
NaClDroid: Native Code Isolation for Android

Applications

Elias Athanasopoulos1, Vasileios P. Kemerlis2, Georgios Portokalidis3, and
Angelos D. Keromytis4

1 Vrije Universiteit Amsterdam, The Netherlands
i.a.athanasopoulos@vu.nl

2 Brown University, Providence, RI, USA
vpk@cs.brown.edu

3 Stevens Institute of Technology, Hoboken, NJ, USA
gportoka@stevens.edu

4 Columbia University, New York, NY, USA
angelos@cs.columbia.edu

Abstract. Android apps frequently incorporate third-party libraries that
contain native code; this not only facilitates rapid application develop-
ment and distribution, but also provides new ways to generate revenue.
As a matter of fact, one in two apps in Google Play are linked with a
library providing ad network services. However, linking applications with
third-party code can have severe security implications: malicious libraries
written in native code can exfiltrate sensitive information from a running
app, or completely modify the execution runtime, since all native code is
mapped inside the same address space with the execution environment,
namely the Dalvik/ART VM. We propose NaClDroid, a framework that
addresses these problems, while still allowing apps to include third-party
code. NaClDroid prevents malicious native-code libraries from hijacking
Android applications using Software Fault Isolation. More specifically,
we place all native code in a Native Client sandbox that prevents uncon-
strained reads, or writes, inside the process address space. NaClDroid
has little overhead; for native code running inside the NaCl sandbox the
slowdown is less than 10% on average.

Keywords: SFI, NaCl, Android

1 Introduction

Android is undoubtedly the most rapidly growing platform for mobile devices,
with estimates predicting one billion Android-based smartphones shipping in
2017 [12]. App developers have great incentives to release their software without
delays, ahead of their competitors; for that reason, they frequently decide to
incorporate already available third-party code, typically included in the form of
native-code libraries, loaded at run time. For example, ∼50% of apps are linked
with a library providing ad services [25]. Moreover, native libraries are heavily
used among the most popular applications [32].



2 E. Athanasopoulos, V. P. Kemerlis, G. Portokalidis, A. D. Keromytis

Including untrusted, third-party code in an application has severe security
consequences, affecting both the developers and the users of apps. Lookout, a
smartphone-centric security firm, recently identified 32, otherwise legitimate,
apps in Google Play that were linked with a malicious ad library [7]. They
estimated the number of affected users to be in the range of 2–9 million, and
their advice was the following: “Developers need to pay very close attention to

any third-party libraries they include in their applications. Unsafe libraries can

put their users and reputation at risk.” [7]

The current design of the Android runtime allows a malicious native library,
included in an otherwise legitimate app, to: (a) exfiltrate private information
from the app; or (b) change the functionality of the app. To address the above,
we propose NaClDroid: a framework that provides strong confidentiality and
integrity guarantees to the Android execution environment. NaClDroid intro-
duces a sandbox for running native third-party code that has been packaged
with an app. This enables us to retain support for native code, while concur-
rently preventing it from arbitrarily reading process memory, tampering with
the Dalvik runtime5, or directly accessing operating system (OS) interfaces, like
system calls. We employ Software Fault Isolation [33] (SFI) and sandbox all
native library code using Google’s Native Client (NaCl) [27,37]. Therefore, we
separate the runtime, Dalvik VM, from the native part of the app, while at the
same time permitting the use of native code through JNI. Note that this archi-
tectural model is already used by Google Chrome for running untrusted browser
extensions [5]; in this work, we extend it to the mobile setting.

We briefly explain how NaClDroid protects Android apps from a malicious
library. Consider, a legitimate instant messaging (IM) application; it is written
in Java and provided for free. To compensate, it includes a third-party, native-
code library to display advertisements that generate revenue for its authors.
The third-party library is mapped to the same address space with the rest of
the VM executing the app, and can access all app information just by reading
memory (e.g., sensitive information like user passwords and discussions). Notice,
that whether encryption is used to transmit data is inconsequential, since the
information is available in plaintext in process memory. NaClDroid’s sandbox
confines the library, so that is can only access its own memory region(s) and data
exchanged with the app through JNI, thereby making it impossible to exfiltrate
sensitive information.

As a second example, we can look at Facebook’s Android application, which
updated itself without going through the app store [9], avoiding verification and
analysis of the updated app. Google eventually banned Facebook’s official app
from its app store [3], and the ban was accompanied with a change in the store
terms of service that forbids developers from independently updating their apps.
However, this policy update is not enforced by the platform. NaClDroid prevents
the introduction of new functionality outside the app store, since dangerous

5 Dalvik has evolved to ART, which supports ahead-of-time compilation. The system
we present here works with both Dalvik and ART. Since many Android OSes still
support Dalvik, we use the term Dalvik to refer to both systems.



NaClDroid: Native Code Isolation for Android Applications 3

system calls that load new code and modify the VM are no longer possible.
Additionally, attacks that attempt to hijack the control flow for activating hidden
functionality [34] are also prevented, as NaCl only allows code that has been
compiled in a certain way (i.e., unvetted control flows are not possible).

Isolating code, using SFI, in Java-based runtime environments has been
demonstrated in the past [28,29]. For Android, in particular, there is Native-
Guard [30], which performs isolation without heavily modifying the runtime.
In this paper, we present NaClDroid for completeness, as an additional purely
SFI-based solution for isolating native code in Android. First, we begin with the
underlying principles of NaClDroid. Next, we implement, and evaluate, a Dalvik
VM, which is fully equipped with loading and running NaCl-compiled libraries.

Other approaches focus on Android’s permission model, which is fundamental
to the security of the platform [16,17,24,35]. An app is only allowed to perform
actions (e.g., calling or texting) based on the permissions it holds, and these
permissions are enforced by the OS. However, applications frequently request a
broad set of permissions, users are not sufficiently attentive, and applications
can collude with each other. As a result, we are increasingly relying on the
analysis of apps to determine whether they are malicious. As these methodologies
keep improving, ensuring the integrity of the verified code and the execution
environment, under the presence of untrusted native third-party code, becomes
even more important, because the modification of the execution after review
will eventually become the sole avenue for malware authors [7]. NaClDroid is
orthogonal to such proposals.

Previous approaches, unlike NaClDroid, do not attempt to provide develop-
ers with the means to isolate their apps from third-party code (or control how
they interact with it). Furthermore, even though we do not aim to detect or pro-
tect from malware, through NaClDroid we confine native code, preventing the
abuse of system call interfaces. For example, the DroidKungFu and DroidDream
malware use a native library to execute exploits against the OS kernel [36].
These would fail under NaClDroid, since all native code is running under the
constraints of a NaCl sandbox.

1.1 Contributions

To summarize, this paper makes the following contributions:

– We experimentally demonstrate the various ways third-party code can tam-
per with an app and its execution environment.

– We design and implement NaClDroid: an SFI-based framework that ensures
the integrity and confidentiality of Android’s execution environment. We
embed Google’s NaCl in Android’s runtime to safely allow the use native
code; with NaClDroid in place malicious libraries cannot leak information
from, or subvert the control flow of, running apps.

– We thoroughly evaluate the proposed framework. Running native code through
NaClDroid imposes a moderate slowdown of less than 10% on average.



4 E. Athanasopoulos, V. P. Kemerlis, G. Portokalidis, A. D. Keromytis

– In contrast to similar approaches based on a strict review process, completely
disallowing third-party code, or relying on code signing, this paper presents a
series of challenges and systematic solutions for confining native third-party
code linked with apps running in a highly open platform.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we present background
information regarding the Android platform, and through detailed examples we
discuss how malicious libraries can leak information from, or subvert control flow
of, legitimate apps. Additionally, we discuss the threat model we consider in this
paper. We present the architecture of NaClDroid and provide implementation
details in Section 3. We analyze the security guarantees offered by NaClDroid,
possible attacks against it, and additional hardening in Section 4. We evaluate
the performance of our solution in Section 5. Related work is in Section 6, and
conclusions in Section 7.

2 Malicious Third-Party Code

Android apps are written in Java, and, once compiled, the produced Java byte-
code is transformed to a bytecode variant called Dalvik, which can be executed
by the Dalvik VM [11]. Dalvik supports standard Java technologies, such as the
Java Native Interface (JNI) [20], and hence all Android apps can attach native
code to their bytecode. Native code was originally allowed to enable apps to
quickly and efficiently perform computationally intensive tasks, such as crypto-
graphic operations, image recognition, etc.

Android applications may include multiple third-party components, imple-
mented either in native code or in Java, to complement their functionality; this is
typical of many apps because it facilitates rapid development and code reuse. For
example, it has been estimated that one in two Android applications is linked to
an ad library [25]. Linking code in an application is not an unusual practice, and
it is the modus operandi in many platforms—from desktop to mobile. However,
linking code has major security implications in the case of Android. The open-
ness of the platform allows adversaries to craft malicious libraries and implicitly
attack a bigger user base than making malware popular. This has been recently
demonstrated by researchers who identified malicious libraries that infected more
than 32 legitimate applications in Google Play [7].

In the rest of this section, we investigate how malicious, native third-party
code can break the integrity and confidentiality of legitimate apps that link to
it. We look into how malicious libraries of native code can arbitrarily corrupt
the virtual runtime, which executes the app, by re-writing the process virtual
address space or exfiltrate sensitive information by reading the process memory.
This technique can be used by any malicious third-party code for transforming
a legitimate application to a malicious application [7].



NaClDroid: Native Code Isolation for Android Applications 5

2.1 Altering the Execution Environment

Native code resides inside the same virtual address space with the Dalvik VM.
Therefore, it has direct access to all of the process memory, and can directly read
or write anywhere in the process, easily tampering-with the Android runtime in
arbitrary ways.

First, native code can read process memory, as it is mapped in the same
virtual address space; this can break the confidentiality of the execution envi-
ronment. Sensitive information that is stored in process memory can be easily
exfiltrated by scanning the (virtual) memory footprint of the process. Consider,
the example we presented in the introduction: an instant messaging application
that uses a native-code library to serve advertisements to its users. The native
library can easily scan the process image for sensitive data, like the user’s pass-
word or message content exchanged with other users. Notice that even if the
developer of the instant messenger is careful enough to encrypt all conversa-
tions exchanged, the library can still gain access to the unencrypted content,
since it can read data before reaching the encryption code. Therefore, all data
manipulated by the app are exposed to the library’s code.

Second, native code can write the process image, as it is mapped in the same
virtual address space; this can break the integrity of the execution environment.
Native code can directly modify the bytecode or the virtual runtime itself. To
better illustrate this, in Figure 1, we show a code sample of a JNI function
(nativeInjection(), lines 22–31) that scans the app to locate a specific
bytecode pattern and replace it with a different one; we have omitted some
parts and simplified the code for brevity. The JNI function initially performs a
getpid() system call (line 24) to retrieve the process ID. It then opens and
scans the /proc/[pid]/maps file (lines 26–28) to obtain the memory layout
of the current process. Function patch_file() is responsible for finding where
the .dex file (i.e., the path indicated by MAP in line 1) is mapped in memory,
and, finally, calling function patch_bytecode(), which replaces the targeted
opcode. To do so, it first uses mprotect to make the particular region writable
and then scans the region to find and replace the respective opcode. In this
example, we change the first byte from 0x90, which is the Dalvik opcode for
addition, to 0x91, which is the opcode for subtraction.

A real-world incident of such behavior is the Facebook app that altered the
Dalvik VM to increase the size of one of its internal buffers [9], before it was
banned from the Google Play store [3]. Facebook did this to overcome some
internal constraints imposed by the Dalvik architecture, but it is evident that
the same technique(s) can be used by malicious libraries against legitimate apps.

2.2 Threat model

NaClDroid protects applications from malicious third-party code, contained in
shared libraries of native code. Although, in general, malicious third-party code
can be implemented in Java as well, as we showed in this section, native code
that plugs in with the rest of the code has superior capabilities. First, native



6 E. Athanasopoulos, V. P. Kemerlis, G. Portokalidis, A. D. Keromytis

1 #define MAP "/path/program@classes.dex"

2 char bytecode[4] = {0x90, 0x02, 0x00, 0x01};

3

4 void patch_bytecode(...) {

5 ...

6 mprotect((const void*)p, len, PROT_WRITE);

7 while (...) {

8 if (bytecode_found(p)) {

9 *p = 0x91;

10 break;

11 }

12 }

13 }

14

15 void patch_file(FILE *fp) {

16 ...

17 if (file_found(MAP)) {

18 patch_bytecode(start_address, length);

19 }

20 }

21

22 void nativeInjection(...) {

23 char process_path[16]; FILE *fp;

24 pid_t pid = getpid();

25

26 sprintf(process_path, "/proc/%d/maps", pid);

27

28 fp = fopen(process_path, "r");

29

30 patch_file(fp);

31 }

Fig. 1. Native injection. First, the pid of the running process is resolved (line 24).
Next, the file /proc/[pid]/maps is opened (line 28) and scanned for finding the
memory area where the Dalvik bytecode has been mapped (lines 15–20). Once found,
the area is scanned for a particular opcode sequence, and, once located, the opcode
0x90 (integer addition) is changed to 0x91 (integer subtraction) (line 9).

code can read or write to the rest of the process image, and, second, it can
implement this malicious functionality, silently. More importantly, analysis of
the semantics of native code can be substantially harder (when compared to
Java bytecode). Therefore, NaClDroid protects only from malicious native code
that directly interferes with the process image. Additionally, NaClDroid assumes
that the main app is legitimate and trusted. The app may expose interfaces to
the third-party code, but it is assumed that the correct use of such interfaces
(either through Java or native code) does not compromise the functionality of
the application. However, since native code can interact with the rest of the
app in unforeseen ways, not through APIs but by directly accessing the process
image, NaClDroid confines all native code in an isolated sandbox.

3 NaClDroid

In this section we present in detail the NaClDroid implementation. We first
describe how SFI works and how the sandbox of native code is implemented.



NaClDroid: Native Code Isolation for Android Applications 7

1 void *_r__dlopen(const char *filename, int flag) {

2

3 uint32_t saved_esp = knatp->user.stack_ptr;

4

5 void * addr = (void *) setjmp(kbuf);

6 if (addr == 0) {

7 uint32_t esp = NaClUserToSys(knatp->nap,

8 knatp->user.stack_ptr);

9 /* Prepare stack (fname, *fname, flag). */

10 __prepare_stack(...);

11

12 /* Call dlopen(). */

13 __call_fcn(knatp, ...);

14 }

15 /* longjmp continues from here. */

16 /* Restore esp. */

17 knatp->user.stack_ptr = saved_esp;

18 /* Return result (i.e., pointer from dlopen()). */

19 return handle_return(addr);

20 }

21 int32_t

22 __syscall_handler(struct NaClAppThread *natp) {

23 struct __trampoline *rt;

24 ...

25 rt = __parse_args(natp);

26 ...

27 if (rt->rtf == rt_FunctionReturn) {

28 longjmp(kbuf, rt->ret);

29 }

30 ...

31 return 1;

32 }

Fig. 2. Example of a NaClDroid call. First, we store the current stack pointer of the
NaCl thread (line 3). We then use setjmp() for saving the current state (line 5)
and prepare the stack with the parameters required for calling dlopen() (line 10).
Once the stack is prepared, we jump to the address of NaCl dlopen() (line 13). Once
that happens, a custom handler is called for serving the system call (lines 22-32). The
handler parses the arguments of the system call (line 25) and if the system call refers
to a function return, the return value is taken and passed to a longjmp() call, which
will resume back to line 17. Finally, we restore the saved stack and return the value
taken from longjmp() (the handle of the shared library just loaded using dlopen())
back to Dalvik.

We then discuss how the new trust domains operate in an Android application.
Finally, we comment on architecture specific issues.

3.1 Software Fault Isolation

Android apps can host native code, which is mapped on the same virtual address-
space occupied by the Dalvik process. Therefore native code can read process
memory, leak sensitive data, modify existing bytecode, or change the semantics of
the execution environment by directly patching its code [9]. In order to prevent
this, NaClDroid isolates all native code, using SFI, in a NaCl [37] sandbox.
To achieve this all native code is compiled with the NaCl toolchain, so upon



8 E. Athanasopoulos, V. P. Kemerlis, G. Portokalidis, A. D. Keromytis

execution, although it is mapped on the same address space with the running
process, it can no longer read or write on memory areas outside of the sandbox
boundaries. Many dangerous system calls (like mprotect) are also prohibited.
We further refer to all native code built with the NaCl toolchain as NaCl modules
to be consistent with current NaCl terminology.

Dalvik uses the dynamic loader API, namely functions dlopen(), dlsym(),
and friends, for loading external native code. Since, all native code is now com-
piled as NaCl modules, we need to use the NaCl versions of dlopen() and
friends, which can handle the modifications performed by the NaCl toolchain.
NaClDroid includes a NaCl program, the NaClDroid bridge, which can dy-
namically load and call code hosted in a NaCl module. Thus, when Dalvik invokes
dlopen() to load a native library, NaClDroid takes over and passes control to
the NaClDroid bridge, which redirects the call to the correct dlopen(), for
loading a NaCl module. The NaClDroid bridge runs in a separated thread,
which we will further refer to as the NaCl thread.

When Dalvik invokes the NaCL-compliant dlopen() to load NaCl modules,
it expects a pointer to the loaded object to be returned. However, code compiled
with NaCl, and thus using NaClDroid bridge, is isolated from the rest of the
process. Returning the pointer practically involves escaping the sandbox, so we
need a way to communicate the pointer back to Dalvik. This is achieved using a
NaCl system call, that is, special trampoline code, hosted in a different section,
that can transfer data from NaCl modules to the rest of the process.

Based on the above, we now describe in detail the steps taken during a
dlopen() call, using the example code illustrated in Figure 2. The code has
been simplified for readability. Once _r__dlopen() is called, which is the
dlopen() implemented by NaClDroid, the following things take place. First,
we store the current stack pointer of the NaCl thread (line 3), the thread running
the NaClDroid bridge. Next, we use setjmp() for saving the current state
(line 5); once the actual dlopen() is called, we are not going to return to the
main thread normally, but using a special NaCl system call. We then prepare
the stack with the parameters required for calling dlopen() (line 10). Notice,
that we need to jump directly to the address where the NaCl dlopen() is
implemented, and, thus, we need to prepare the appropriate stack manually.
The address of NaCl dlopen() has been communicated to the main thread
during initialization the same way to the one we describe now. Once the stack
is prepared, we directly jump to NaCl’s dlopen() (line 13).

At this point, execution has been transferred to the NaCl thread. As we have
already stated, execution can be resumed to the main thread only using a NaCl
system call. Once that happens, a custom handler is called for serving it (lines
22-32). The handler parses the arguments of the system call (line 25) and if
the system call refers to a function return, the return value is taken and passed
to a longjmp() call, which will resume back to line 17. We then restore the
saved stack and return the value taken from longjmp() (i.e., the handle of
the shared library just loaded) back to Dalvik, which initially called dlopen(),
This technique is carried out for loading, resolving functions (using dlsym()),



NaClDroid: Native Code Isolation for Android Applications 9

DalvikVM

Core

Trampoline

Native Code (.so)

...

Native Code (.so)

A
d

d
re

s
s
 S

p
a

c
e

0x00000000

_r__dlsym()

Bridge (NaCl)

call dlsym() in NaCl

dlsym()

TRUSTED

UNTRUSTED

DalvikVM

Core

Trampoline

Native Code (.so)

...

Native Code (.so)

0x00000000

serve syscall

Bridge (NaCl)

NaCl syscall

(*f)()

final ptr

Fig. 3. Implementation of dlsym() in NaClDroid. Dalvik VM has been modified and
dlsym() has been replaced with a wrapper that calls the NaCl compatible dlsym()
implemented in NaClDroid bridge. The wrapper resolves the symbol inside the un-
trusted sandboxed library, and by using a NaCl system call the address of the symbol
is returned back to the VM.

and calling functions in native code. We present a graph of the control flow we
follow for calling dlsym() in Figure 3.

3.2 Native-to-Java Communication

Native code can interact with the Java program. All native functions loaded
through JNI take as a parameter a pointer to a structure, named JNIEnv.
This structure, essentially, encapsulates all available functionality provided from
the Java environment to native code. For example, a Java string object can be
created in native code by simply calling the following code:

jstring s = (*env)->NewStringUTF(env, "jni");

The implementation of NewStringUTF lies in the trusted domain, which
means that it cannot be directly reached by code inside the sandbox. We could
follow a similar technique with the one we outlined for dlopen earlier in this
section. However, notice, that in this case the code for the string creation is
called by the developer, who is unaware of the existence of the sandbox. This is
in contrast with dlopen, which is called by the VM under our control.

To allow native code access the API provided by Java we proceed as fol-
lows. First, we clone the environment structure, JNIenv, and make all function
pointers, like the one for NewStringUTF, point at placeholder implementations
located in NaClDroid bridge. Each native call receives a copy of the structure,



10 E. Athanasopoulos, V. P. Kemerlis, G. Portokalidis, A. D. Keromytis

DalvikVM

classes.dex

Native Code (.so)

...

Native Code (.so)

A
d

d
re

s
s
 S

p
a

c
e

0x00000000

TRUSTED

(a) Dalvik

Dalvi!��

Core

classes.dex

Native Code (.so)

...

Native Code (.so)

A
d

d
re

s
s
 S

p
a

c
e

0x00000000

Bridge (NaCl)

TRUSTED

UNTRUSTED

Trampoline

Native code 

compiled with NaCl 

toolchain

(b) NaClDroid

Fig. 4. NaClDroid architecture compared to the original Dalvik system. All dark grey
boxes are considered untrusted. We consider the environment, which executes the byte-
code as trusted. The bytecode, by itself, cannot modify the trusted VM. Native code
can modify it and thus all supplied native code is considered untrusted. For ensur-
ing that untrusted code cannot modify the trusted execution, we isolate it in a NaCl
sandbox.

and when a call takes place, the placeholder implementation located in the bridge
is invoked, instead of the actual function located in the Dalvik VM. The place-
holder serves the call by parsing all arguments and preparing a NaCl system
call, which is the only way to communicate information to the trusted domain.
Finally, NaClDroid serves the incoming system call by calling the actual func-
tion, getting the result, and communicating it back to the untrusted part. Recall,
that the trusted domain can return to the sandbox normally, without following
a particular procedure.

3.3 Trust Domains

NaClDroid separates Android applications in two parts, one considered trusted
and one untrusted. We depict this separation in Figure 4, where NaClDroid is
compared with the original Dalvik architecture. All dark gray boxes are consid-
ered untrusted. More precisely, we treat all Dalvik bytecode as untrusted, since
it can potentially change at run-time. However, we consider the VM, which
executes the bytecode as trusted. The bytecode, by itself, cannot modify the
trusted VM; however, native code can modify it. User supplied (native) code is
considered untrusted. Dalvik, NaClDroid, and the bridge, are all trusted. For
ensuring that untrusted code cannot modify the trusted execution, we isolate it



NaClDroid: Native Code Isolation for Android Applications 11

in a NaCl sandbox. This guarantees that native code cannot read/write outside
its mapped memory, and cannot invoke OS system calls. NaClDroid introduces
trust relationships in Android software, for the first time.

3.4 Architecture Issues

Dalvik targets x86-32 and ARM architectures. NaCl is also available for both
x86-32, using the segmentation unit, and ARM, using pure SFI. The Dalvik
interface for loading native code is based on dynamic linking. Dynamic linking
can be provided by the GNU C Library (glibc) [22] or Android’s bionic [1].
The latter is an extended version of Newlib [19], which is designed for embedded
systems (i.e., it is much more lightweight compared to glibc). The NaCl port
for ARM is based on Newlib, which does not support dynamic linking. Hopefully,
there are thoughts about porting glibc [8] or bionic [2] to NaCl for ARM.
The design of NaClDroid, as outlined in this paper, is based on Dalvik for x86-
32, and NaCl supporting dynamic linking through the NaCl port of glibc for
x86-32. If glibc or bionic is ported to NaCl for ARM, then NaClDroid can
be used as is, since it is based on an abstract interface for dynamic linking, like
dlopen(), dlsym(), etc.

4 Security Evaluation

In this section we discuss potential avenues of attacking NaClDroid and how it
tackles each one. In all cases we assume a legitimate Android app which includes
malicious third-party code, contained in a native library.

4.1 Running External Binaries

Android apps are allowed to launch external binaries to access system utilities
and third-party programs. This is possible both through native code using one
of the execve family of system calls, and through the Java Runtime.exec()
API call. Allowing an app to invoke arbitrary binaries, essentially enables it to
download any binary from the Internet and execute it, if permission for net-
work access has been granted. It is apparent that allowing arbitrary execution
of binaries is overly permissive. A malicious app could use such a binary to
launch exploits against the kernel and essentially break the guarantees offered
by NaClDroid.

Blocking the execution of binaries is not straightforward. Applications can
write in their own directory under /data, which permits execution. Preventing
execution from /data is currently not possible because it also holds the native
libraries included with apps. As a result, disallowing execution from the partition
(e.g., by setting the noexec flag during mounting) will also prevent loading of
any shared library using dlopen. An app can also execute a binary indirectly
by simply invoking the shell (/system/bin/sh -c [my_command]) or use
a shell script that will invoke its binary.



12 E. Athanasopoulos, V. P. Kemerlis, G. Portokalidis, A. D. Keromytis

To address these issues we propose permitting the execution of stock binaries
alone, such as the binaries located under /system, with the exception of the
shell command that can be used to launch other commands. Executing binaries
through native code is not allowed under NaClDroid, since native code now
executes in a NaCl sandbox that blocks system calls. We tackle binary execution
from Java code by modifying the Runtime.exec() call to disallow applications
outside whitelisted directories. For also blocking the shell command Android
fortunately provides us with the means to easily block access to it. The stock
shell of Android is owned by root and belongs to group shell. We can prevent
most apps from executing it by removing their user ids (uid) from the shell
group in Android, and removing the executable bit from non-group members.

4.2 Malicious Apps

NaClDroid is not meant for detecting or identifying Android malware, but for
protecting legitimate apps from malicious libraries. However, traditional malware
can be also substantially confined if running under NaClDroid. By examining
a popular malware dataset [38] we identified that over 53% of the malicious
applications contain native code, such as native libraries or known exploits (e.g.,
rageagainstthecage) in their assets folder. This percentage is one order of
magnitude higher than the one expected for Android markets, which is reported
to be only about 4.52% (8272 out of the 204,040 studied) [39]. Therefore, we
see a trend in malware towards hosting native code, potentially for exploiting
and rooting the victim’s device. NaClDroid prevents all these exploits, since it
prohibits external programs from running, unless they are part of the system
tools, and all native code is constrained in a NaCl sandbox.

4.3 JVM Type Safety

Native code can modify data structures hosted in the Java domain through JNI.
This can be used for modifying the state of the JVM, by assigning a pointer to
a non-compatible type, something often identified with the term type-confusion

attack [23]. Type safety is orthogonal to bytecode integrity and confidentiality,
and, therefore, NaClDroid is orthogonal to existing frameworks that ensure type

safety of heterogeneous programs that contain Java and C components [31,21].

4.4 Memory Corruption

Bugs in native code can corrupt memory. These bugs are usually due to mem-
ory writes outside the bounds of buffers or careless dereferences of pointers. An
attacker able to trigger such a bug can change the original control flow of the
buggy program and run his own code. There are many bugs that can lead to
memory corruption, such as buffer overflows, null-pointer dereferences, integer
overflows, etc. In the context of our threat model, there is a critical difference.
Memory corruption bugs may be intentionally implanted in the malicious appli-
cation. [34] The attacker can trigger the bug at a later time, hijacking his own



NaClDroid: Native Code Isolation for Android Applications 13

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

zlib bzip2 libpng openssl interactive

T
im

e
 (

m
s
)

Sandbox Overhead

Dalvik/NaCl
Dalvik Vanilla

Fig. 5. Evaluation of NaClDroid’s NaCl sandbox using popular packages ported on
NaCl [4], such as zlib, bzip2, libpng, and OpenSSL. We also use a worse-case sce-
nario, handcrafted test, which involves communicating large amounts of data between
Java and native code, labeled as interactive.

program, and modifying the app’s behavior with new, malicious code. NaClDroid
cannot prevent memory corruption, but can significantly confine it in the mem-
ory region where the vulnerable native module has been mapped. As a result, an
attacker can only redirect control within the module. This, combined with the
fact that there are no memory pages both writable and executable in the mod-
ule, prevents code-injection attacks. The attacker could still employ code-reuse
techniques to alter the functionality of the binary, but remember that system
calls cannot be executed. Consequently, even if the native library part of the app
is compromised, it cannot escape the sandbox.

5 Performance Evaluation

In this section we experimentally evaluate the performance overhead for sand-
boxing all native code. We show that, as expected, the overhead of NaClDroid
is acceptable and similar to that of similar work [37].

To evaluate the overhead imposed by sandboxing, we use custom Android
applications linked with popular packages that have been ported to NaCl [4],
such as zlib, bzip2, libpng, and OpenSSL. We also created a custom test,
which involves communicating a large number of data objects between Java and
native code, which we call interactive. Notice that this test is artificially
made and does not follow correctly the paradigm of using native code with Java.
Native code is meant to be used for performing heavy computation and return
results back to Java and not for heavy exchanging of data structures between
the native and the Java part.



14 E. Athanasopoulos, V. P. Kemerlis, G. Portokalidis, A. D. Keromytis

We run each Android application linked with a native library over NaClDroid
and over the standard run-time. Workloads for all applications are part of the test
programs of each particular package. We depict our results in Figure 5. Notice
that in all cases, except interactive, the run time overhead is moderate;
the NaCl sandbox imposes a slowdown of less than 10% on average, similarly to
reports found in literature [37]. However, the overhead becomes significant in the
interactive test, since this test represents a worst-case scenario, where no
computation is actually performed by the library and large amounts of data are
copied over JNI. The increased overhead is primarily due to switching between
the trusted thread of execution and the untrusted thread, which runs inside
the sandbox. Recall that trust domain switching is a complicated process for
guaranteeing that execution will leave the sandbox only in a very precise and
confined way (see Section 3). Most Android applications do not use native code
in that way (i.e., intensively exchanging data, back and forth, between Java
and native code), but rather outsource computationally intensive tasks to the
native part, and only receive back the final result; interactive serves as a
micro-benchmark for measuring the overhead of merely switching trust domains.

6 Related Work

Mobile and Android security has received a lot of attention by the research
community. In this section, we review related work in various fields of mobile
security research.

6.1 Malware

An initial study of mobile threats for Android, iOS, and Symbian, was carried
out by Felt et al. [18]. Shortly after, larger studies of Android malware were car-
ried out [39,38]. NaClDroid operates orthogonally to detection methods applied
on app stores and focuses solely on prevention at the end-host level. NaClDroid
guarantees that legitimate applications cannot be hijacked by malicious libraries.
However, NaClDroid can also implicitly protect the system from traditional mal-
ware that aims at rooting the device. Lately we see a trend in malware towards
hosting native code, potentially for exploiting and rooting the victim’s device.
NaClDroid prevents all these exploits, since it prohibits external programs from
running, unless they are part of the system tools, and all native code is con-
strained in a NaCl sandbox.

6.2 Analysis

The research community has developed various techniques, employing static and
dynamic analysis, as well as symbolic execution, that can assist in the reviewing
of mobile apps. Ded [15] decompiles Dalvik programs to Java, which can then be
analyzed using numerous, already available static analysis tools. With the assis-
tance of Ded, researchers managed to study more than 21 million lines of source



NaClDroid: Native Code Isolation for Android Applications 15

code. ComDroid [13] also uses static analysis to infer malicious inter-application
communication performed through message passing. Paranoid Android [26] is a
system based on dynamic analysis of Android applications. In the same fash-
ion, AASandbox [10] combines both static and dynamic analysis for identifying
Android malware, while SymDroid [6] is a symbolic execution framework for
Dalvik. Finally, TaintDroid [14] uses tainting for the analyzing apps.

The above are some representative works in the field of static analysis, dy-
namic analysis, and symbolic execution, for mobile software. NaClDroid com-
plements these systems in the following way. Assuming that applications are
thoroughly reviewed before distribution using such analysis systems, we argue
that malware writers will utilize more advanced techniques for modifying legiti-
mate applications at run-time [9] using malicious third-party code [7]. NaClDroid
guarantees that an app cleared during reviewing will not deviate by altering the
semantics of the underlying execution environment.

6.3 Permission Model

Researchers have also focused in enhancing and optimizing the Android’s per-
mission model, which is crucial for the security of the platform. Kirin [16] at-
tempts to resolve dangerous combinations of permissions at install time and warn
the user. The authors also provide an implementation of a service performing
application certification based on Kirin. Stowaway [17] can statically analyze
Android apps to identify unnecessary permissions. This can drastically reduce
the the capabilities of over-privileged applications. Saint [24] enhances Android’s
permission model with policies, which are more powerful than static permissions
enforced at installation time. Saint policies can assist in trusted communication
between applications and components. Aurasium [35] enforces policies through
user-level sandboxing. The authors automatically repackage Android applica-
tions with custom code, which is able to resolve offensive actions (e.g., calling
or texting premium numbers). The great advantage of Aurasium is that it needs
no system modifications, since apps are automatically extended to support the
framework.

All these frameworks can be easily integrated with NaClDroid, since we make
no assumptions about Android’s permission and software model. Applications
running over NaClDroid are only confined in terms of code integrity and code
confidentiality; we do not focus on abuses of the permission model. NaClDroid
operates transparently and does not affect, or interfere in any way, with the
currently deployed permission model.

7 Conclusion

We presented how malicious third-party code can hijack legitimate applications
and break their integrity and confidentiality. We showed that native code, in-
cluded in Android apps in the form of a library, can steal sensitive information



16 E. Athanasopoulos, V. P. Kemerlis, G. Portokalidis, A. D. Keromytis

from the app or even change its control flow; a capability that has already been
taken advantage by apps distributed through Google Play.

To address this issue, in this paper we designed, implemented, and evaluated
NaClDroid, a framework that leverages Software Fault Isolation and embeds
Native Client in Android’s runtime to allow apps to safely use native code,
while at the same time ensuring that the code cannot exfiltrate sensitive data
from the app’s memory, extend itself, or tamper with the Dalvik VM. Confining
untrusted native code using SFI has been also adopted by successful projects
such as Chrome. We this work, we argue that stricter isolation is also crucial
for the Android platform to safely support native code in apps. We showed that
NaClDroid has moderate overhead; our SFI-based implementation imposes a
slowdown of less than 10% on average.

Acknowledgements This work was supported by the European Commission
through project H2020 ICT-32-2014 “SHARCS” under Grant Agreement No.
644571 and the U.S. Office of Naval Research under award number N00014-
16-1-2261. Any opinions, findings, conclusions and recommendations expressed
herein are those of the authors and do not necessarily reflect the views of the
US Government, or the ONR.

References

1. Bionic c library https://android.googlesource.com/platform/bionic/

+/android-4.2.2_r1/libc/README. Last vistied on January 2013.
2. Dynamic Linking in Native Client http://code.google.com/p/

nativeclient/wiki/DynamicLinkingPlan. Last visited on January 2013.
3. Google bans self-updating Android apps, possibly including Facebook’s http://

arstechnica.com/information-technology/2013/04/google-bans-

self-updating-android-apps-possibly-including-facebooks/. May
2013.

4. NaCl ports, http://code.google.com/p/naclports/
5. Native Client in Google Chrome https://support.google.com/chrome/

answer/1647344?hl=en

6. SymDroid: Symbolic Execution for Dalvik Bytecode, http://www.cs.umd.edu/
~jfoster/papers/symdroid.pdf. Not, yet, published.

7. The Bearer of BadNews https://blog.lookout.com/blog/2013/04/19/

the-bearer-of-badnews-malware-google-play/. April 2013.
8. Thoughts about porting glibc to NaCl for ARM native-client-discussion

list. Private communication, December 2012.
9. Under the Hood: Dalvik patch for Facebook for Android https://www.

facebook.com/notes/facebook-engineering/under-the-hood-

dalvik-patch-for-facebook-for-android/10151345597798920. March
2013.

10. Bläsing, T., Schmidt, A.D., Batyuk, L., Camtepe, S.A., Albayrak, S.: An android
application sandbox system for suspicious software detection. In: 5th Interna-
tional Conference on Malicious and Unwanted Software (Malware 2010) (MAL-
WARE’2010). Nancy, France, France

https://android.googlesource.com/platform/bionic/+/android-4.2.2_r1/libc/README
https://android.googlesource.com/platform/bionic/+/android-4.2.2_r1/libc/README
http://code.google.com/p/nativeclient/wiki/DynamicLinkingPlan
http://code.google.com/p/nativeclient/wiki/DynamicLinkingPlan
http://arstechnica.com/information-technology/2013/04/google-bans-self-updating-android-apps-possibly-including-facebooks/
http://arstechnica.com/information-technology/2013/04/google-bans-self-updating-android-apps-possibly-including-facebooks/
http://arstechnica.com/information-technology/2013/04/google-bans-self-updating-android-apps-possibly-including-facebooks/
http://code.google.com/p/naclports/
https://support.google.com/chrome/answer/1647344?hl=en
https://support.google.com/chrome/answer/1647344?hl=en
http://www.cs.umd.edu/~jfoster/papers/symdroid.pdf
http://www.cs.umd.edu/~jfoster/papers/symdroid.pdf
https://blog.lookout.com/blog/2013/04/19/the-bearer-of-badnews-malware-google-play/
https://blog.lookout.com/blog/2013/04/19/the-bearer-of-badnews-malware-google-play/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-dalvik-patch-for-facebook-for-android/10151345597798920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-dalvik-patch-for-facebook-for-android/10151345597798920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-dalvik-patch-for-facebook-for-android/10151345597798920


NaClDroid: Native Code Isolation for Android Applications 17

11. Bornstein, D.: Dalvik VM Internals. In: Google I/O Developer Conference. vol. 23,
pp. 17–30 (2008)

12. canalys: Over 1 billion android-based smart phones to ship in 2017, http://
www.canalys.com/newsroom/over-1-billion-android-based-smart-

phones-ship-2017. Last visited October 2013.
13. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-

munication in Android. In: Proceedings of the 9th international conference on
Mobile systems, applications, and services. pp. 239–252. MobiSys ’11, ACM, New
York, NY, USA (2011), http://doi.acm.org/10.1145/1999995.2000018

14. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
Taintdroid: an information-flow tracking system for realtime privacy monitoring on
smartphones. In: Proceedings of the 9th USENIX conference on Operating systems
design and implementation. pp. 1–6. OSDI’10, USENIX Association, Berkeley, CA,
USA (2010), http://dl.acm.org/citation.cfm?id=1924943.1924971

15. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application
security. In: Proceedings of the 20th USENIX conference on Security. pp. 21–21.
SEC’11, USENIX Association, Berkeley, CA, USA (2011), http://dl.acm.org/
citation.cfm?id=2028067.2028088

16. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: Proceedings of the 16th ACM conference on Computer and com-
munications security. pp. 235–245. CCS ’09, ACM, New York, NY, USA (2009),
http://doi.acm.org/10.1145/1653662.1653691

17. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android Permissions De-
mystified. In: Proceedings of the 18th ACM conference on Computer and com-
munications security. pp. 627–638. CCS ’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/2046707.2046779

18. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile
malware in the wild. In: Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices. pp. 3–14. SPSM ’11, ACM, New York,
NY, USA (2011), http://doi.acm.org/10.1145/2046614.2046618

19. Gatliff, B.: Embedding with gnu: Newlib. Embedded Systems Programming 15(1),
12–17 (2002)

20. Gordon, R.: Essential JNI: Java Native Interface. Prentice-Hall, Inc. (1998)
21. Lee, B., Wiedermann, B., Hirzel, M., Grimm, R., McKinley, K.S.: Jinn: synthesiz-

ing dynamic bug detectors for foreign language interfaces. In: Zorn, B.G., Aiken, A.
(eds.) Proceedings of the 2010 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2010, Toronto, Ontario, Canada, June
5-10, 2010. pp. 36–49. ACM (2010)

22. Loosemore, S., Stallman, R.M., McGrath, R., Oram, A., Drepper, U.: The GNU
C library reference manual. Free software foundation (2001)

23. McGraw, G., Felten, E.W.: Securing Java: getting down to business with mobile
code. John Wiley & Sons, Inc., New York, NY, USA (1999)

24. Ongtang, M., McLaughlin, S.E., Enck, W., McDaniel, P.: Semantically rich
application-centric security in android. Security and Communication Networks
5(6), 658–673 (2012)

25. Pearce, P., Felt, A.P., Nunez, G., Wagner, D.: Addroid: privilege separation for ap-
plications and advertisers in android. In: Proceedings of the 7th ACM Symposium
on Information, Computer and Communications Security. pp. 71–72. ASIACCS ’12,
ACM, New York, NY, USA (2012), http://doi.acm.org/10.1145/2414456.
2414498

 http://www.canalys.com/newsroom/over-1-billion-android-based-smart-phones-ship-2 017
 http://www.canalys.com/newsroom/over-1-billion-android-based-smart-phones-ship-2 017
 http://www.canalys.com/newsroom/over-1-billion-android-based-smart-phones-ship-2 017
http://doi.acm.org/10.1145/1999995.2000018
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=2028067.2028088
http://dl.acm.org/citation.cfm?id=2028067.2028088
http://doi.acm.org/10.1145/1653662.1653691
http://doi.acm.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/2046614.2046618
http://doi.acm.org/10.1145/2414456.2414498
http://doi.acm.org/10.1145/2414456.2414498


18 E. Athanasopoulos, V. P. Kemerlis, G. Portokalidis, A. D. Keromytis

26. Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H.: Paranoid android: ver-
satile protection for smartphones. In: ACSAC. pp. 347–356 (2010)

27. Sehr, D., Muth, R., Biffle, C., Khimenko, V., Pasko, E., Schimpf, K., Yee, B.,
Chen, B.: Adapting software fault isolation to contemporary cpu architectures.
In: Proceedings of the 19th USENIX conference on Security. pp. 1–1. USENIX
Security’10, USENIX Association, Berkeley, CA, USA (2010), http://dl.acm.
org/citation.cfm?id=1929820.1929822

28. Siefers, J., Tan, G., Morrisett, G.: Robusta: taming the native beast of the jvm.
In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) Proceedings of the 17th
ACM Conference on Computer and Communications Security, CCS 2010, Chicago,
Illinois, USA, October 4-8, 2010. pp. 201–211. ACM (2010)

29. Sun, M., Tan, G.: Jvm-portable sandboxing of java’s native libraries. In: Foresti,
S., Yung, M., Martinelli, F. (eds.) ESORICS. Lecture Notes in Computer Science,
vol. 7459, pp. 842–858. Springer (2012)

30. Sun, M., Tan, G.: Nativeguard: Protecting android applications from third-party
native libraries. In: Proceedings of the 2014 ACM Conference on Security and
Privacy in Wireless and Mobile Networks. pp. 165–176. WiSec ’14, ACM, New
York, NY, USA (2014), http://doi.acm.org/10.1145/2627393.2627396

31. Tan, G., Appel, A.W., Chakradhar, S., Raghunathan, A., Ravi, S., Wang, D.:
Safe Java Native Interface. In: IEEE International Symposium on Secure Software
Engineering (Mar 2006)

32. Viennot, N., Garcia, E., Nieh, J.: A measurement study of google play. In: The
2014 ACM International Conference on Measurement and Modeling of Computer
Systems. pp. 221–233. SIGMETRICS ’14, ACM, New York, NY, USA (2014),
http://doi.acm.org/10.1145/2591971.2592003

33. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault
isolation. In: Proceedings of the fourteenth ACM symposium on Operating systems
principles. pp. 203–216. SOSP ’93, ACM, New York, NY, USA (1993), http://
doi.acm.org/10.1145/168619.168635

34. Wang, T., Lu, K., Lu, L., Chung, S., Lee, W.: Jekyll on ios: When benign apps
become evil. In: Proceedings of the 22nd USENIX conference on Security. USENIX
Association (2013)

35. Xu, R., Saidi, H., Anderson, R.: Aurasium: Practical Policy Enforcement for An-
droid Application. In: Proceedings of the 21st USENIX conference on Security.
USENIX Association (2012)

36. Yan, L.K., Yin, H.: Droidscope: seamlessly reconstructing the os and dalvik se-
mantic views for dynamic android malware analysis. In: Proceedings of the 21st
USENIX conference on Security symposium. pp. 29–29. Security’12, USENIX As-
sociation, Berkeley, CA, USA (2012), http://dl.acm.org/citation.cfm?

id=2362793.2362822

37. Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Orm, T., Okasaka, S., Narula,
N., Fullagar, N., Inc, G.: Native Client: A Sandbox for Portable, Untrusted x86
Native Code. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy
(2009)

38. Zhou, Y., Jiang, X.: Dissecting Android Malware: Characterization and Evolution.
In: IEEE Symposium on Security and Privacy. pp. 95–109 (2012)

39. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting
malicious apps in official and alternative Android markets. In: Proceedings of the
19th Annual Network & Distributed System Security Symposium (Feb 2012)

http://dl.acm.org/citation.cfm?id=1929820.1929822
http://dl.acm.org/citation.cfm?id=1929820.1929822
http://doi.acm.org/10.1145/2627393.2627396
http://doi.acm.org/10.1145/2591971.2592003
http://doi.acm.org/10.1145/168619.168635
http://doi.acm.org/10.1145/168619.168635
http://dl.acm.org/citation.cfm?id=2362793.2362822
http://dl.acm.org/citation.cfm?id=2362793.2362822

	NaClDroid: Native Code Isolation for Android Applications

