by a very
practical problem: how to accelerate cryptographic protocols that
transfer bulk data (e.g., SSL/TLS or SSH) by using hardware cryp-
tographic accelerators present in the system. We started by tak-
ing the most straightforward approach, which is exporting the ap-
propriate functionality through a unix device driver. We built the
OpenBSD cryptographic framework (OCF) [37], which is an asyn-
chronous service virtualization layer inside the kernel that provides
uniform access to cryptographic hardware accelerator cards. To
allow user-level processes to take advantage of hardware accelera-
tion facilities, a /dev/crypto device driver abstracts all the OCF
functionality and provides an ioctl()-based command set that allows
interaction with the OCF.

3

1

2 6

5

User memory

Kernel memory

Web Server

OCF stack
Network

card
Crypto NIC

4

Kernel

Figure 6: Use of cryptographic accelerators in a traditional operating
system.

In network-security protocols that use cryptographic accelera-
tors, the user-level process that implements the protocol, e.g., a

web server serving HTTPS requests, issues one or more crypto re-
quests via /dev/crypto, followed by a write() or send() call to
transmit the data, as can be seen in Figure 6. The web server uses
the /dev/crypto device driver to pass data to the OCF (step 1),
which delegates the SSL encryption and MAC’ing to the crypto-
graphic accelerator card (step 2). The card performs the requested
operations and the data are returned to the web server (steps 3 and
4). The web server uses the write() system call to pass the data to
the network stack (step 5), which transmits the data on the wire us-
ing a network interface card (step 6). Similarly, a read() or recv()
call is followed by a number of requests to /dev/crypto.

This implies considerable data copying to and from the kernel,
and unnecessary process context switching. One alternative ap-
proach in the spirit of our new operating system architecture is to
“link” some crypto context to a socket or file descriptor, such that
data sent or received on that file descriptor are processed appro-
priately by the kernel. The impact of such data copying has been
recognized in the past, as we discuss in Section 4, and has im-
pacted TLS performance, as shown in [44]. As much as 25% of
the overhead can be attributed to data copying. As cryptographic
accelerators become faster, the relative importance of this source of
overhead will increase.

User memory

Kernel memory

Web Server

OCF stack
Network

card

4

Crypto NIC

5

1

2

3 6

Kernel

Figure 7: Encrypting and transferring a buffer, with socket layer ex-
tensions.

Our approach reduces the per-buffer cost down to a single write()
and two context switches. (This is the same penalty as sending a
buffer over the network with no crypto at all.) The fundamental
change is that the network stack is crypto-aware. Figure 7 demon-
strates how a buffer is encrypted and transferred using our exten-
sions to the socket layer; the web server passes the buffer to the
network stack using write() (step 1), which passes the data directly
to the OCF (step 2). The OCF delegates the crypto to the accelera-
tor card (step 3), as before, but the data are returned to the network
stack (step 5) rather than user memory. The network stack then
finishes processing the data and transmits it (step 6). The imple-
mentation of this scheme was extremely straightforward, consist-
ing of adding about 80 lines of code in the kernel and changing less
than 10 lines of code in our sample application that implemented
a simple cryptographic protocol along the lines of SSL/TLS. The
benefits were overall fairly modest, giving us a 10% improvement
in throughput. However, this represents only a minor (and trivial)
step towards our new architecture — most of the gains will be had
from eliminating the DMA transfer to memory (consolidating steps
4 and 6). We are currently working toward such an implementation.

Another potential approach to reducing data copying overhead

is to do “page sharing” of data buffers; when a request is given
to /dev/crypto, the kernel removes the page from the process’s ad-
dress space and maps it in its own. When the request is completed,
it re-maps the page back to the process’s address space, avoiding
all data copying. This works well as long as /dev/crypto remains
a synchronous interface. However, to take full advantage of page
sharing, applications will have to be extensively modified to en-
sure that data buffers are kept in separate pages, and pages that
are being shared with the kernel are not accessed while an encryp-
tion/decryption request is pending. Finally, page-sharing does not,
by itself, take advantage of NICs with integrated cryptographic sup-
port, although it can improve the performance in that scenario.

Another I/O performance bottleneck has been that of small re-
quests. Although we did not examine its effects in this paper, previ-
ous work [42, 37] has demonstrated that they can have a significant
negative impact on the performance. Since many cryptographic
protocols, e.g., SSH login, use small requests, the gains from cryp-
tographic accelerators are smaller than one might hope for. There
are several possible approaches: request-batching, kernel crossing
and/or PCI transaction minimization, or simply use of a faster pro-
cessor. These are more cost-effective solutions to deploying a hard-
ware accelerator, as has already been pointed in the context of the
TLS handshake phase [14].

4. RELATED WORK
[21] describes a mechanism for optimizing high-bandwidth I/O

called fbufs. Fbufs combine a page remapping technique with dy-
namically mapped, group-wise shared virtual memory to increase
performance during multiple domain crossings (e.g., from user to
kernel space). Essentially, data to be migrated across multiple do-
mains are placed in an fbuf, and that fbuf is a memory buffer that
is made accessible to each domain. Their experiments show that
fbufs can offer an order of magnitude better throughput than page
remapping. IO-Lite [52] is closely related to fbufs, but contains ad-
ditional support for file system access and a file cache. One prob-
lem with such systems is their poor performance when dealing with
small data buffers, since the fixed overhead for handling a message
becomes the dominant cost, eclipsing memory copying. Other sim-
ilar zero-copy approaches include “container shipping” [53], and
the work described in [50]. These mechanisms were designed to
minimize data copying between peripheral devices, kernel mem-
ory and user-process address space, thus do not directly address the
problems of bus contention and memory bandwidth limitations, nor
do they allow applications to efficiently take advantage of special-
purpose hardware or direct interconnects between peripheral de-
vices (e.g., FireWire or USB daisy-chained devices). [10] showed
that general-purpose operating systems (they used NetBSD, a unix
variant) can easily emulate zero-copy I/O semantics at the system-
call level without requiring any modification of applications, while
offering performance comparable to the specially-designed systems
described above.

[9] addresses the problem of data transfers between the network
interface and the filesystem, which requires data buffers to be cached
for later use and is thus incompatible with most zero-copy mech-
anisms. The author proposes the combination of mapped file I/O,
using the standard unix mmap() system call, and copy avoidance
techniques to minimize data copying at the server. However, the
proposes approach requires synchronization between the client and
server processes to ensure proper alignment of data buffers on re-
ception. Furthermore, because of the requirement that data must
reside in the file cache, at least one data copy operation to memory
(i.e., two PCI bus transactions) is needed.

The Scout operating system [46] represents I/O transactions us-

ing the concepts of paths [48]. System code is divided into mod-
ules, like IP or ETH, (for the IP module and the Ethernet device
driver, respectively), which are arranged into paths along which
packets travel. Paths are defined at build time, so when a module
receives an incoming packet it does not have to expend cycles de-
termining where to route the packet; that information is encoded in
the path itself.

The Exokernel operating system [16, 26, 35, 27, 24, 29] takes
a different approach, separating protection of hardware resources
from management of hardware resources. This allows applications
to perform their own management; hence, they can implement their
own disk schedulers, memory managers, etc. Under an Exokernel
architecture, a web server can, for example, serve files to a client
while avoiding all in-memory data touching by the CPU by trans-
mitting files directly from the file cache. Similar work includes [7,
59]. [25] proposes the elimination of all abstractions in the operat-
ing system, whose role should be to securely expose the hardware
resources directly to the application. The Nemesis operating sys-
tem [41, 8], driven by the need to support multimedia applications,
provided a vertically-structured single-address-space architecture
that did away with all data copying between traditional kernel and
applications.

The Click Router [47] demonstrated the value of a polling-like
scheme, versus an interrupt-driven one, for heavily-multiplexed sys-
tems. Because the various protocol modules are dynamically com-
posed, various inefficiencies and redundant copying can also be
eliminated. The value of clocked interrupts was also demonstrated
by work on Soft Timers [4]. Similar prior work includes the x-
kernel [33] and the router plugins architecture [18, 17].

A different technique for increasing I/O performance is the use
of Application-Specific Handlers (ASH) [66, 65]. ASHs are user-
written code fragments that execute in the kernel, in response to
message arrivals. An ASH directs message transfers and sends the
messages it handles, eliminating copies and reducing send-response
latency. The authors demonstrate a 20% performance increase on
an AN2 ATM network. A precursor to ASHs that was less flexible
in terms of the operations allowed by the message handlers is de-
scribed in [23]. A scheme similar to ASHs, Active Messages [64,
11], allows messages to invoke application-specified handlers in-
stead of using the traditional thread-processing approach, thus avoid-
ing the overhead of thread management and some unnecessary data
copying. A similar approach is taken in [54]. Fast Sockets [58]
provide an implementation of the Berkeley Sockets API on top of
Active Messages. Optimistic Active Messages [67] removes some
of the restrictions inherent in Active Messages, achieving the same
performance while relaxing some of the restrictions inherent in the
latter. U-Net [63] avoids the passage of data through kernel mem-
ory by performing a DMA transfer directly into the user buffer,
letting applications perform their own flow control.

The Fast Messages library [40] introduces a user-level library
that tries to eliminate unnecessary copying that is otherwise needed
to perform routine protocol processing operations like header addi-
tion/removal or payload delivery. Another user-level approach for
fast I/O is the Alloc Stream Facility [38]. Fundamentally, all these
schemes place the application in the center of data transfers, mak-
ing main memory and the application itself (i.e., the main CPU)
potential performance bottlenecks. Applicatin Device Channels
(ADCs) [22] link network device drivers with applications, allow-
ing direct processing of most protocol messages without requiring
operating system intervention. LRP [20] applies early demultiplex-
ing and lazy protocol processing at the receiver’s priority in the
Aegis operating system, which is otherwise similar to the eager
approach taken by Application-Specific Handlers. A more conven-

tional approach, described in [6, 5], improves the implementation
of the select() system call, used by most event-driven network ser-
vice implementations.

In [13], Clayton and Calvert propose a data-stream language that
may be viewed as a simple version of the FML described in Sec-
tion 2. By describing protocols with a data-stream-based language,
they are able to arrange and implement protocol functions conve-
niently. Their compiler is also able to remove at compile time many
of the ineffiencies introduced by traditional structured program-
ming techniques, such as boundary crossings and lost optimization
opportunities due to information hiding. Related work includes the
Chromium system [32], which is a stream processing language de-
signed specifically for interactively rendering graphics on clusters
of machines. By abstracting away the underlying graphics architec-
ture and network topology, it can support an array of applications
in differing environments.

[36, 51, 57] present more proof of the validity and usefulness of
the I/O streams paradigm, examined in the context of multimedia
application processing. They use their Imagine architecture and
StreamC language to compile C-like code into VLSI and demon-
strate that, on average, stream programs take 98% of the execution
time of hand-optimized assembly versions of the same code un-
der an automated scheduler. [60] discusses their experience and
evaluation in using a custom-built board, the Imagine Stream Pro-
cessor, for high-performance 3-D teleconferencing. Our concept
of stream processing transcends special-purpose hardware, aiming
to enable traditional computer architectures. Other related work
includes [49].

5. CONCLUSIONS
We proposed a new operating system architecture that removes

the memory and CPU from the data path. The role of the operating
system becomes that of data-flow management, while applications
operate purely at the signaling level. This design parallels the evo-
lution of modern network routers, and has the potential to enable
high-performance I/O for end-systems, as well as fully exploit re-
cent trends in programmability of peripheral (I/O) devices.

6. REFERENCES
[1] M. B. Abbott and L. L. Peterson. Increasing Network

Throughput by Integrating Network Layers. IEEE/ACM
Transactions on Networking (ToN), 1(5), October 1993.

[2] A. Acharya, M. Uysal, and J. Saltz. Active Disks. In
Proceedings of the 8th Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS VIII), October 1998.

[3] K. Amiri, D. Petrou, G. R. Ganger, and G. A. Gibson.
Dynamic Function Placement for Data-intensive Cluster
Computing. In Proceedings of the USENIX Annual Technical
Conference, pages 307–322, June 2000.

[4] M. Aron and P. Druschel. Soft Timers: Efficient Microsecond
Software Timer Support for Network Processing. ACM
Transactions of Computer Science, 18(3):197–228, 2000.

[5] G. Banga, P. Druschel, and J. Mogul. Better Operating
System Features for Faster Network Servers. In Proceedings
of the Workshop in Internet Server Performance, June 1998.

[6] G. Banga and J. Mogul. Scalable Kernel Performance for
Internet Servers Under Realistic Loads. In Proceedings of the
USENIX Technical Conference, June 1998.

[7] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. Fiuczynski, D. Becker, S. Eggers, and C. Chambers.
Extensibility, Safety and Performance in the SPIN Operating

System. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP), pages 267–284,
December 1995.

[8] R. Black, P. Barham, A. Donnelly, and N. Stratford. Protocol
Implementation in a Vertically Structured Operating System.
In Proceedings of the 22nd Annual Conference on Local
Computer Networks, 1997.

[9] J. C. Brustoloni. Interoperation of Copy Avoidance in
Network and File I/O. In Proceedings of IEEE INFOCOM,
pages 534–542, 1999.

[10] J. C. Brustoloni and P. Steenkiste. Effects of Buffering
Semantics on I/O Performance. In Proceedings of the 2nd
Symposium on Operating Systems Design and
Implementation (OSDI), pages 277–291, December 1996.

[11] G. Chiola and G. Ciaccio. A Performance-oriented Operating
System Approach to Fast Communications in a Cluster of
Personal Computers. In In Proceedings of the International
Conference on Parallel and Distributed Processing,
Techniques and Applications (PDPTA), volume I, pages
259–266, July 1998.

[12] D. Clark and D. Tennenhouse. Architectural Considerations
for a New Generation of Protocols. In Proceedings of ACM
SIGCOMM, September 1990.

[13] R. V. Clayton and K. L. Calvert. Structuring Protocols as
Data Streams. In Proceedings of the 2nd Workshop on
High-Performance Protocol Architectures, December 1995.

[14] C. Coarfa, P. Druschel, and D. Wallach. Performance
Analysis of TLS Web Servers. In Proceedings of the Network
and Distributed Systems Security Symposium (NDSS),
February 2002.

[15] D. R. Engler and M. F. Kaashoek. DPF: Fast, Flexible
Message Demultiplexing using Dynamic Code Generation.
In Proceedings of ACM SIGCOMM, August 1996.

[16] D. R. Engler, et al. Exokernel: An Operating System
Architecture for Application-Level Resource Management.
In Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP), December 1995.

[17] D. S. Decasper. A software architecture for next generation
routers. PhD thesis, Swiss Federal Institute of Technology,
1999.

[18] D. S. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router
plugins: A software architecture for next generation routers.
In Proceedings of ACM SIGCOMM, pages 229–240, October
1998.

[19] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC
2246, IETF, January 1999.

[20] P. Druschel and G. Banga. Lazy Receiver Processing (LRP):
A Network Subsystem Architecture for Server Systems. In
Proceedings of the 2nd Symposium on Operating Systems
Design and Implementation, pages 216–275, October 1996.

[21] P. Druschel and L. L. Peterson. Fbufs: A High-Bandwidth
Cross-Domain Transfer Facility. In Proceedings of the
Symposium on Operating Systems Principles (SOSP), pages
189–202, 1993.

[22] P. Druschel, L. L. Peterson, and B. S. Davie. Experiences
with a high-speed network adaptor: A software perspective.
In Proceedings of ACM SIGCOMM, pages 2–13, August
1994.

[23] A. Edwards, G. Watson, J. Lumley, D. Banks,
C. Calamvokis, and C. Dalton. User-space protocols deliver
high performance to applications on a low-cost Gb/s LAN. In

Proceedings of ACM SIGCOMM, pages 14–24, August 1994.
[24] D. R. Engler. The Exokernel Operating System Architecture.

PhD thesis, MIT, October 1998.
[25] D. R. Engler and M. F. Kaashoek. Exterminate All Operating

System Abstractions. In Proceedings of the 5th IEEE
Workshop on Hot Topics in Operating Systems (HotOS),
pages 78–85, 1995.

[26] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole. The
Operating System Kernel as a Secure Programmable
Machine. In Proceedings of the Sixth SIGOPS European
Workshop, pages 62–67, September 1994.

[27] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M. Briceno,
R. Hunt, and T. Pinckney. Fast and Flexible
Application-Level Networking on Exokernel Systems. ACM
Transactions on Computer Systems, pages 49–83, February
2002.

[28] L. George and M. Blume. Taming the IXP Network
Processor. In Proceedings of the ACM Conference on
Programming Language Design and Implementation (PLDI),
June 2003.

[29] R. Grimm. Exodisk: maximizing application control over
storage management. Masters Thesis, Massachusetts
Institute of Technology, May 1996.

[30] M. W. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and
S. Nettles. PLAN: A Programming Language for Active
Networks. Technical Report MS-CIS-98-25, Department of
Computer and Information Science, University of
Pennsylvania, February 1998.

[31] M. W. Hicks, A. Nagarajan, and R. van Renesse.
User-specified Adaptive Scheduling in a Streaming Media
Network. In Proceedings of IEEE OPENARCH, April 2003.

[32] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D.
Kirchner, and J. T. Klosowski. Chromium: A
Stream-Processing Framework for Interactive Rendering on
Clusters. In ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2002), pages 693–702, 2002.

[33] N. C. Hutchinson and L. L. Peterson. The x-kernel: An
Architecture for Implementing Network Protocols. IEEE
Transactions on Software Engineering, 17(1):64–76, January
1991.

[34] S. Ioannidis, K. G. Anagnostakis, J. Ioannidis, and A. D.
Keromytis. xPF: packet filtering for low-cost network
monitoring. In Proceedings of the IEEE Workshop on
High-Performance Switching and Routing (HPSR), pages
121–126, May 2002.

[35] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceno,
R. Hunt, D. Mazieres, T. Pinckney, R. Grimm, J. Jannotti,
and K. MacKenzie. Application Performance and Flexibility
on Exokernel Systems. In Proceedings of the 16th ACM
Symposium on Operating System Principles, October 1997.

[36] U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and
B. Towles. Stream Scheduling. In Proceedings of the 3rd
Workshop on Media and Streaming Processors, pages
101–106, December 2001.

[37] A. D. Keromytis, J. L. Wright, and T. de Raadt. The Design
of the OpenBSD Cryptographic Framework. In Proceedings
of the USENIX Annual Technical Conference, June 2003.

[38] O. Krieger, M. Stumm, and R. Unrau. The Alloc Stream
Facility: A Redesign of Application-Level Stream I/O. IEEE
Computer, 27(3), March 1994.

[39] K. Lakshman, R. Yavatkar, and R. Finkel. Integrate CPU and

Network-I/O QoS Management in the Endsystem. Computer
Communications, pages 325–333, April 1998.

[40] M. Lauria, S. Pakin, and A. A. Chien. Efficient Layering for
High Speed Communication: Fast Messages 2.x. In
Proceedings of the 7th IEEE Symposium on High
Performance Distributed Computing (HPDC), July 1998.

[41] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The Design and
Implementation of an Operating System to Support
Distributed Multimedia Applications. IEEE Journal on
Selected Areas in Communications, 14(7):1280–1297,
September 1996.

[42] M. Lindemann and S. W. Smith. Improving DES
Coprocessor Throughput for Short Operations. In
Proceedings of the 10th USENIX Security Symposium, pages
67–81, August 2001.

[43] S. McCanne and V. Jacobson. A BSD Packet Filter: A New
Architecture for User-level Packet Capture. In Proceedings
of the USENIX Winter Technical Conference, pages 259–269,
January 1993.

[44] S. Miltchev, S. Ioannidis, and A. D. Keromytis. A Study of
the Relative Costs of Network Security Protocols. In
Proceedings of the USENIX Annual Technical Conference,
Freenix Track, pages 41–48, June 2002.

[45] J. Mogul and S. Deering. Path MTU Discovery. RFC 1191,
November 1990.

[46] A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Peterson,
T. A. Proebsting, and J. H. Hartman. Scout: A
Communications-Oriented Operating System (Abstract). In
Proceedings of the Symposium on Operating Systems Design
and Implementation (OSDI), 1994.

[47] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The
Click modular router. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles (SOSP),
December 1999.

[48] D. Mosberger and L. L. Peterson. Making Paths Explicit in
the Scout Operating System. In Proceedings of the 2nd
Symposium on Operating Systems Design and
Implementation (OSDI), pages 153–167, 1996.

[49] J. Nieh and M. Lam. SMART: A Processor Scheduler for
Multimedia Applications. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP),
December 1995.

[50] S. O’Malley and L. L. Peterson. A Dynamic Network
Architecture. ACM Transactions on Computer Systems,
10(2):110–143, May 1992.

[51] J. D. Owens, S. Rixner, U. J. Kapasi, P. Mattson, B. Towles,
B. Serebrin, and W. J. Dally. Media Processing Applications
on the Imagine Stream Processor. In Proceedings of the
IEEE International Conference on Computer Design, pages
295–302, September 2002.

[52] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: a unified
I/O buffering and caching system. ACM Transactions on
Computer Systems, 18(1):37–66, 2000.

[53] J. Pasquale, E. Anderson, and P. K. Muller. Container
Shipping: Operating System Support for I/O-intensive
applications. IEEE Computer, 27(3):84–93, March 1994.

[54] C. Poellabauer and K. Schwan. Lightweight Kernel/User
Communication for Real-Time and Multimedia
Applications, June 2001.

[55] M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek.

’C and tcc: A Language and Compiler for Dynamic Code
Generation. ACM Transactions on Programming Languages
and Systems (TOPLAS), 21(2):324–369, 1999.

[56] E. Riedel, G. Gibson, and C. Faloutsos. Active Storage For
Large-Scale Data Mining and Multimedia. In Proceedings of
the Conference on Very Large DataBases, August 1998.

[57] S. Rixner. A Bandwidth-efficient Architecture for a Streaming
Media Processor. PhD thesis, MIT, February 2001.

[58] S. Rodrigues, T. Anderson, and D. Culler. High-Performance
Local-Area Communication Using Fast Socket. In
Proceedings of the USENIX Technical Conference, January
1997.

[59] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
with disaster: Surviving misbehaved kernel extensions. In
Proceedings of the 2nd Symposium on Operating Systems
Design and Implementation (OSDI), October 1996.

[60] B. Serebrin, J. D. Owens, C. H. Chen, S. P. Crago, U. J.
Kapasi, B. Khailany, P. Mattson, J. Namkoong, S. Rixner,
and W. D. Dally. A Stream Processor Development Platform.
In Proceedings of the International Conference on Computer
Design (ICCD), September 2002.

[61] A. S. Tanenbaum. Computer Networks, 3rd Edition. Prentice
Hall, 1996.

[62] E. N. Volanschi, G. Muller, C. Consel, L. Hornof, J. Noye,
and C. Pu. A Uniform and Automatic Approach to Copy
Elimination in System Extensions via Program
Specialization. Technical Report RR-2903, Institut de
Recherche en Informatique et Systemes Aleatoires, France,
1996.

[63] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A
User-Level Network Interface for Parallel and Distributed
Computing. In Proceedings of the 15th Symposium on
Operating Systems Principles (SOSP), 1995.

[64] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser.
Active Messages: A Mechanism for Integrated
Communication and Computation. In Proceedings of the
International Symposium on Computer Architecture, pages
256–266, 1992.

[65] D. A. Wallach. High-Performance Application-Specific
Networking. PhD thesis, MIT, January 1997.

[66] D. A. Wallach, D. Engler, and M. F. Kaashoek. ASHs:
Application-specific handlers for high-performance
messaging. In Proceedings of ACM SIGCOMM, August
1996.

[67] D. A. Wallach, W. C. Hsieh, K. L. Johnson, M. F. Kaashoek,
and W. E. Weihl. Optimistic Active Messages: A Mechanism
for Scheduling Communication with Computation. In
Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, July 1995.

[68] Y. Yemini and S. daSilva. Towards Programmable Networks.
In IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management, October 1996.

