
kR^X: Comprehensive Kernel Protection
against Just-In-Time Code Reuse

Marios Pomonis∗ Theofilos Petsios∗ Angelos D. Keromytis∗

Michalis Polychronakis† Vasileios P. Kemerlis‡
∗Columbia University †Stony Brook University ‡Brown University

{mpomonis, theofilos, angelos}@cs.columbia.edu mikepo@cs.stonybrook.edu vpk@cs.brown.edu

Abstract
The abundance of memory corruption and disclosure vul-
nerabilities in kernel code necessitates the deployment of
hardening techniques to prevent privilege escalation attacks.
As more strict memory isolation mechanisms between the
kernel and user space, like Intel’s SMEP, become common-
place, attackers increasingly rely on code reuse techniques
to exploit kernel vulnerabilities. Contrary to similar attacks
in more restrictive settings, such as web browsers, in ker-
nel exploitation, non-privileged local adversaries have great
flexibility in abusing memory disclosure vulnerabilities to
dynamically discover, or infer, the location of certain code
snippets and construct code-reuse payloads. Recent studies
have shown that the coupling of code diversification with the
enforcement of a “read XOR execute” (R^X) memory safety
policy is an effective defense against the exploitation of user-
land software, but so far this approach has not been applied
for the protection of the kernel itself.

In this paper, we fill this gap by presenting kR^X: a kernel
hardening scheme based on execute-only memory and code
diversification. We study a previously unexplored point in
the design space, where a hypervisor or a super-privileged
component is not required. Implemented mostly as a set
of GCC plugins, kR^X is readily applicable to the x86-64
Linux kernel and can benefit from hardware support (e.g.,
MPX on modern Intel CPUs) to optimize performance. In
full protection mode, kR^X incurs a low runtime overhead
of 4.04%, which drops to 2.32% when MPX is available.

CCS Concepts •Security and privacy→Operating sys-
tems security; Software security engineering

Keywords Execute-only memory, Code diversification

Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the United States government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

EuroSys ’17, April 23–26, 2017, Belgrade, Serbia

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064216

1. Introduction
The deployment of standard kernel hardening schemes, like
address space layout randomization (KASLR) [40] and non-
executable memory [71], has prompted a shift from legacy
code injection (in kernel space) to return-to-user (ret2usr)
attacks [62]. Due to the weak separation between kernel and
user space—as a result of the kernel being mapped inside
the (upper part of the) address space of every user process for
performance reasons—in ret2usr attacks, the kernel control/-
data flow is hijacked and redirected to code/data residing
in user space, effectively bypassing KASLR and (kernel-
space) W^X. Fortunately, however, recent software [62, 90]
and hardware [61] kernel protection mechanisms mitigate
ret2usr threats by enforcing a more stringent address space
separation. Alas, mirroring the co-evolution of attacks and
defenses in user space, kernel exploits have started to rely
on code-reuse techniques, like return-oriented programming
(ROP) [104]; old ret2usr exploits [8] are converted to use
ROP payloads instead of shellcode [18], while modern jail-
break and privilege escalation exploits rely solely on code-
reuse [2, 121]. At the same time, the security community de-
veloped protections against code-reuse attacks: control-flow
integrity (CFI) [7] and code diversification [38, 57, 87, 118]
schemes have been applied both in the user as well as in the
kernel setting [34, 53]. Unfortunately, these solutions are not
bulletproof. Recent studies demonstrated that both coarse-
grained [88, 125, 126] and fine-grained [85, 86, 92, 95, 111]
CFI schemes can be bypassed by confining the hijacked
control flow to valid execution paths [21, 36, 42, 54, 55],
while code diversification can be circumvented by leverag-
ing memory disclosure vulnerabilities [105].

Having the ability to disclose the memory contents of
a process, exploit code can (dynamically at runtime) pin-
point the exact location of ROP gadgets, and assemble
them on-the-fly into a functional ROP payload. This kind of
“just-in-time” ROP (JIT-ROP) [105] is particularly effective
against applications with integrated scripting support, like
web browsers. Specifically, by embedding malicious script
code into a web page, an attacker can combine a memory

disclosure with a corruption bug to enumerate the address
space of the browser for gadgets, and divert its execution
into dynamically-constructed ROP code. However, in kernel
exploitation, a local (unprivileged) adversary, armed with
an arbitrary (kernel-level) memory disclosure vulnerability,
has increased flexibility in mounting a JIT-ROP attack on a
diversified kernel [53], as any user program may attack the
OS. Marked, kernel JIT-ROP attacks are not only easier to
mount, but are also facilitated by the abundance of memory
disclosure vulnerabilities in kernel code [68, 77, 80].

As a response to JIT-ROP attacks in user applications,
execute-only memory prevents the (on-the-fly) discovery
of gadgets by blocking read access to executable pages.
Nevertheless, given that widely-used CPU architectures,
like the x86, do not provide native support for enforcing
execute-only permissions, such memory protection(s) can be
achieved by relying on page table manipulation [11], TLB
desynchronization [51], hardware virtualization [32, 52], or
techniques inspired by software-fault isolation (SFI) [19]. A
common characteristic of these schemes (except LR2 [19])
is that they rely on a more privileged domain (e.g., the OS
kernel [11, 51] or a hypervisor [32, 52]) to protect a less
privileged domain—in fact, most of the existing approaches
are exclusively tailored for user processes. As JIT-ROP-like
attacks are expected to become more prevalent in the kernel
setting, the need for an effective kernel defense against them
becomes more imperative than ever.

Retrofitting existing hypervisor-based approaches for
kernel protection can be an option [52], but this approach
comes with several drawbacks: first, when implemented
as a special-purpose hypervisor, such a (hierarchically-
privileged) scheme may clash with existing hypervisor
deployments, requiring nesting two or more hypervisors,
thereby resulting in high runtime overheads [12]; second,
when implemented as part of an existing hypervisor [52],
it would increase not only the virtualization overhead, but
also the trusted computing base; finally, in architectures that
lack hardware support, efficient virtualization might not be
an option at all. On the other hand, the address space layouts
imposed by SFI-based schemes, such as NaCl [123] and
LR2 [19], along with other design decisions that we discuss
in detail in Section 5.1.1, are non-applicable in the kernel
setting, while Intel’s upcoming memory Protection Keys for
Userspace (PKU) hardware feature, which can be used to
enforce execute-only memory in x86 processors, is available
to userland software only [56].

In this paper, we study a previously unexplored point
in the design space continuum by presenting kR^X: a both
comprehensive and practical kernel hardening solution that
diversifies the kernel’s code and prevents any read accesses
to it. More importantly, the latter is achieved by following a
self-protection approach that relies on code instrumentation
to apply SFI-inspired checks for preventing memory reads
from code sections.

Comprehensive protection against kernel-level JIT-ROP
attacks is achieved by coupling execute-only memory with:
i) extensive code diversification, which leverages function
and basic block reordering [64, 118], to thwart the direct use
of pre-selected ROP gadgets; and ii) return address protec-
tion using either a XOR-based encryption scheme [19, 91,
120] or decoy return addresses, to thwart gadget inference
through saved return addresses on the kernel stacks [24].

Practical applicability to existing systems is ensured
given that kR^X: i) does not rely on more privileged entities
(e.g., a hypervisor [32, 52]) than the kernel itself; ii) is read-
ily applicable on x86-64 systems, and can leverage memory
protection extensions (i.e., Intel’s MPX [60]) to optimize
performance; iii) has been implemented as a set of compiler
plugins for the widely-used GCC compiler, and has been
extensively tested on recent Linux distributions; and iv) in-
curs a low runtime overhead (in its full protection mode) of
4.04% on the Phoronix Test Suite, which drops to 2.32%
when MPX support is available.

2. Background
Kernel Exploitation The execution model imposed by the
shared virtual memory layout between the kernel and user
space makes kernel exploitation a fundamentally different
craft from the exploitation of userland software. The shared
address space provides a vantage point to local attackers, as
it enables them to control, both in terms of permissions and
contents, part of the kernel-accessible memory (i.e., the user
space part) [62]. In particular, they can execute code with
kernel rights by hijacking a kernel control path and redirect-
ing it to user space, effectively invalidating the protection(s)
offered by standard defenses, like kernel-space ASLR [40]
and W^X [71]. Attacks of this kind, known as return-to-user
(ret2usr), can be traced back to the early 1970’s, as demon-
strated by the PDP-10 “address wraparound” fault [96]. Over
the past decade, however, ret2usr has been promoted to the
de facto kernel exploitation technique [93].

During a ret2usr attack, kernel data is overwritten with
user-space addresses by (ab)using memory corruption vul-
nerabilities in kernel code. Attackers aim for control data,
such as return addresses [102], function pointers [108], and
dispatch tables [43], because these facilitate code execution.
Nevertheless, pointers to critical data structures stored in
the kernel data section or heap (i.e., non-control data [114])
are also targets, as they enable attackers to tamper with the
data contained in certain objects by mapping fake copies in
user space [45]. The targeted data structures typically con-
tain data that affect the control flow (e.g., code pointers), so
as to diverge execution to arbitrary locations. The net result
of all ret2usr attacks is that the control/data flow of the kernel
is hijacked and redirected to user space code/data [62].

Code Reuse Prevention Code reuse exploits rely on code
fragments (gadgets) located at predetermined memory ad-
dresses [20, 23, 36, 39, 54, 104]. Code diversification

and randomization techniques (colloquially known as fine-
grained ASLR [105]) can thwart code-reuse attacks by
perturbing executable code at the function [13, 64], basic
block [38, 118], or instruction [57, 87] level, so that the
exact location of gadgets becomes unpredictable [72].

However, Snow et al. introduced “just-in-time” ROP (JIT-
ROP) [105], a technique for bypassing fine-grained ASLR
for applications with embedded scripting support. JIT-ROP
is a staged attack: first, the attacker abuses a memory disclo-
sure vulnerability to recursively read and disassemble code
pages, effectively negating the properties of fine-grained
ASLR (i.e., the exact code layout becomes known to the
attacker); next, the ROP payload is constructed on-the-fly
using gadgets collected during the first step.

Oxymoron [10] was the first protection attempt against
JIT-ROP. It relies on (x86) memory segmentation to hide ref-
erences between code pages, thereby impeding the recursive
gadget harvesting phase of JIT-ROP. Along the same vein,
XnR [11] and HideM [51] prevent code pages from being
read by emulating the decades-old concept of execute-only
memory (XOM) [26, 110] on contemporary architectures,
like x86,1 which lack native support for XOM. XnR marks
code pages as “Not Present,” resulting into a page fault (#PF)
whenever an instruction fetch or data access is attempted on
a code page; upon such an event, the OS verifies the source
of the fault and temporarily marks the page as present,
readable and executable, or terminates execution. HideM
leverages the fact that x86 has separate Translation Look-
aside Buffers (TLBs) for code (ITLB) and data (DTLB).
A HideM-enabled OS kernel deliberately de-synchronizes
the ITLB from DTLB, so that the same virtual addresses
(corresponding to code pages) map to different page frames
depending on the TLB consulted. Alas, Davi et al. [37] and
Conti et al. [24] showed that Oxymoron, XnR, and HideM
can be bypassed using indirect JIT-ROP attacks by merely
harvesting code pointers from (readable) data pages.

As a response, Crane et al. [32, 33] introduced the con-
cept of leakage-resilient diversification, which combines
XOM and fine-grained ASLR with an indirection mecha-
nism called code-pointer hiding (CPH). Fine-grained ASLR
and XOM foil direct (JIT-)ROP, whereas CPH mitigates in-
direct JIT-ROP by replacing code pointers in readable mem-
ory with pointers to arrays of direct jumps (trampolines)
to function entry points and return sites—CPH resembles
the Procedure Linkage Table (PLT) [82] used in dynamic
linking; trampolines are stored in XOM and cannot leak
code layout. Readactor [32] is the first system to incorporate
leakage-resilient code diversification. It layers CPH over
a fine-grained ASLR scheme that leverages function per-
mutation [13, 64] and instruction randomization [87], and
implements XOM using a lightweight hypervisor.2

1 In x86 (both 32- and 64-bit) the execute permission implies read access.
2 Readactor’s hypervisor makes use of the Extended Page Tables (EPT) [50]
feature available in modern Intel CPUs (Nehalem and later). EPT provides

3. Threat Model
Adversarial Capabilities We assume unprivileged local
attackers (i.e., with the ability to execute, or control the
execution of, user programs on the OS) who seek to ele-
vate their privileges by exploiting kernel-memory corruption
bugs [5, 6]. Attackers may overwrite kernel code pointers
(e.g., function pointers, dispatch tables, return addresses)
with arbitrary values [44, 108], through the interaction
with the OS via buggy kernel interfaces. Examples include
generic pseudo-filesystems (procfs, debugfs [27, 65]),
the system call layer, and virtual device files (devfs [69]).
Code pointers can be corrupted directly [44] or controlled
indirectly (e.g., by first overwriting a pointer to a data struc-
ture that contains control data and subsequently tampering
with its contents [45], in a manner similar to vtable pointer
hijacking [100, 111]). Attackers may control any number
of code pointers and trigger the kernel to dereference them
on demand. (Note that this is not equivalent to an “arbitrary
write” primitive.) Finally, we presume that the attackers are
armed with an arbitrary memory disclosure bug [1, 4]. In
particular, they may trigger the respective vulnerability mul-
tiple times, forcing the kernel to leak the contents of any
kernel-space memory address.

Hardening Assumptions We assume an OS that imple-
ments the W^X policy [71, 75, 112] in kernel space.3 Hence,
direct (shell)code injection in kernel memory is not attain-
able. Moreover, we presume that the kernel is hardened
against ret2usr attacks. Specifically, in newer platforms,
we assume the availability of SMEP (Intel CPUs) [124],
whereas for legacy systems we assume protection by KERN-
EXEC (PaX) [90] or kGuard [62]. Finally, the kernel may
have support for kernel-space ASLR [40], stack-smashing
protection [113], proper .rodata sections (constification of
critical data structures) [112], pointer (symbol) hiding [99],
SMAP/UDEREF [28, 89], or any other hardening feature.
kR^X does not require or preclude any such features; they
are orthogonal to our scheme(s). Page table tampering [73]
is considered out of scope; (self-)protecting page tables [35]
is also orthogonal to kR^X and part of our ongoing work.

4. Approach
Based on our hardening assumptions, kernel execution can
no longer be redirected to code injected in kernel space
or hosted in user space. Attackers will have to therefore
“compile” their shellcode by stitching together gadgets from
the executable sections of the kernel [2, 18, 121, 122] in a
ROP [58, 104] or JOP [23] fashion, or use other similar code
reuse techniques [20, 36, 39, 54], including (in)direct JIT-
ROP [24, 37, 105].

separate read (R), write (W), and execute (X) bits in nested page table entries,
thereby allowing the revocation of the read permission from certain pages.
3 In Linux, kernel-space W^X can be enabled by asserting the (unintuitive)
DEBUG_RODATA and DEBUG_SET_MODULE_RONX configuration options.

kR^X complements the work on user space leakage-
resilient code diversification [19, 32] by providing a solution
against code reuse for the kernel setting. The goal of kR^X
is to aid commodity OS kernels (simultaneously) combat:
(a) ROP/JOP and similar code reuse attacks [36, 39, 54],
(b) direct JIT-ROP, and (c) indirect JIT-ROP. To achieve
that, it builds upon two main pillars: (i) the R^X policy, and
(ii) fine-grained KASLR.

R^X The R^X memory policy imposes the following prop-
erty: memory can be either readable or executable. Hence,
by enforcing R^X on diversified kernel code, kR^X prevents
direct JIT-ROP attacks. Systems that enforce a comparable
memory access policy (e.g., Readactor [32], HideM [51],
XnR [11]) typically do so through a hierarchically-privileged
approach. In particular, the OS kernel or a hypervisor (high-
privileged code) provides the XOM capabilities in pro-
cesses executing in user mode (low-privileged code)—using
memory virtualization features (e.g., EPT; Readactor and
KHide [52]) or paging nuances (e.g., #PF; XnR, TLB de-
synchronization; HideM). kR^X, in antithesis, enforces R^X
without depending on a hypervisor or any other more priv-
ileged component than the OS kernel. This self-protection
approach has increased security and performance benefits.

Virtualization-based (hierarchically-privileged) kernel
protection schemes can be either retrofitted into commod-
ity VMM stacks [52, 94, 98] or implemented using special-
purpose hypervisors [32, 109, 116, 119]. The latter result in
a smaller trusted computing base (TCB), but they typically
require nesting hypervisors to attain comprehensive protec-
tion. Note that nesting occurs naturally in cloud settings,
where contemporary (infrastructure) VMMs are in place
and offbeat security features, like XOM, are enforced on
selected applications by custom, ancillary hypervisors [32].
Alas, nested virtualization cripples scalability, as each nest-
ing level results in ∼6–8% of runtime overhead [12], ex-
cluding the additional overhead of the deployed protections.

The former approach is not impeccable either. Offloading
security features (e.g., code integrity [98], XOM [52], data
integrity [116]) to commodity VMMs leads to a flat increase
of the virtualization overhead (i.e., “blanket approach;” no
targeted or agile hardening), and an even larger TCB, which,
in turn, necessitates the deployment of hypervisor protection
mechanisms [117], some of which are implemented in super-
privileged CPU modes [9]. Considering the above, and the
fact that hypervisor exploits are becoming an indispensable
part of the attackers’ arsenal [48], we investigate a previ-
ously unexplored point in the design space continuum. More
specifically, our proposed self-protection approach to R^X
enforcement: (a) does not require VMMs [52] or software
executing in super-privileged CPU modes [9]; (b) avoids
(nesting) virtualization overheads; and (c) is in par with re-
cent industry efforts [25]. Lastly, kR^X enables R^X capa-
bilities even in systems that lack virtualization support.

Fine-grained KASLR The cornerstone of kR^X is a set
of code diversification techniques specifically tailored to the
kernel setting, to which we collectively refer to as fine-
grained KASLR. With R^X ensuring the secrecy of ker-
nel code, fine-grained KASLR provides protection against
(in)direct ROP/JOP and alike code-reuse attacks.

Note that, in principle, kR^X may employ any leakage-
resilient code diversification scheme to defend against (in)-
direct (JIT-)ROP/JOP. Unfortunately, none of the previously-
proposed schemes (e.g., CPH; Readactor [32]) is geared
towards the kernel setting. CPH was designed with support
for C++, dynamic linking, and just-in-time (JIT) compilation
in mind. In contrast, commodity OSes: (a) do not support
C++ in kernel mode, hence vtable and exception handling,
and COOP [101] attacks, are not relevant in this setting;
(b) although they do support loadable modules, these are
dynamically linked with the running kernel through an eager
binding approach that does not involve .got, .plt, and
similar constructs; (c) have limited support for JIT code
in kernel space (typically to facilitate tracing and packet
filtering [29]). These reasons prompted us to study leakage-
resilient diversification schemes, fine-tuned for the kernel.

5. Design
5.1 R^X Enforcement
kR^X employs a self-protection approach to R^X, inspired
by software fault isolation (SFI) [83, 103, 115, 123]. How-
ever, there is a fundamental difference between previous
work on SFI and kR^X: SFI tries to sandbox untrusted code,
while kR^X read-protects benign code. SFI schemes (e.g.,
PittSFIeld [83], NaCl [103, 123]) are designed for confining
the control flow and memory write operations of the sand-
boxed code, typically by imposing a canonical layout [103],
bit-masking memory writes [115], and instrumenting com-
puted branch instructions [83]. The end goal of SFI is to
limit memory corruption in a subset of the address space,
and ensure that execution does not escape the sandbox [123].
In contrast, kR^X focuses on the read operations of benign
code that can be abused to disclose memory [68]. Memory
reads are usually ignored by conventional SFI schemes, due
to the non-trivial overhead associated with their instrumen-
tation [19, 83]. However, the difference between our threat
model and that of SFI allows us to make informed design
choices and implement a set of optimizations that result in
R^X enforcement with low overhead.

We explore the full spectrum of settings and trade-offs,
by presenting: (a) kR^X-SFI: a pure software-only R^X
scheme; (b) kR^X-MPX: a hardware-assisted R^X scheme,
which exploits the Intel Memory Protection Extensions
(MPX) [60] to (almost) eliminate the protection overhead;
and (c) kR^X-KAS: a new kernel space layout that facilitates
the efficient R^X enforcement by (a) and (b).

vmemmap space

fixmap area

physmap

vmalloc arena

kernel .text

kernel .rodata

kernel .data

kernel .bss

kernel .brk

module1 .data

module1 .text

module2 .data

module2 .text

vmemmap space

fixmap area

physmap

vmalloc arena

kernel .text

kernel .rodata

kernel .data

kernel .bss

kernel .brk

module1 .data

module2 .data

module1 .text

module2 .text

Code
(X)

M
o

d
u

le
s

K
e

rn
e

l I
m

a
g

e

Data
(R/RW)

Upper
Canonical
Half

Vanilla x86-64 kR^X x86-64

(a) (b)

Figure 1. The Linux kernel space layout in x86-64:
(a) vanilla and (b) kR^X-KAS. The kernel image and
modules regions may contain additional (ELF) sections;
only the standard ones are shown.

5.1.1 kR^X-KAS

The x86-64 architecture uses 48-bit virtual addresses that
are sign-extended to 64 bits (bits [48:63] are copies of
bit [47]), splitting the 64-bit virtual address space in two
halves of 128TB each. In Linux, kernel space occupies the
upper canonical half ([0xFFFF800000000000:264 − 1]),
and is further divided into six regions (see Figure 1(a)) [66]:
fixmap, modules, kernel image, vmemmap space, vmalloc
arena, and physmap.

Unfortunately, the default layout does not promote the en-
forcement of R^X, as it blends together code and data re-
gions. To facilitate a unified and efficient treatment by our
different enforcement mechanisms (SFI, MPX), kR^X relies
on a modified kernel layout that maps code and data into
disjoint, contiguous regions (see Figure 1(b)). The code re-
gion is carved from the top part of kernel space with its
exact size being controlled by the __START_KERNEL_map
configuration option. All other regions are left unchanged,
except fixmap, which is “pushed” towards lower addresses,
and modules, which is replaced by two newly-created areas:
modules_text and modules_data. modules_text occu-
pies the original modules area, whereas modules_data is
placed right below fixmap. The size of both regions is con-
figurable, with the default value set to 512MB.4

4 The default setting was selected by dividing the original modules area in
two equally-sized parts (i.e., sizeof(modules)/2).

Kernel Image The kernel image is loaded in its assigned
location by a staged bootstrap process. Conventionally, the
.text section is placed at the beginning of the image, fol-
lowed by standard (i.e., .rodata, .data, .bss, .brk) and
kernel-specific sections [16]. kR^X revamps (flips) this lay-
out by placing .text at the end of the ELF object. Hence,
during boot time, after vmlinuz is copied in memory and
decompressed, .text lands at the code region of kR^X-KAS;
all other sections end up in the data region.5 The symbols
_krx_edata and _text denote the end of the data region
and the beginning of the code region, in kR^X-KAS.

Kernel Modules Although kernel modules (.ko files) are
also ELF objects, their on-disk layout is left unaltered by
kR^X, as the separation of .text from all other (data) sec-
tions occurs during load time. A kR^X-KAS-aware mod-
ule loader-linker slices the .text section and copies it in
modules_text, while the rest of the (allocatable) sections
of the ELF object are loaded in modules_data. Once ev-
erything is copied in kernel space, relocation and symbol
binding take place (eager loading [17]).

Physmap The physmap area is a contiguous kernel region
that contains a direct (1:1) mapping of all physical mem-
ory to facilitate dynamic kernel memory allocation [63].
Hence, as physical memory is alloted to the kernel image,
and modules, the existence of physmap results in address
aliasing; virtual address aliases, or synonyms [67], occur
when two (or more) different virtual addresses map to the
same physical memory address. Consequently, kernel code
becomes accessible not only through the code region (virtual
addresses above _text), but also via physmap-resident code
synonyms in the data region. To deal with this issue, kR^X
always unmaps from physmap any synonym pages of .text
sections (as well as synonym pages of any other section that
resides in the code region), and maps them back whenever
modules are unloaded (after zapping their contents to pre-
vent code layout inference attacks [106]).

Alternative Layouts kR^X-KAS has several advantages
over the address space layouts imposed by SFI-based schemes
(e.g., NaCl [123], LR2 [19]). First, address space waste is
kept to a minimum; LR2 chops the address space in half to
enforce a policy similar to R^X, whereas kR^X-KAS mainly
rearranges sections. Second, the use of bit-masking confine-
ment (similarly to NaCl [123] and LR2 [19]), in the kernel
setting, requires a radically different set of memory alloca-
tors to cope with the alignment constrains of bit-masking. In
contrast, the layout of kR^X-KAS is transparent to the ker-
nel’s performance-critical allocators [15]. Third, important
kernel features that are tightly coupled with the kernel ad-
dress space, like KASLR [40], are readily supported without
requiring any kernel code change or redesign.

5 Note that __ex_table, __tracepoints, __jump_table, and every
other similar section that contains mostly (in)direct code pointers, are
placed at the code (non-readable) region and marked as non-executable.

Finally, in x86-64, the code model (-mcmodel=kernel)
used generates code for the negative 2GB of the address
space [46]. This model requires the .text section of the ker-
nel image and modules, and their respective global data sec-
tions, to be not more than 2GB apart. The reason is that the
offset of the x86-64 %rip-relative mov instructions is only 32
bits. kR^X-KAS respects this constraint, whereas a scheme
like LR2 (halved address space) would require transitioning
to -mcmodel=large, which incurs additional overhead, as it
rules out %rip-relative addressing. Interestingly, the devel-
opment of kR^X-KAS helped uncover two kernel bugs (one
security related)—Appendix A provides more details.

5.1.2 kR^X-SFI

kR^X-SFI is a software-only R^X scheme that targets mod-
ern (x86-64) platforms. Once the kR^X-KAS layout is in
place, R^X can be enforced by checking all memory reads
and making sure they fall within the data region (addresses
below _krx_edata). As bit-masking load instructions is
not an option, due to the non-canonical layout, kR^X-SFI
employs range checks (RCs) instead. The range checks are
placed (at compile time) right before memory read oper-
ations, ensuring (at runtime) that the effective addresses
of reads are legitimate. We will be using the example
code of Figure 2 to present the internals of kR^X-SFI.
The original code excerpt is listed in Figure 2(e) (exclud-
ing the bndcu instruction at the function prologue) and
is from the nhm_uncore_msr_enable_event() routine
of the x86-64 Linux kernel (v3.19, GCC v4.7.2) [76]. It
involves three memory reads: cmpl $0x7,0x154(%rsi);
mov 0x140(%rsi),%rcx; and mov 0x130(%rsi),%rax.

We begin with a basic, unoptimized (O0) range check
scheme, and continue with a series of optimizations (O1–
O3) that progressively rectify the RCs for performance. Note
that similar techniques are employed by SFI systems [83,
103, 115], but earlier work focuses on RISC-based architec-
tures [19, 115] or fine tunes bit-masking confinement [83].
We study the problem in a CISC (x86-64) setting, and intro-
duce a principled approach to optimize checks on memory
reads operating on non-canonical layouts.

Basic Scheme (O0) kR^X-SFI prepends memory read op-
erations with a range check implemented as a sequence of
five instructions, as shown in Figure 2(a). First, the effective
address of the memory read is loaded by lea in the %r11
scratch register, and is subsequently checked against the end
of the data region (cmp). If the effective address falls above
_krx_edata (ja), then this is a R^X violation, as the read
tries to access the code region. In this case, krx_handler()
is invoked (callq) to handle the violation; our default han-
dler appends a warning message to the kernel log and halts
the system. Finally, to preserve the semantics of the origi-
nal control flow, the [lea, cmp, ja] triplet is wrapped with
pushfq and popfq to maintain the value of %rflags, which
is altered by the range check (cmp).

pushfq/popfq Elimination (O1) Spilling and filling the
%rflags register is expensive [81]. However, we can elim-
inate redundant pushfq-popfq pairs by performing a live-
ness analysis on %rflags. Figure 2(b) depicts this optimiza-
tion. Every cmp instruction of a range check starts a new live
region for %rflags. If there are no kernel instructions that
use %rflags inside a region, we can avoid preserving it.

For example, in Figure 2(b), RC1 is followed by a cmpl
instruction that starts a new live region for %rflags. Hence,
the live region defined by the cmp instruction of RC1 con-
tains no original kernel instructions, allowing us to safely
eliminate pushfq-popfq from RC1. Similarly, the live re-
gion started by the cmp instruction of RC3 reaches only mov
0x130(%rsi),%rax, as the subsequent or instruction rede-
fines %rflags and starts a new live region. As mov does not
use %rflags, pushfq-popfq can be removed from RC3.
The cmp instruction of RC2, however, starts a live region for
%rflags that reaches jg L1—a jump instruction that de-
pends on %rflags—and thus pushfq-popfq are not elimi-
nated from RC2. This optimization can eliminate up to 94%
of the original pushfq-popfq pairs (see Section 7.2).6

lea Elimination (O2) If the effective address of a read op-
eration is computed using only a base register and a displace-
ment, we can further optimize our range checks by eliminat-
ing the lea instruction and adjusting the operands of the cmp
instruction accordingly. That is, we replace the scratch regis-
ter (%r11) with the base register (%reg), and modify the end
of the data region by adjusting the displacement (offset).
Note that both RC schemes are computationally equivalent.
Figure 2(c) illustrates this optimization. In all cases lea in-
structions are eliminated, and cmp is adjusted accordingly.
Marked, 95% of the RCs can be optimized this way.

cmp/ja Coalescing (O3) Given two RCs, RCa and RCb,
which confine memory reads that use the same base register
(%reg) and different displacements (offseta != offsetb),
we can coalesce them to one RC that checks against the
maximum displacement, if in all control paths between RCa

and RCb %reg is never: (a) redefined; (b) spilled to memory.
Note that by recursively applying the above in a routine, until
no more RCs can be coalesced, we end up with the minimum
set of checks required to confine every memory read.

Figure 2(d) illustrates this optimization. All memory op-
erations protected by the checks RC1, RC2, and RC3 use
the same base register (%rsi), but different displacements
(0x154, 0x140, 0x130). As %rsi is never spilled, filled,
or redefined in any path between RC1 and RC2, RC1 and
RC3, and RC2 and RC3, we coalesce all range checks to
a single RC that uses the maximum displacement, effec-
tively confining all three memory reads. If %rsi + 0x154
< _krx_edata, then %rsi + 0x140 and %rsi + 0x130

6 We do not track the use of individual bits (status flags) of %rflags. As
long as a kernel instruction, inside a live region, uses any of the status bits,
we preserve the value of %rflags—even if that instruction uses a bit not
related to the one(s) modified by the RC cmp (i.e., we over-preserve).

PUSHFQ/POPFQ Elimination (O1)

cmp $(_krx_edata-0x154), %rsi
ja L3

cmpl $0x7,0x154(%rsi)

 mov 0x140(%rsi),%rcx
 jg L1

 mov 0x130(%rsi),%rax
 or $0x400000,%rax
 mov %rax,%rdx
 shr $0x20,%rdx
 jmp L2

xor %edx,%edx
 mov $0x1,%eax

wrmsr
 retq

callq krx_handler

L1:

L2:

L3:

bndcu $0x154(%rsi), %bnd0

cmpl $0x7,0x154(%rsi)

 mov 0x140(%rsi),%rcx
 jg L1

 mov 0x130(%rsi),%rax
 or $0x400000,%rax
 mov %rax,%rdx
 shr $0x20,%rdx
 jmp L2

xor %edx,%edx
 mov $0x1,%eax

wrmsr
 retq

L1:

L2:

cmp $(_krx_edata-0x154), %rsi
ja L3

cmpl $0x7,0x154(%rsi)
pushfq

cmp $(_krx_edata-0x140), %rsi
ja L3
popfq
 mov 0x140(%rsi),%rcx
 jg L1

cmp $(_krx_edata-0x130), %rsi
ja L3

 mov 0x130(%rsi),%rax
 or $0x400000,%rax
 mov %rax,%rdx
 shr $0x20,%rdx
 jmp L2

xor %edx,%edx
 mov $0x1,%eax

wrmsr
 retq

callq krx_handler

L1:

L2:

L3:

lea 0x154(%rsi), %r11
cmp $_krx_edata, %r11
ja L3

cmpl $0x7,0x154(%rsi)
pushfq
lea 0x140(%rsi), %r11
cmp $_krx_edata, %r11
ja L3
popfq
 mov 0x140(%rsi),%rcx
 jg L1

lea 0x130(%rsi), %r11
cmp $_krx_edata, %r11
ja L3

 mov 0x130(%rsi),%rax
 or $0x400000,%rax
 mov %rax,%rdx
 shr $0x20,%rdx
 jmp L2

xor %edx,%edx
 mov $0x1,%eax

wrmsr
 retq

callq krx_handler

L1:

L2:

L3:

 pushfq
lea 0x154(%rsi), %r11
cmp $_krx_edata, %r11
ja L3
popfq
cmpl $0x7,0x154(%rsi)
pushfq
lea 0x140(%rsi), %r11
cmp $_krx_edata, %r11
ja L3
popfq
 mov 0x140(%rsi),%rcx
 jg L1
pushfq
lea 0x130(%rsi), %r11
cmp $_krx_edata, %r11
ja L3
popfq
 mov 0x130(%rsi),%rax
 or $0x400000,%rax
 mov %rax,%rdx
 shr $0x20,%rdx
 jmp L2

xor %edx,%edx
 mov $0x1,%eax

wrmsr
 retq

callq krx_handler

L1:

L2:

L3:

LEA Elimination (O2) CMP/JA Coalescing (O3) MPX Conversion

(a) (b) (c) (d) (e)

kR^X-SFI kR^X-MPX

RC1

RC2

RC3

Figure 2. The different optimization phases of kR^X-SFI (a)–(d) and kR^X-MPX (e).

are guaranteed to “point” below _krx_edata, as long as
%rsi does not change between the RC and the respective
memory reads. The reason we require %rsi not to be spilled
is to prevent temporal attacks, like those demonstrated by
Conti et al. [24]. About one out of every two RCs can be
eliminated using RC coalescing.

String Operations The x86 string operations [59], namely
cmps, lods, movs, and scas, read memory via the %rsi
register (except scas, which uses %rdi). kR^X-SFI in-
struments these instructions with RCs that check (%rsi) or
(%rdi), accordingly. If the string operation is rep-prefixed,
the RC is placed after the confined instruction, checking
%rsi (or %rdi) once the respective operation is complete.7

Stack Reads If the stack pointer (%rsp) is used with a
scaled index register [59], the read is instrumented with a
range check as usual. However, if the effective address of a
stack read consists only of (%rsp) or offset(%rsp), the
range check can be eliminated by spacing appropriately the
code and data regions. Recall, though, that attackers may
pivot %rsp anywhere inside the data region. By repeatedly
positioning %rsp at (or close to) _krx_edata, they could
take advantage of uninstrumented stack reads and leak up to
offset bytes from the code region (assuming they control
the contents at, or close to, _krx_edata for reconciling
the effects of the dislocated stack pointer). kR^X-SFI deals
with this slim possibility by placing a guard section (namely

7 We always generate rep-prefix string instructions that operate on ascend-
ing memory addresses (%rflags.df = 0). By placing the RC immediately
after the confined instruction, we can still identify reads from the code re-
gion, albeit postmortem, without breaking code optimizations.

.krx_phantom), between _krx_edata and the beginning
of the code region. Its size is set to be greater than the
maximum offset of all %rsp-based memory reads.

Safe Reads Absolute and %rip-relative memory reads are
not instrumented with range checks, as their effective ad-
dresses are encoded within the instruction itself and cannot
be modified at runtime due to W^X. Safe reads account for
4% of all memory reads.

5.1.3 kR^X-MPX

kR^X-MPX is a hardware-assisted, R^X scheme that takes
advantage of the MPX (Memory Protection Extensions) [60]
feature, available in the latest Intel CPUs, to enforce the
range checks and nearly eliminate their runtime overhead.
To the best of our knowledge, kR^X is the first system to
exploit MPX for confining memory reads and implementing
a memory safety policy (R^X) within the OS.8

MPX introduces four new bounds registers (%bnd0–
%bnd3), each consisting of two 64-bit parts (lb; lower
bound, ub; upper bound). kR^X-MPX uses %bnd0 to imple-
ment RCs and initializes it as follows: lb = 0x0 and ub =
_krx_edata, effectively covering everything up to the end
of the data region. Memory reads are prefixed with a RC
as before (at compile time), but the [lea, cmp, ja] triplet is
now replaced with a single MPX instruction (bndcu), which
checks the effective address of the read against the upper
bound of %bnd0.

8 Interestingly, although the Linux kernel already includes the necessary
infrastructure to provide MPX support in user programs, kernel developers
are reluctant to use MPX within the kernel itself [30].

Figure 2(e) illustrates the instrumentation performed by
kR^X-MPX. Note that bndcu does not alter %rflags, so there
is no need to preserve it. Also, the checked effective address
is encoded in the MPX instruction itself, rendering the use
of lea with a scratch register unnecessary, while violations
trigger a CPU exception (#BR), obviating the need to invoke
krx_handler() explicitly. In a nutshell, optimizations O1
and O2 are not relevant when MPX is used to implement
range checks, whereas O3 (RC coalescing) is used as before.
Lastly, the user mode value of %bnd0 is spilled and filled on
every mode switch; kR^X-MPX does not interfere with the
use of MPX by user applications.

5.2 Fine-grained KASLR
With kR^X-{SFI, MPX} ensuring the secrecy of kernel
code under the presence of arbitrary memory disclosure,
the next step for the prevention of (JIT-)ROP/JOP is the
diversification of the kernel code itself—if not coupled
with code diversification, any execute-only defense is use-
less [24, 37]. The use of code perturbation or randomization
to hinder code-reuse attacks has been studied extensively
in the past [13, 38, 53, 57, 64, 87, 118]. Previous research,
however, either did not consider resilience to indirect JIT-
ROP [24, 37], or focused on schemes geared towards user-
land code [19, 32]. kR^X introduces code diversification
designed from the ground up to mitigate both direct and
indirect (JIT-)ROP/JOP attacks for the kernel setting.

5.2.1 Foundational Diversification
kR^X diversifies code through a recursive process that per-
mutes chunks of code. The end goal of our approach is to
fabricate kernel (vmlinux) images and .ko files (modules)
with no gadgets left at predetermined locations. At the func-
tion level, we employ code block randomization [38, 118],
whereas at the section (.text) level, we perform function
permutation [13, 64].

Phantom Blocks Slicing a function into arbitrary code
blocks and randomly permuting them results (approxi-
mately) in lg(B!) bits of entropy, where B is the number
of code blocks [38]. Yet, as the achieved randomness de-
pends on B, routines with a few basic blocks end up having
extremely low randomization entropy. For instance, ∼12%
of the Linux kernel’s (v3.19, GCC v4.7.2) routines consist
of a single basic block (i.e., zero entropy). We note that this
issue has been overlooked by previous studies [38, 118], and
we augmented kR^X to resolve it as follows.

Starting with k, the number of randomization entropy bits
per function we seek to achieve (a compile-time parameter),
we first slice routines at call sites (i.e., code blocks ending
with callq). If the resulting number of code blocks does
not allow for k (or more) bits of entropy, we further slice
each code block according to its basic blocks. If the achieved
entropy is still not sufficient, we pad routines with fake code
blocks, dubbed phantom blocks, filled with a random number

of int 3 instructions (stepping on them triggers a CPU
exception; #BR). Having achieved adequate slicing, kR^X
randomly permutes the final code and phantom blocks and
“patches” the CFG, so that the original control flow remains
unaltered. Any phantom blocks, despite being mixed with
regular code, are never executed due to properly-placed jmp
instructions. Our approach attains the desired randomness
with the minimum number of code cuts and padding.

Function Entry Points Note that, despite code block per-
mutation, an attacker that discloses a function pointer would
still be able to reuse gadgets from the entry code block of the
respective function. To prevent this, functions always begin
with a phantom block: the first instruction of each function
is a jmp instruction that transfers control to the original first
code block. Hence, an attacker armed with a leaked func-
tion pointer can only reuse a whole function, which is not a
viable strategy, as we further discuss in Section 7.3.

5.2.2 Return Address Protection
Return addresses are stored in kernel stacks, which, in turn,
are allocated from the readable data (physmap) region of
kR^X-KAS [63]. Conti et al. demonstrated an indirect JIT-
ROP attack that relies on harvesting return addresses from
stacks [24]. kR^X treats return addresses specially to miti-
gate such indirect JIT-ROP attempts.

Return Address Encryption (X) We employ an XOR-based
encryption scheme to protect saved return addresses from
being disclosed [19, 91, 120]. Every routine is associated
with a secret key (xkey), placed in the non-readable region
of kR^X-KAS, while function prologues and epilogues are
instrumented as follows: mov offset(%rip),%r11; xor
%r11,(%rsp). That is, xkey is loaded into a scratch register
(%r11), which is subsequently used to encrypt or decrypt the
saved return address. The mov instruction that loads xkey
from the code region is %rip-relative (safe read), and hence
not affected by kR^X.

In summary, unmangled return addresses are pushed into
the kernel stack by the caller (callq), get encrypted by the
callee, and remain encrypted until the callee returns (retq)
or performs a tail call. In the latter case, the return address
is temporarily decrypted by the function that is about to tail-
jump, and re-encrypted by the new callee. Return sites are
also instrumented to zap decrypted return addresses. Finally,
all xkey variables are merged into a contiguous region at
link time, and replenished with random values at boot time
(kernel image) or load time (modules).

Return Address Decoys (D) Return address decoys are an
alternative scheme that leverages deception to mitigate the
disclosure of return addresses. The main benefit over re-
turn address encryption is their slightly lower overhead in
some settings, as discussed in Sec. 7.2. We begin with the
concept of phantom instructions, which is key to return ad-
dress decoys. Phantom instructions are effectively NOP in-
structions that contain overlapping “tripwire” (e.g., int 3)

push %r11 mov (%rsp),%rax
 mov %r11,(%rsp)
 push %rax

Decoy | Real Real | Decoy

(a) (b)

Figure 3. Instrumentation code (function prologue) to
place the decoy return address (a) below or (b) above the
real one.

instructions, whose execution raises an exception [31]. For
instance, mov $0xcc,%r11 is a phantom instruction; apart
from changing the value of %r11, it does not alter the CPU
or memory state. The opcodes of the instruction are the fol-
lowing: 49 C7 C3 CC 00 00 00. Note that 0xCC is also
the opcode for int 3, which raises a #BR exception when
executed. kR^X pairs every return site in a routine with (the
tripwire of) a separate phantom instruction, randomly placed
in the respective routine’s code stream.

Call sites are instrumented to pass the address of the trip-
wire to the callee through a predetermined scratch register.
Armed with that information, the callee either: (a) places the
address of the tripwire right below the saved return address
on the stack; or (b) relocates the return address so that the ad-
dress of the tripwire is stored where the return address used
to be, followed by the saved return address (Figure 3). In
both cases, the callee stores two addresses sequentially on
the stack. One is the real return address (R) and the other
is the decoy one (D: the address of the tripwire).9 The exact
ordering is decided randomly at compile time.

kR^X always slices routines at call sites. Therefore, by
randomly inserting phantom instructions in routine code,
their relative placement to return sites cannot be determined
in advance (code block randomization perturbs them inde-
pendently). As a result, although return address-decoy pairs
can be harvested from the kernel stack(s), the attacker can-
not differentiate which is which, because that information is
encoded in each routine’s code, which is not readable (R^X).

The net result is that call-preceded gadgets [20, 36, 54]
are coupled with a pair of return addresses (R and D), thereby
forcing the attacker to randomly choose one of them. If n
call-preceded gadgets are required for an indirect JIT-ROP
attack, the attacker will succeed (i.e., correctly guess the real
return address in all cases) with a probability Psucc = 1/2n.
Wrong guesses raise CPU exceptions (e.g., #BR; int 3).

9 Stack offsets are adjusted whenever necessary: if frame pointers are
used, negative %rbp offsets are decreased by sizeof(unsigned long);
if frame pointers are omitted, %rsp-based accesses to non-local variables
are increased by sizeof(unsigned long). Function epilogues are emit-
ted so that, depending on the scheme employed, they make use of the real
return address (i.e., by adjusting %rsp before retq and tail calls).

5.3 Limitations
Race Hazards Both schemes presented in Section 5.2.2
obfuscate return addresses after they have been pushed
(in cleartext) in the stack. Although this approach entails
changes only at the callee side, it does leave a window open
for an attacker to probe the stack and leak unencrypted/real
return addresses [24]. In order for an attacker to trigger the
information disclosure bug, they need to interact with the
OS via a kernel-exposed interface (see Section 3). Hence,
they have to surgically time the execution of 1–3 kR^X in-
structions, with (a) process scheduling (which cannot be
completely controlled, as it is affected by the runtime be-
havior of other processes on the system), (b) the cache/TLB
side-effects of a CPU mode switch, and (c) the execution of
the code required to trigger the leak—the latter can be up to
thousands of instructions. Evidently, winning such a race, in
a reliable way, is not easily attainable. Nevertheless, we plan
to further investigate this issue as part of our future work.

Substitution Attacks Both return address protections are
subject to substitution attacks. To illustrate the main idea
behind them, we will be using the return address encryp-
tion scheme (return address decoys are also susceptible to
such attacks). Assume two call sites for function f, namely
CS1 and CS2, with RS1 and RS2 being the corresponding
return sites. If f is invoked from CS1, RS1 will be stored
(encrypted) in a kernel stack as follows: [RS1^xkeyf].
Likewise, if f is invoked from CS2, RS2 will be saved
as [RS2^xkeyf]. Hence, if an attacker manages to leak
both “ciphertexts,” though they cannot recover RS1, RS2, or
xkeyf, they may replace [RS1^xkeyf] with [RS2^xkeyf]
(or vice versa), thereby forcing f to return to RS2 when
invoked from CS1 (or to RS1 when invoked from CS2).10

Substitution attacks resemble the techniques for over-
coming coarse-grained CFI by stitching together call-
preceded gadgets [20, 36, 54]. However, in such CFI by-
passes, any call-preceded gadget can be used as part of
a code-reuse payload, whereas in a substitution attack, for
every function f, the (hijacked) control flow can only be
redirected to the valid return sites of f, and, in particular, to
the subset of those valid sites that can be leaked dynamically
(i.e., at runtime). Leaving aside the fact that the number of
call-preceded gadgets, at the attacker’s disposal, is highly
limited in such scenarios, both our return address protection
schemes aim at thwarting (indirect) JIT-ROP, and, therefore,
are not geared towards ensuring the integrity of code point-
ers [70]. In any case, they can be easily complemented with
a register randomization scheme [32, 87], which foils call-
preceded gadget chaining [19].

10 Replacing [RS1^xkeyf], or [RS2^xkeyf], with any harvested (and
therefore encrypted) return address, say [RSn^xkeyf’], is not a viable
strategy because the respective return sites (RS1/RS2, RSn) are encrypted
with different keys (xkeyf, xkeyf’)—under return address encryption (X),
substitution attacks are only possible among return addresses encrypted
with the same xkey.

6. Implementation
Toolchain We implemented kR^X-SFI and kR^X-MPX as a
set of modifications to the pipeline of GCC v4.7.2—the “de
facto” C compiler for building Linux. Specifically, we in-
strumented the intermediate representation (IR) used during
translation to: (a) perform the RC-based (R^X) confinement
(Sections 5.1.2 and 5.1.3); and (b) randomize code blocks
and protect return addresses (Sections 5.2.1 and 5.2.2). Our
prototype consists of two plugins, krx and kaslr. The krx
plugin is made up of 5 KLOC and kaslr of 12 KLOC (both
written in C), resulting in two position-independent (PIC)
dynamic shared objects, which can be loaded to GCC with
the -fplugin directive.

We chain the instrumentation of krx after the vartrack
RTL optimization pass, by calling GCC’s register_call-
back() function and hooking with the pass manager [62].
The reasons for choosing to implement our instrumentation
logic at the RTL level, and not as annotations to the GENERIC
or GIMPLE IR, are the following. First, by applying our
instrumentation after the important optimizations have been
performed, which may result into instructions being moved
or transformed, it is guaranteed that only relevant code will
be protected. Second, any implicit memory reads that are
exposed later in the translation process are not neglected.
Third, the inserted range checks are tightly coupled with the
corresponding unsafe memory reads. This way, the checks
are protected from being removed or shifted away from the
respective read operations, due to subsequent optimization
passes [24]. The kaslr plugin is chained after krx, or after
vartrack if krx is not loaded. Code block slicing and
permutation is the final step, after the R^X instrumentation
and return address protection.

By default, krx implements the kR^X-SFI scheme, op-
erating at the maximum optimization level (O3); kR^X-MPX
can be enabled with the following knob: -fplugin-arg-
krx-mpx=1. Likewise, kaslr uses the XOR-based encryp-
tion scheme by default, and sets k (the number of entropy
bits per-routine; see Section 5.2.2) to 30. Return address de-
coys can be enabled with -fplugin-arg-kaslr-dec=1,
while k may be adjusted using -fplugin-arg-kaslr-k=N.

Kernel Support kR^X-KAS (Section 5.1.1) is implemented
as a set of patches (∼10 KLOC) for the Linux kernel
(v3.19), which perform the following changes: (a) construct
kR^X-KAS by adjusting the kernel page tables (init_-
level4_pgt); (b) make the module loader-linker kR^X-KAS-
aware; (c) (un)map certain synonyms from physmap during
kernel bootstrap and module (un)loading; (d) replenish xkey
variables during initialization (only if XOR-based encryp-
tion is used); (e) reserve %bnd0 and load it with the value
of _krx_edata (MPX only); (f) place .text section(s) at
the end of the vmlinux image and permute their functions
(vmlinux.lds.S); (g) map the kernel image in kR^X-KAS,
so that executable code resides in the non-readable region.

Note that although kR^X requires patching the OS kernel,
and (re)compiling with custom GCC plugins, it does support
mixed code: i.e., both protected and unprotected modules;
this design not only allows for incremental deployment and
adoption, but also facilitates selective hardening [49].

Assembly Code Both krx and kaslr are implemented as
RTL IR optimization passes, and, therefore, cannot handle
assembly code (both “inline” or external). However, this is
not a fundamental limitation of kR^X, but rather an imple-
mentation decision. In principle, the techniques presented in
Section 5.1 and 5.2 can all be incorporated in the assembler,
instead of the compiler, as they do not depend on high-level
semantics. (In fact, we have started implementing them in
GNU as for achieving 100% code coverage.)

Legitimate Code Reads Kernel tracing and debugging
(sub)systems, such as ftrace and KProbes [29], as well
as the module loader-linker, need access to the kernel code
region. To provide support for such frameworks, we cloned
seven functions of the get_next and peek_next family of
routines, as well as memcpy, memcmp, and bitmap_copy; the
cloned versions of these ten functions are not instrumented
by the krx GCC plugin. Lastly, ftrace, KProbes, and the
module loader-linker, were patched to use the kR^X-based
versions (i.e., the clones) of these functions (∼330 LOC),
and care was taken to ensure that none of them is leaked
through function pointers.

7. Evaluation
We studied the runtime overhead of kR^X-{SFI, MPX},
both as standalone implementations, as well as when ap-
plied in conjunction with the code randomization schemes
described in Section 5.2 (i.e., fine-grained KASLR coupled
with return address encryption or return address decoys). We
used the LMBench suite [84] for micro-benchmarking, and
employed the Phoronix Test Suite (PTS) [97] to measure the
performance impact on real-world applications. (Note that
PTS is used by the Linux kernel developers to track perfor-
mance regressions.) The reported LMBench and PTS results
are average values of ten and five runs, respectively, and all
benchmarks were used with their default settings. To obtain a
representative sample when measuring the effect of random-
ization schemes, we compiled the kernel ten times, using an
identical configuration, and averaged the results.

7.1 Testbed
Our experiments were carried out on a Debian GNU/Linux
v7 system, equipped with a 4GHz quad-core Intel Core i7-
6700K (Skylake) CPU and 16GB of RAM. The kR^X plug-
ins were developed for GCC v4.7.2, which was also used to
build all Linux kernels (v3.19) with the default configuration
of Debian (i.e., including all modules and device drivers).
Lastly, the kR^X-protected kernels were linked and assem-
bled using binutils v2.25.

7.2 Performance
Micro-benchmarks To assess the impact of kR^X on
the various kernel subsystems and services we used LM-
Bench [84], focusing on two metrics: latency and bandwidth
overhead. Specifically, we measured the additional latency
imposed on: (a) critical system calls, like open()/close(),
read()/write(), select(), fstat(), mmap()/munmap();
(b) mode switches (i.e., user mode to kernel mode and
back) using the null system call; (c) process creation
(fork()+exit(), fork()+execve(), fork()+/bin/sh);
(d) signal installation (via sigaction()) and delivery;
(e) protection faults and page faults; (f) pipe I/O and socket
I/O (AF_UNIX and AF_INET TCP/UDP sockets). Moreover,
we measured the bandwidth degradation on pipe, socket
(AF_UNIX and AF_INET TCP), and file I/O.

Table 1 summarizes our results. The columns SFI(-O0),
SFI(-O1), SFI(-O2), SFI(-O3), and MPX correspond
to the overhead of RC-based (R^X) confinement alone.
In addition, SFI(-O0)–SFI(-O3) illustrate the effect of
pushfq/popfq elimination, lea elimination, and cmp/ja
coalescing, when applied on an aggregate manner. The
columns D and X correspond to the overhead of return ad-
dress protection (D: return address decoys, X: return address
encryption) coupled with fine-grained KASLR, whereas the
last four columns (SFI+D, SFI+X, MPX+D, MPX+X) report the
overhead of the full protection schemes that kR^X provides.

The software-only kR^X-SFI scheme incurs an over-
head of up to 24.82% (avg. 10.86%) on latency and 6.43%
(avg. 2.78%) on bandwidth. However, with hardware sup-
port (kR^X-MPX) the respective overheads decrease dramat-
ically; latency: ≤ 6.27% (avg. 1.35%), bandwidth: ≤ 1.43%
(avg. 0.34%). The overhead of fine-grained KASLR is rela-
tively higher; when coupled with return address decoys (D),
it incurs an overhead of up to 15.03% (avg. 6.21%) on la-
tency and 3.71% (avg. 1.66%) on bandwidth; when coupled
with return address encryption (X), it incurs an overhead of
up to 18.3% (avg. 9.3%) on latency and 4.4% (avg. 3.71%)
on bandwidth. Lastly, the overheads of the full kR^X protec-
tion schemes translate (roughly) to the sum of the specific
R^X enforcement mechanism (kR^X-SFI, kR^X-MPX) and
fine-grained KASLR scheme (D, X) used.

In a nutshell, the impact of kR^X on I/O bandwidth
ranges from negligible to moderate. As far as the latency
is concerned, different kernel subsystems and services are
affected dissimilarly; open()/close(), read()/write(),
fork()+execve(), and pipe and socket I/O suffer the most.

Macro-benchmarks To gain a better understanding of the
performance implications of kR^X on realistic conditions,
we used PTS [97]; PTS offers a number of system tests,
such as ApacheBench, DBench, and IOzone, along with
real-world workloads, like extracting and building the Linux
kernel. Table 2 presents the overhead for each benchmark,
under the different memory protection (SFI, MPX) and code
diversification (D, X) schemes that kR^X provides.

On CPUs that lack MPX support, the average over-
head of full protection, across all benchmarks, is 4.04%
(SFI+D) and 3.63% (SFI+X), respectively. When MPX sup-
port is available, the overhead drops to 2.32% (MPX+D) and
2.62% (MPX+X). The impact of code diversification (i.e., fine-
grained KASLR plus return address decoys or return address
encryption) ranges between 0%–10% (0%–4% if we exclude
PostMark). The PostMark benchmark exhibits the highest
overhead, as it spends ∼83% of its time in kernel mode,
mainly executing read()/write() and open()/close(),
which according to Table 1 incur relatively high latency
overheads. Lastly, it is interesting to note the interplay of
kR^X-{SFI, MPX} with fine-grained KASLR, and each of
the two return address protection methods (D, X). Although
in both cases there is a performance difference between the
two approaches, for SFI this is in favor of X (encryption),
while for MPX it is in favor of D (decoys).

7.3 Security
Direct ROP/JOP To assess the effectiveness of kR^X
against direct ROP/JOP attacks, we used the ROP exploit
for CVE-2013-2094 [3] by Kemerlis et al. [63], targeting
Linux v3.8. We first verified that the exploit was success-
ful on the appropriate kernel, and then tested it on the same
kernel armed with kR^X. The exploit failed, as the ROP
payload relied on pre-computed (gadget) addresses, none of
which remained correct.

Next, we compared the vanilla and kR^X-armed vmlinux
images. First, we dumped all functions and compared their
addresses; under kR^X no function remained at its original
location (function permutation). Second, we focused on the
internal layout of each function separately, and compared
them (vanilla vs. kR^X version) byte-by-byte; again, un-
der kR^X no gadget remained at its original location (code
block permutation). Recall that the default value (k) for the
entropy of each routine is set to 30. Hence, even in the ex-
treme scenario of a pre-computed ROP payload that uses
gadgets only from a single routine, the probability of guess-
ing their placement is Psucc = 1/230, which we consider to
be extremely low for practical purposes.

Direct JIT-ROP As there are no publicly-available JIT-
ROP exploits for the Linux kernel, we retrofitted an arbi-
trary read vulnerability in the debugfs pseudo-filesystem,
reachable by user mode.11 Next, we modified the previous
exploit to abuse this vulnerability and disclose the locations
of the required gadgets by reading the (randomized) ker-
nel .text section. Armed with that information, the pay-
load of the previously-failing exploit is adjusted accordingly.
We first tested with fine-grained KASLR enabled, and the
R^X enforcement disabled, to verify that JIT-ROP works as
expected and indeed bypasses fine-grained randomization.

11 The vulnerability allows an attacker to set (from user mode) an
unsigned long pointer to an arbitrary address in kernel space, and read
sizeof(unsigned long) bytes by dereferencing it.

Benchmark SFI(-O0) SFI(-O1) SFI(-O2) SFI(-O3) MPX D X SFI+D SFI+X MPX+D MPX+X

L
at

en
cy

syscall() 126.90% 13.41% 13.44% 12.74% 0.49% 0.62% 2.70% 13.67% 15.91% 2.24% 2.92%
open()/close() 306.24% 39.01% 37.45% 24.82% 3.47% 15.03% 18.30% 40.68% 44.56% 19.44% 22.79%
read()/write() 215.04% 22.05% 19.51% 18.11% 0.63% 7.67% 10.74% 29.37% 34.88% 9.61% 12.43%
select(10 fds) 119.33% 10.24% 9.93% 10.25% 1.26% 3.00% 5.49% 15.05% 16.96% 4.59% 6.37%
select(100 TCP fds) 1037.33% 59.03% 49.00% ~0% ~0% ~0% 5.08% 1.78% 9.29% 0.39% 7.43%
fstat() 489.79% 15.31% 13.22% 7.91% ~0% 4.46% 12.92% 16.30% 26.68% 8.36% 14.64%
mmap()/munmap() 180.88% 7.24% 6.62% 1.97% 1.12% 4.83% 5.89% 7.57% 8.71% 6.86% 8.27%
fork()+exit() 208.86% 14.32% 14.26% 7.22% ~0% 12.37% 16.57% 24.03% 21.48% 13.77% 11.64%
fork()+execve() 191.83% 10.30% 21.75% 23.15% ~0% 13.93% 16.38% 29.91% 34.18% 17.00% 17.42%
fork()+/bin/sh 113.77% 11.62% 19.22% 12.98% 6.27% 12.37% 15.44% 23.66% 22.94% 18.40% 16.66%
sigaction() 63.49% 0.19% ~0% 0.16% 1.01% 0.59% 2.20% 0.46% 2.27% 0.95% 2.43%
Signal delivery 123.29% 18.05% 16.74% 7.81% 1.12% 3.49% 4.94% 11.39% 13.31% 5.37% 6.52%
Protection fault 13.40% 1.26% 0.97% 1.33% ~0% 1.69% 3.27% 3.34% 5.73% 1.60% 3.39%
Page fault 202.84% ~0% ~0% 7.38% 1.64% 7.83% 9.40% 15.69% 17.30% 10.80% 12.11%
Pipe I/O 126.26% 22.91% 21.39% 15.12% 0.42% 4.30% 6.89% 19.39% 22.39% 6.07% 7.62%
UNIX socket I/O 148.11% 12.39% 17.31% 11.69% 4.74% 7.34% 10.04% 16.09% 16.64% 6.88% 8.80%
TCP socket I/O 171.93% 25.15% 20.85% 16.33% 1.91% 4.83% 8.30% 21.63% 24.43% 8.20% 9.71%
UDP socket I/O 208.75% 25.71% 30.89% 16.96% ~0% 7.38% 12.76% 24.98% 26.80% 11.22% 13.28%

B
an

dw
id

th

Pipe I/O 46.70% 0.96% 1.62% 0.68% ~0% 0.59% 1.00% 2.80% 3.53% 0.78% 1.61%
UNIX socket I/O 35.77% 3.54% 4.81% 6.43% 1.43% 2.79% 3.39% 5.71% 7.00% 3.17% 3.41%
TCP socket I/O 53.96% 10.90% 10.25% 6.05% ~0% 3.71% 4.40% 9.82% 9.85% 3.64% 4.87%
mmap() I/O ~0% ~0% ~0% ~0% ~0% ~0% ~0% ~0% ~0% ~0% ~0%
File I/O 23.57% ~0% ~0% 0.67% 0.28% 1.21% 1.46% 1.81% 2.23% 1.74% 1.92%

Table 1. kR^X runtime overhead (% over vanilla Linux) on the LMBench micro-benchmark.

Benchmark Metric SFI MPX SFI+D SFI+X MPX+D MPX+X

Apache Req/s 0.54% 0.48% 0.97% 1.00% 0.81% 0.68%
PostgreSQL Trans/s 3.36% 1.06% 6.15% 6.02% 3.45% 4.74%
Kbuild sec 1.48% 0.03% 3.21% 3.50% 2.82% 3.52%
Kextract sec 0.52% ~ 0% ~ 0% ~ 0% ~ 0% ~ 0%
GnuPG sec 0.15% ~ 0% 0.15% 0.15% ~ 0% ~ 0%
OpenSSL Sign/s ~ 0% ~ 0% 0.03% ~ 0% 0.01% ~ 0%
PyBench msec ~ 0% ~ 0% ~ 0% 0.15% ~ 0% ~ 0%
PHPBench Score 0.06% ~ 0% 0.03% 0.50% 0.66% ~ 0%
IOzone MB/s 4.65% ~ 0% 8.96% 8.59% 3.25% 4.26%
DBench MB/s 0.86% ~ 0% 4.98% ~ 0% 4.28% 3.54%
PostMark Trans/s 13.51% 1.81% 19.99% 19.98% 10.09% 12.07%
Average 2.15% 0.45% 4.04% 3.63% 2.32% 2.62%

Table 2. kR^X runtime overhead (% over vanilla Linux) on
the Phoronix Test Suite.

Then, we enabled the R^X enforcement and tried the mod-
ified exploit again; the respective attempt failed as the code
section (.text) cannot be read under R^X.

Indirect JIT-ROP To launch an indirect JIT-ROP attack,
code pointers (i.e., return addresses and function pointers)
need to be harvested from the kernel’s data region. Due to
code block randomization, the knowledge of a return site
cannot be used to infer the addresses of gadgets relative
to the return site itself (the instructions following a return
site are always placed in a permuted code block). Yet, an
attacker can still leverage a return site to construct ROP pay-
loads with call-preceded gadgets [20, 36, 54]. In kR^X,
return addresses are either encrypted, and hence their leak-
age cannot convey any information regarding the placement
of return sites, or “hidden” among decoy addresses, forc-
ing the attacker to guess between two gadgets (i.e., the real
one and the tripwire) for every call-preceded gadget used;

if the payload consists of n such gadgets the probability of
succeeding is Psucc = 1/2n.

Regarding function pointers (i.e., addresses of function
entry points that can be harvested from the stack, heap, or
global data regions, including the interrupt vector table and
system call table) or leaked return addresses (Section 5.3),
due to function permutation, their leakage does not reveal
anything about the immediate surrounding area of the dis-
closed routine. In addition, due to code block permutation,
knowing any address of a function (i.e., either the starting
address or a return site) is not enough for disclosing the ex-
act addresses of gadgets within the body of this function.
Recall that code block permutation inserts jmp instructions
(for connecting the permuted basic blocks) both in the be-
ginning of the function (to transfer control to the original
entry block) and after every call site. As the per-routine en-
tropy is at least 30 bits, the safest strategy for an attacker is
to reuse whole functions. However, in x86-64 Linux kernels,
function arguments are passed in registers [82], and that ne-
cessitates (in the general case) the use of gadgets for loading
registers with the proper values. In essence, kR^X effectively
restricts the attacker to data-only type of attacks on function
pointers [107] (i.e., overwriting function pointers with the
addresses of functions of the same, or lower, arity [42]).

8. Related Work
We already covered related work in the broader areas of code
diversification and XOM in Section 1 and 2. Most of these
efforts are geared towards userland applications, and, as we
discussed in Section 4, they are not quintessential for the
OS kernel—especially when it comes to protecting against

JIT-ROP. The main reasons include: reliance on hypervi-
sors [32, 33] (i.e., non-self-protection), secrecy of segment
descriptors [10, 78] and custom page fault handling [11, 51]
(i.e., non-realistic assumptions for the kernel setting), as well
as designs that treat the kernel as part of the TCB. Besides,
some of the proposed schemes suffer from high overheads,
which are prohibitive for the OS kernel [37].

LR2 [19] and KHide [52] are two previously-proposed
systems that are closer to (some aspects of) kR^X. LR2 is
tailored to user programs, running on mobile devices, and
uses bit masking to confine memory reads to the lower half
of the process address space. As discussed in Section 5.1.1
(“Alternative Layouts”), bit masking is not an attractive solu-
tion for the kernel setting; it requires canonical address space
layouts, which, in turn, entail extensive changes to the kernel
memory allocators (for coping with the imposed alignment
constrains) and result in a whopping address space waste
(e.g., LR2 squanders half of the address space). At the same
time, kR^X: (a) focuses on a different architecture and do-
main (x86-64 vs. 32-bit ARM, kernel vs. user space); (b) can
leverage hardware support when available (MPX); and (c) is
readily compatible with modern Linux distributions without
requiring modifications to existing applications (in contrast
to LR2’s glibc compatibility issues). KHide, similarly to
kR^X, protects the OS kernel against code reuse attacks, but
relies on a commodity VMM (KVM) to do so; kR^X adopts
a self-protection-based approach instead. More importantly,
KHide, in antithesis to kR^X, does not conceal return ad-
dresses, which is important for defending against indirect
JIT-ROP attacks [24].

Live Re-randomization Giuffrida et al. [53] introduced
modifications to MINIX so that the system can be re-
randomized periodically, at runtime. This is an orthogo-
nal approach to kR^X, best suited for microkernels, and
not kernels with a monolithic design (e.g., Linux, BSDs),
while it incurs a significant runtime overhead for short
re-randomization intervals. TASR [14] re-randomizes pro-
cesses each time they perform I/O operations. However, it
requires kernel support for protecting the necessary book-
keeping information, and manually annotating assembly
code, which is heavily used in kernel context. Shuffler [120]
re-randomizes userland applications continuously, on the or-
der of milliseconds, but treats the OS kernel as part of its
TCB. Lastly, RuntimeASLR [79] re-randomizes the address
space of server worker processes to prevent clone-probing
attacks; such attacks are not applicable to kernel settings.

Other Kernel Defenses KCoFI [34] augments FreeBSD
with support for coarse-grained CFI, whereas the system of
Ge et al. [47] further rectifies the enforcement approach of
HyperSafe [117] to implement a fine-grained CFI scheme
for the kernels of MINIX and FreeBSD. In the same vein,
PaX’s RAP [91] provides a fine-grained CFI solution for
the Linux kernel. However, though CFI schemes make the
construction of ROP code challenging, they can be bypassed

by confining the hijacked control flow to valid execution
paths [21, 36, 42, 54]. Heisenbyte [109] and NEAR [119]
employ (the interesting concept of) destructive code reads to
thwart attacks that rely on code disclosures (e.g., JIT-ROP).
Alas, Snow et al. demonstrated that destructive code reads
can be undermined with code inference attacks [106].

Li et al. [74] designed a system that renders ROP pay-
loads unusable by eliminating return instructions and op-
codes from kernel code. Unfortunately, this protection can
be bypassed by using gadgets ending with different types of
indirect branches [23, 54]. kR^X, on the other hand, provides
comprehensive protection against all types of (known) code-
reuse attacks. Finally, Song et al. proposed KENALI [107] to
defend against data-only attacks. KENALI enforces kernel
data flow integrity [22] by categorizing data in distinguish-
ing regions (i.e., sets of data that can be used to influence
access control); its imposed runtime overhead is, however,
very high (e.g., 100%–313% on LMBench).

9. Conclusion
As the complete eradication of kernel memory corruption
and disclosure vulnerabilities remains a challenging task,
defenses against their exploitation become imperative. In
this paper, we investigated a previously unexplored point in
the design space by presenting kR^X: a practical hardening
scheme that fulfils the current lack of self-protection-based
execute-only kernel memory. Implemented as a GCC plugin,
kR^X is readily applicable on x86-64 Linux, it does not rely
on a hypervisor or any other more privileged subsystem, it
does not require any modifications to existing applications,
and it incurs a low runtime overhead, benefiting from the
availability of MPX support.

Availability
The prototype implementation of kR^X is available at:
http://nsl.cs.columbia.edu/projects/krx

Acknowledgments
We thank the anonymous reviewers, our shepherd Haibo
Chen, and Junfeng Yang for their valuable comments. This
work was supported in part by the National Science Foun-
dation (NSF) through grant CNS-13-18415, and the Office
of Naval Research (ONR) through contract N00014-15-1-
2378, with additional support by Qualcomm. Any opinions,
findings, conclusions, or recommendations expressed herein
are those of the authors, and do not necessarily reflect those
of the US Government, NSF, ONR, or Qualcomm.

References
[1] CVE-2010-3437, September 2010.

[2] Analysis of jailbreakme v3 font exploit. https://goo.gl/
RGsgzc, July 2011.

[3] CVE-2013-2094, February 2013.

http://nsl.cs.columbia.edu/projects/krx
https://goo.gl/RGsgzc
https://goo.gl/RGsgzc

[4] CVE-2013-6282, October 2013.

[5] CVE-2015-3036, April 2015.

[6] CVE-2015-3290, April 2015.

[7] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-
Flow Integrity. In Proc. of ACM CCS, pages 340–353, 2005.

[8] Andrea Bittau. Linux Kernel < 3.8.9 (x86_64)
‘perf_swevent_init’ Privilege Escalation. https:
//www.exploit-db.com/exploits/26131/, June 2013.

[9] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar,
G. Ganesh, J. Ma, and W. Shen. Hypervision Across Worlds:
Real-time Kernel Protection from the ARM TrustZone
Secure World. In Proc. of ACM CCS, pages 90–102, 2014.

[10] M. Backes and S. Nürnberger. Oxymoron: Making Fine-
Grained Memory Randomization Practical by Allowing
Code Sharing. In Proc. of USENIX Sec, pages 433–447,
2014.

[11] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger,
and J. Pewny. You Can Run but You Can’T Read: Preventing
Disclosure Exploits in Executable Code. In Proc. of ACM
CCS, pages 1342–1353, 2014.

[12] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and B.-A.
Yassour. The Turtles Project: Design and Implementation
of Nested Virtualization. In Proc. of USENIX OSDI, pages
423–436, 2010.

[13] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient
Techniques for Comprehensive Protection from Memory
Error Exploits. In Proc. of USENIX Sec, pages 255–270,
2005.

[14] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and
H. Okhravi. Timely Rerandomization for Mitigating Mem-
ory Disclosures. In Proc. of ACM CCS, pages 268–279,
2015.

[15] J. Bonwick. The Slab Allocator: An Object-Caching Kernel
Memory Allocator. In Proc. of USENIX Summer, pages
87–98, 1994.

[16] D. P. Bovet. Special sections in Linux binaries. https:
//lwn.net/Articles/531148/, January 2013.

[17] D. P. Bovet and M. Cesati. Understanding the Linux Kernel,
chapter Modules, pages 842–851. O’Reilly Media, 3rd

edition, 2005.

[18] Brad Spengler and Sorbo. Linux perf_swevent_init
Privilege Escalation. https://goo.gl/eLgE48, March
2014.

[19] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen,
C. Liebchen, and A.-R. Sadeghi. Leakage-Resilient Lay-
out Randomization for Mobile Devices. In Proc. of NDSS,
2016.

[20] N. Carlini and D. Wagner. ROP is Still Dangerous: Breaking
Modern Defenses. In Proc. of USENIX Sec, pages 385–399,
2014.

[21] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross.
Control-Flow Bending: On the Effectiveness of Control-
Flow Integrity. In Proc. of USENIX Sec, pages 161–176,
2015.

[22] M. Castro, M. Costa, and T. Harris. Securing software by
enforcing data-flow integrity. In Proc. of USENIX OSDI,
pages 147–160, 2006.

[23] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-Oriented Program-
ming without Returns. In Proc. of ACM CCS, pages 559–
572, 2010.

[24] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen,
C. Liebchen, M. Negro, M. Qunaibit, and A.-R. Sadeghi.
Losing Control: On the Effectiveness of Control-Flow In-
tegrity Under Stack Attacks. In Proc. of ACM CCS, pages
952–963, 2015.

[25] K. Cook. Kernel Self Protection Project. https://goo.
gl/KsN0t8.

[26] F. J. Corbató and V. A. Vyssotsky. Introduction and
Overview of the Multics System. In Proc. of AFIPS, pages
185–196, 1965.

[27] J. Corbet. An updated guide to debugfs. https:
//lwn.net/Articles/334546/, May 2009.

[28] J. Corbet. Supervisor mode access prevention. https:
//lwn.net/Articles/517475/, October 2012.

[29] J. Corbet. BPF: the universal in-kernel virtual machine.
https://lwn.net/Articles/599755/, May 2014.

[30] J. Corbet. Supporting Intel MPX in Linux. https:
//lwn.net/Articles/582712/, January 2014.

[31] S. Crane, P. Larsen, S. Brunthaler, and M. Franz. Booby
Trapping Software. In Proc. of NSPW, pages 95–106, 2013.

[32] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen,
A.-R. Sadeghi, S. Brunthaler, and M. Franz. Readactor:
Practical Code Randomization Resilient to Memory Disclo-
sure. In Proc. of IEEE S&P, pages 763–780, 2015.

[33] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen,
L. Davi, A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz.
It’s a TRaP: Table Randomization and Protection Against
Function-Reuse Attacks. In Proc. of ACM CCS, pages 243–
255, 2015.

[34] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete
Control-Flow Integrity for Commodity Operating System
Kernels. In Proc. of IEEE S&P, pages 292–307, 2014.

[35] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and
V. Adve. Nested Kernel: An Operating System Architecture
for Intra-Kernel Privilege Separation. In Proc. of ACM
ASPLOS, pages 191–206, 2015.

[36] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose.
Stitching the Gadgets: On the Ineffectiveness of Coarse-
Grained Control-Flow Integrity Protection. In Proc. of
USENIX Sec, pages 401–416, 2014.

[37] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and
F. Monrose. Isomeron: Code Randomization Resilient to
(Just-In-Time) Return-Oriented Programming. In Proc. of
NDSS, 2015.

[38] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A.-R.
Sadeghi. Gadge Me if You Can: Secure and Efficient Ad-hoc
Instruction-level Randomization for x86 and ARM. In Proc.
of ACM ASIACCS, pages 299–310, 2013.

https://www.exploit-db.com/exploits/26131/
https://www.exploit-db.com/exploits/26131/
https://lwn.net/Articles/531148/
https://lwn.net/Articles/531148/
https://goo.gl/eLgE48
https://goo.gl/KsN0t8
https://goo.gl/KsN0t8
https://lwn.net/Articles/334546/
https://lwn.net/Articles/334546/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/599755/
https://lwn.net/Articles/582712/
https://lwn.net/Articles/582712/

[39] S. Designer. Getting around non-executable stack (and fix).
http://seclists.org/bugtraq/1997/Aug/63, August
1997.

[40] J. Edge. Kernel address space layout randomization.
https://lwn.net/Articles/569635/, October 2013.

[41] K. Elphinstone and G. Heiser. From L3 to seL4: What Have
We Learnt in 20 Years of L4 Microkernels? In Proc. of ACM
SOSP, pages 133–150, 2013.

[42] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos. Control Jujutsu: On
the Weaknesses of Fine-Grained Control Flow Integrity. In
Proc. of ACM CCS, pages 901–913, 2015.

[43] Exploit Database. EBD-20201, August 2012.

[44] Exploit Database. EBD-31346, February 2014.

[45] Exploit Database. EBD-33516, May 2014.

[46] GCC online documentation. Intel 386 and AMD x86-64
Options. https://goo.gl/38gK86.

[47] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-Grained
Control-Flow Integrity for Kernel Software. In Proc. of
IEEE EuroS&P, 2016.

[48] J. Geffner. VENOM: Virtualized Environment Neglected
Operations Manipulation. http://venom.crowdstrike.
com, May 2015.

[49] D. Geneiatakis, G. Portokalidis, V. P. Kemerlis, and A. D.
Keromytis. Adaptive Defenses for Commodity Software
through Virtual Application Partitioning. In Proc. of CCS,
pages 133–144, 2012.

[50] M. Gillespie. Best Practices for Paravirtualization Enhance-
ments from Intel R© Virtualization Technology: EPT and
VT-d. https://goo.gl/LLlAZK, January 2015.

[51] J. Gionta, W. Enck, and P. Ning. HideM: Protecting the
Contents of Userspace Memory in the Face of Disclosure
Vulnerabilities. In Proc. of ACM CODASPY, pages 325–
336, 2015.

[52] J. Gionta, W. Enck, and P. Larsen. Preventing Kernel
Code-Reuse Attacks Through Disclosure Resistant Code
Diversification. In Proc. of IEEE CNS, 2016.

[53] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced
Operating System Security Through Efficient and Fine-
grained Address Space Randomization. In Proc. of USENIX
Sec, pages 475–490, 2012.

[54] E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis.
Out of Control: Overcoming Control-Flow Integrity. In
Proc. of IEEE S&P, pages 575–589, 2014.

[55] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos,
and G. Portokalidis. Size Does Matter: Why Using Gadget-
Chain Length to Prevent Code-Reuse Attacks is Hard. In
Proc. of USENIX Sec, pages 417–432, 2014.

[56] D. Hansen. [RFC] x86: Memory protection keys. https:
//lwn.net/Articles/643617/, May 2015.

[57] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. Davidson.
ILR: Where’d My Gadgets Go? In Proc. of IEEE S&P, pages
571–585, 2012.

[58] R. Hund, T. Holz, and F. C. Freiling. Return-Oriented
Rootkits: Bypassing Kernel Code Integrity Protection
Mechanisms. In Proc. of USENIX Sec, pages 384–398,
2009.

[59] Intel Corporation. Intel R© 64 and IA-32 Architectures
Software Developer’s Manual, April 2015.

[60] Intel Corporation. Intel R© Memory Protection Extensions
Enabling Guide, January 2016.

[61] Intel R© OS Guard (SMEP). Intel R© Xeon R© Processor E5-
2600 V2 Product Family Technical Overview. https:
//goo.gl/mS5Ile, October 2013.

[62] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis.
kGuard: Lightweight Kernel Protection against Return-to-
user Attacks. In Proc. of USENIX Sec, pages 459–474,
2012.

[63] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis.
ret2dir: Rethinking Kernel Isolation. In Proc. of USENIX
Sec, pages 957–972, 2014.

[64] C. Kil, J. Jim, C. Bookholt, J. Xu, and P. Ning. Address
Space Layout Permutation (ASLP): Towards Fine-Grained
Randomization of Commodity Software. In Proc. of ACSAC,
pages 339–348, 2006.

[65] T. J. Killian. Processes as Files. In Proc. of USENIX Summer,
pages 203–207, 1984.

[66] A. Kleen. Memory Layout on amd64 Linux. https:
//goo.gl/BtvguP, July 2004.

[67] E. J. Koldinger, J. S. Chase, and S. J. Eggers. Architecture
Support for Single Address Space Operating Systems. In
Proc. of ACM ASPLOS, pages 175–186, 1992.

[68] M. Krause. CVE Requests (maybe): Linux kernel: var-
ious info leaks, some NULL ptr derefs. http://www.
openwall.com/lists/oss-security/2013/03/05/13,
March 2013.

[69] G. Kroah-Hartman. udev – A Userspace Implementation of
devfs. In Proc. of OLS, pages 263–271, 2003.

[70] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar,
and D. Song. Code-Pointer Integrity. In Proc. of USENIX
OSDI, pages 147–163, 2014.

[71] M. Larkin. Kernel W^X Improvements In OpenBSD. In
Hackfest, 2015.

[72] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. SoK:
Automated Software Diversity. In Proc. of IEEE S&P, pages
276–291, 2014.

[73] J. Lee, H. Ham, I. Kim, and J. Song. POSTER: Page Table
Manipulation Attack. In Proc. of ACM CCS, pages 1644–
1646, 2015.

[74] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating
Return-Oriented Rootkits With “Return-less” Kernels. In
Proc. of EuroSys, pages 195–208, 2010.

[75] S. Liakh. NX protection for kernel data. https://lwn.
net/Articles/342266/, July 2009.

[76] Linux Cross Reference. Linux kernel release 3.19.
http://lxr.free-electrons.com/source/arch/
x86/kernel/cpu/perf_event_intel_uncore_snb.c?
v=3.19#L565.

http://seclists.org/bugtraq/1997/Aug/63
https://lwn.net/Articles/569635/
https://goo.gl/38gK86
http://venom.crowdstrike.com
http://venom.crowdstrike.com
https://goo.gl/LLlAZK
https://lwn.net/Articles/643617/
https://lwn.net/Articles/643617/
https://goo.gl/mS5Ile
https://goo.gl/mS5Ile
https://goo.gl/BtvguP
https://goo.gl/BtvguP
http://www.openwall.com/lists/oss-security/2013/03/05/13
http://www.openwall.com/lists/oss-security/2013/03/05/13
https://lwn.net/Articles/342266/
https://lwn.net/Articles/342266/
http://lxr.free-electrons.com/source/arch/x86/kernel/cpu/perf_event_intel_uncore_snb.c?v=3.19#L565
http://lxr.free-electrons.com/source/arch/x86/kernel/cpu/perf_event_intel_uncore_snb.c?v=3.19#L565
http://lxr.free-electrons.com/source/arch/x86/kernel/cpu/perf_event_intel_uncore_snb.c?v=3.19#L565

[77] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia. Thwarting
Memory Disclosure with Efficient Hypervisor-enforced
Intra-domain Isolation. In Proc. of ACM CCS, pages 1607–
1619, 2015.

[78] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee.
ASLR-Guard: Stopping Address Space Leakage for Code
Reuse Attacks. In Proc. of ACM CCS, pages 280–291, 2015.

[79] K. Lu, S. Nürnberger, M. Backes, and W. Lee. How to Make
ASLR Win the Clone Wars: Runtime Re-Randomization. In
Proc. of NDSS, 2016.

[80] K. Lu, C. Song, T. Kim, and W. Lee. UniSan: Proactive
Kernel Memory Initialization to Eliminate Data Leakages.
In Proc. of ACM CCS, pages 920–932, 2016.

[81] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proc. of ACM PLDI, pages
190–200, 2005.

[82] M. Matz, J. Hubička, A. Jaeger, and M. Mitchell. System V
Application Binary Interface. http://www.x86-64.org/
documentation/abi.pdf, October 2013.

[83] S. McCamant and G. Morrisett. Evaluating SFI for a CISC
Architecture. In Proc. of USENIX Sec, pages 209–224, 2006.

[84] L. McVoy and C. Staelin. lmbench: Portable Tools for
Performance Analysis. In Proc. of USENIX ATC, pages
279–294, 1996.

[85] B. Niu and G. Tan. Modular Control-flow Integrity. In Proc.
of ACM PLDI, pages 577–587, 2014.

[86] B. Niu and G. Tan. Per-Input Control-Flow Integrity. In
Proc. of ACM CCS, pages 914–926, 2015.

[87] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smash-
ing the Gadgets: Hindering Return-Oriented Programming
Using In-place Code Randomization. In Proc. of IEEE S&P,
pages 601–615, 2012.

[88] V. Pappas, M. Polychronakis, and A. D. Keromytis. Trans-
parent ROP Exploit Mitigation Using Indirect Branch Trac-
ing. In Proc. of USENIX Sec, pages 447–462, 2013.

[89] PaX Team. UDEREF/amd64. https://goo.gl/iPuOVZ,
April 2010.

[90] PaX Team. Better kernels with GCC plugins. https:
//lwn.net/Articles/461811/, October 2011.

[91] PaX Team. RAP: RIP ROP. In Hackers 2 Hackers
Conference (H2HC), 2015.

[92] M. Payer, A. Barresi, and T. R. Gross. Fine-Grained Control-
Flow Integrity through Binary Hardening. In Proc. of
DIMVA, pages 144–164, 2015.

[93] E. Perla and M. Oldani. A Guide To Kernel Exploitation:
Attacking the Core, chapter Stairway to Successful Kernel
Exploitation, pages 47–99. Elsevier, 2010.

[94] N. L. Petroni, Jr. and M. Hicks. Automated Detection of
Persistent Kernel Control-Flow Attacks. In Proc. of ACM
CCS, pages 103–115, 2007.

[95] J. Pewny and T. Holz. Control-flow Restrictor: Compiler-
based CFI for iOS. In Proc. of ACSAC, pages 309–318,
2013.

[96] G. J. Popek and D. A. Farber. A Model for Verification of
Data Security in Operating Systems. Commun. ACM, 21(9):
737–749, September 1978.

[97] PTS. Phoronix Test Suite. http://www.
phoronix-test-suite.com.

[98] R. Riley, X. Jiang, and D. Xu. Guest-Transparent Prevention
of Kernel Rootkits with VMM-based Memory Shadowing.
In Proc. of RAID, pages 1–20, 2008.

[99] D. Rosenberg. kptr_restrict for hiding kernel pointers.
https://lwn.net/Articles/420403/, December 2010.

[100] P. Sarbinowski, V. P. Kemerlis, C. Giuffrida, and E. Athana-
sopoulos. VTPin: Practical VTable Hijacking Protection for
Binaries. In Proc. of ACSAC, pages 448–459, 2016.

[101] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R.
Sadeghi, and T. Holz. Counterfeit Object-oriented Program-
ming: On the Difficulty of Preventing Code Reuse Attacks
in C++ Applications. In Proc. of IEEE S&P, pages 745–762,
2015.

[102] SecurityFocus. Linux Kernel ’perf_counter_open()’ Local
Buffer Overflow Vulnerability, September 2009.

[103] D. Sehr, R. Muth, C. L. Biffle, V. Khimenko, E. Pasko,
B. Yee, K. Schimpf, and B. Chen. Adapting Software Fault
Isolation to Contemporary CPU Architectures. In Proc. of
USENIX Sec, pages 1–11, 2010.

[104] H. Shacham. The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86). In
Proc. of ACM CCS, pages 552–61, 2007.

[105] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-In-Time Code Reuse:
On the Effectiveness of Fine-Grained Address Space Layout
Randomization. In Proc. of IEEE S&P, pages 574–588,
2013.

[106] K. Z. Snow, R. Rogowski, J. Werner, H. Koo, F. Monrose,
and M. Polychronakis. Return to the Zombie Gadgets:
Undermining Destructive Code Reads via Code Inference
Attacks. In Proc. of IEEE S&P, pages 954–968, 2016.

[107] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee.
Enforcing Kernel Security Invariants with Data Flow
Integrity. In Proc. of NDSS, 2016.

[108] B. Spengler. Enlightenment Linux Kernel Exploitation
Framework. https://goo.gl/hDymQg, December 2014.

[109] A. Tang, S. Sethumadhavan, and S. Stolfo. Heisenbyte:
Thwarting Memory Disclosure Attacks Using Destructive
Code Reads. In Proc. of ACM CCS, pages 256–267, 2015.

[110] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural Support for
Copy and Tamper Resistant Software. In Proc. of ACM
ASPLOS, pages 168–177, 2000.

[111] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,
Ú. Erlingsson, L. Lozano, and G. Pike. Enforcing Forward-
Edge Control-Flow Integrity in GCC & LLVM. In Proc. of
USENIX Sec, pages 941–955, 2014.

[112] A. van de Ven. Debug option to write-protect rodata: the
write protect logic and config option. https://goo.gl/
shDf0o, November 2005.

http://www.x86-64.org/documentation/abi.pdf
http://www.x86-64.org/documentation/abi.pdf
https://goo.gl/iPuOVZ
https://lwn.net/Articles/461811/
https://lwn.net/Articles/461811/
http://www.phoronix-test-suite.com
http://www.phoronix-test-suite.com
https://lwn.net/Articles/420403/
https://goo.gl/hDymQg
https://goo.gl/shDf0o
https://goo.gl/shDf0o

[113] A. van de Ven. Add -fstack-protector support to
the kernel. https://lwn.net/Articles/193307/, July
2006.

[114] S. Vogl, R. Gawlik, B. Garmany, T. Kittel, J. Pfoh, C. Eckert,
and T. Holz. Dynamic Hooks: Hiding Control Flow Changes
Within Non-control Data. In Proc. of USENIX Sec, pages
813–828, 2014.

[115] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient Software-based Fault Isolation. In Proc. of ACM
SOSP, pages 203–216, 1993.

[116] X. Wang, Y. Chen, Z. Wang, Y. Qi, and Y. Zhou. SecPod:
a Framework for Virtualization-based Security Systems. In
Proc. of USENIX ATC, pages 347–360, 2015.

[117] Z. Wang and X. Jiang. HyperSafe: A Lightweight Approach
to Provide Lifetime Hypervisor Control-Flow Integrity. In
Proc. of IEEE S&P, pages 380–395, 2010.

[118] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
Stirring: Self-randomizing Instruction Addresses of Legacy
x86 Binary Code. In Proc. of ACM CCS, pages 157–168,
2012.

[119] J. Werner, G. Baltas, R. Dallara, N. Otternes, K. Snow,
F. Monrose, and M. Polychronakis. No-Execute-After-Read:
Preventing Code Disclosure in Commodity Software. In
Proc. of ACM ASIACCS.

[120] D. Williams-King, G. Gobieski, K. Williams-King, J. P.
Blake, X. Yuan, P. Colp, M. Zheng, V. P. Kemerlis, J. Yang,
and W. Aiello. Shuffler: Fast and Deployable Continuous
Code Re-Randomization. In Proc. of USENIX OSDI, pages
367–382, 2016.

[121] R. Wojtczuk. Exploiting “BadIRET” vulnerability (CVE-
2014-9322, Linux kernel privilege escalation). https:
//goo.gl/bSEhBI, February 2015.

[122] W. Xu and Y. Fu. Own Your Android! Yet Another Universal
Root. In Proc. of USENIX WOOT, 2015.

[123] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native Client: A
Sandbox for Portable, Untrusted x86 Native Code. In Proc.
of IEEE S&P, pages 79–93, 2009.

[124] F. Yu. Enable/Disable Supervisor Mode Execution Protec-
tion. https://goo.gl/utKHno, May 2011.

[125] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCa-
mant, D. Song, and W. Zou. Practical Control Flow Integrity
and Randomization for Binary Executables. In Proc. of IEEE
S&P, pages 559–573, 2013.

[126] M. Zhang and R. Sekar. Control Flow Integrity for COTS
Binaries. In Proc. of USENIX Sec, pages 337–352, 2013.

A. Discovered Kernel Bugs
During the development of kR^X-KAS, we discovered two
kernel bugs. The first one, which is security critical, results
in memory being accidentally marked as executable. In the
x86 architecture, the MMU utilizes a multi-level page table
hierarchy for mapping virtual to physical addresses. When
the Physical Address Extension (PAE) [59] mode is enabled,

which is the default nowadays as non-executable protection
is only available under PAE mode, each page table entry is
64-bit wide, and except from addressing information also
holds flags that define properties of the mapped page(s)
(e.g., PRESENT, ACCESSED). Often, multiple adjacent pages
sharing the same flags are coalesced to larger memory areas
(e.g., 512 4KB pages can be combined to form a single 2MB
page) to reduce TLB pollution [41].

This aggregation takes place in the whole kernel address
space, including the dynamic, on-demand memory regions,
such as the vmalloc arena, which may enforce different pro-
tections to (sub)parts of their allocated chunks. Linux uses
the pgprot_large_2_4k() and pgprot_4k_2_large()
routines for copying the flags from 2MB to 4KB pages,
and vice versa, using a local variable (val) to construct
an equivalent flags mask. Unfortunately, val is declared
as unsigned long, which is 64-bit wide in x86-64 sys-
tems, but only 32-bit wide in x86 systems. As a result, the
“eXecute-Disable” (XD) bit (most significant bit on each
page table entry) is always cleared in the resulting flags
mask, marking the respective pages as executable. Since
many of these pages may also be writable, this is a critical
vulnerability (W^X violation).

The second bug we discovered is related to module load-
ing. Specifically, before a module is loaded, the module
loader-linker first checks whether the image of the mod-
ule fits within the modules region. This check is per-
formed inside the module_alloc() routine, using the
MODULES_LEN macro, which holds the total size of the
modules region. However, in 32-bit (x86) kernels this
macro was mistakenly assigned its complementary value,
and hence the (sanity) check will never fail. Fortunately,
this bug does not constitute a vulnerability because a subse-
quent call to __vmalloc_node_range() (which performs
the actual memory allocation for each module) will fail if
the remaining space in the modules region is less than the
requested memory (i.e., the size of the module’s image).

https://lwn.net/Articles/193307/
https://goo.gl/bSEhBI
https://goo.gl/bSEhBI
https://goo.gl/utKHno

	Introduction
	Background
	Threat Model
	Approach
	Design
	R^X Enforcement
	kR^X-KAS
	kR^X-SFI
	kR^X-MPX

	Fine-grained KASLR
	Foundational Diversification
	Return Address Protection

	Limitations

	Implementation
	Evaluation
	Testbed
	Performance
	Security

	Related Work
	Conclusion
	Discovered Kernel Bugs

