Int. J. Inf. Secur. (2015) 14:205-220
DOI 10.1007/s10207-014-0256-7

@ CrossMark

REGULAR CONTRIBUTION

Detection and analysis of eavesdropping in anonymous

communication networks

Sambuddho Chakravarty - Georgios Portokalidis -
Michalis Polychronakis - Angelos D. Keromytis

Published online: 18 August 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Anonymous communication networks, like Tor,
partially protect the confidentiality of user traffic by encrypt-
ing all communications within the overlay network. How-
ever, when the relayed traffic reaches the boundaries of
the network, toward its destination, the original user traf-
fic is inevitably exposed to the final node on the path. As a
result, users transmitting sensitive data, like authentication
credentials, over such networks, risk having their data inter-
cepted and exposed, unless end-to-end encryption is used.
Eavesdropping can be performed by malicious or compro-
mised relay nodes, as well as any rogue network entity on
the path toward the actual destination. Furthermore, end-to-
end encryption does not assure defense against man-in-the-
middle attacks. In this work, we explore the use of decoys
at multiple levels for the detection of traffic interception by
malicious nodes of proxy-based anonymous communication
systems. Our approach relies on the injection of traffic that
exposes bait credentials for decoy services requiring user
authentication, and URLSs to seemingly sensitive decoy doc-
uments which, when opened, invoke scripts alerting about
being accessed. Our aim was to entice prospective eaves-
droppers to access our decoy servers and decoy documents,
using the snooped credentials and URLs. We have deployed
our prototype implementation in the Tor network using decoy

S. Chakravarty (B<)) - M. Polychronakis - A. D. Keromytis
Columbia University, New York, USA
e-mail: sc2516@cs.columbia.edu

M. Polychronakis
e-mail: mikepo@cs.columbia.edu

A. D. Keromytis
e-mail: angelos @cs.columbia.edu

G. Portokalidis
Stevens Institute of Technology, Hoboken, USA
e-mail: gportoka@stevens.edu

IMAP, SMTP, and HTTP servers. During the course of over
30months, our system has detected 18 cases of traffic eaves-
dropping that involved 14 different Tor exit nodes.
Keywords Tor - Anonymity networks - Proxies -
Eavesdropping - Decoys

1 Introduction

Many services and protocols rely on non-encrypted commu-
nication. Consequently, malicious users or organizations that
have access to the network elements through which user traf-
fic is routed can eavesdrop and obtain sensitive data, such as
user authentication credentials. This situation can potentially
worsen when users employ proxy-based systems to access
the same services without using end-to-end encryption, as
the number of hosts or nodes that can eavesdrop on their
traffic increases. Various public and private networks may
block access to social networking and other popular online
services for various reasons. Under these conditions, users
often resort to using distributed proxying systems to prevent
their traffic from being filtered. They resort to such mecha-
nisms so as to evade network traffic filtering based on source,
destination, and content.

Anonymous communication systems [1,2,22,31,44] are
popular examples of proxy-based systems, which enable
users to hide their IP address from the services they use,
and often employ encryption by design. Systems such as
Tor [22] route data through a series of proxies. Data packets
are encrypted multiple times [16], so that if adversaries inter-
cept the traffic en-route to the destination, they will not be
able to determine the actual source or destination of the traf-
fic. The process also aids in achieving confidentiality against
eavesdropping adversaries who can observe the traffic and

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-014-0256-7&domain=pdf

206

S. Chakravarty et al.

snoop out sensitive and reusable information such as user
names, passwords, and HTTP cookies.

In such systems, however, the last node on a path can
access the original message that is being transmitted to the
intended recipient. Many users are not aware of this discrep-
ancy between the anonymity and privacy guarantees offered
by these systems, and the lack of end-to-end data confi-
dentiality which is often mistakenly assumed. Disregarding
the absence of end-to-end confidentiality, users often send
sensitive information through these relays. Some of these
relays, acting with malicious intent, may misuse sensitive
user information such as user names and passwords, URLs
to sensitive information, and HTTP session cookies. Thus,
in exchange for anonymity, users place their trust in compo-
nents of the anonymous communication system that could
potentially abuse it. In all cases, user data at some point is
available in their original form. McCoy et al. [34] have shown
that there are Tor exit nodes which indeed eavesdrop on the
traffic flowing through them, abusing users’ trust.

An obvious solution to such problems might involve send-
ing traffic encrypted using SSL through relays. However,
malicious relay operators can employ man-in-the-middle
attacks and snoop on the traffic of even SSL-encrypted ses-
sions [51], and attacks of this kind have been observed in the
Tor network [4].

Our approach for the detection of misbehaving relay nodes
involves the transmission of decoy traffic that contains easily
reusable and seemingly sensitive information (such as fake
plain-text user names and passwords) via all nodes of the
anonymization network to decoy servers under our control.
Relay nodes eavesdropping on user traffic may try to reuse
this information and connect to our decoy servers. In this
paper, we present the overall architecture of our eavesdrop
detection system, which can be used to detect eavesdropping
by untrusted nodes of various anonymization systems (and
proxying systems in general). We have implemented our sys-
tem for detecting eavesdropping by malicious Tor exit nodes.
Tor is among the most widely used relay-based anonymiza-
tion networks, with over half a million worldwide users [53].
Our system could, however, be easily adapted for other relay-
based anonymization networks as well, such as JAP [31] and
12P [28].

The use of fake information, or honeytokens [46], for
detecting unauthorized access to sensitive data, has been
explored previously for several applications related to net-
work intrusion detection and misbehavior detection. How-
ever, there has not been adequate research done in using such
information and systems to detect misbehavior by otherwise
trusted nodes of anonymization enabling networks and sys-
tems. McCoy et al. [34] were the first to explore the use
of transmitting decoy TCP traffic through Tor nodes to see
which nodes eavesdrop on them. Their approach required
access to DNS traffic and could be trivially defeated by

@ Springer

an adversary by simply using appropriate command line
options of tools such as t cpdump [33] which by default per-
form reverse DNS look up for unresolved IP addresses. Our
approach, in contrast, neither requires access to DNS traf-
fic nor relies on default behavior of traffic capture tools. We
send innocuous-appearing TCP traffic through Tor exit nodes
exposing easily reusable decoy information and periodically
check the server logs for subsequent unsolicited connection
attempts. The decoy information being unique to each Tor
exit helps in easily identifying the Tor exit node involved in
the eavesdropping incident. Section 2 extensively describes
all related research endeavors.

In previous work [15], we described how we could use the
system to detect eavesdrop using plain-text IMAP and SMTP
protocol messages, exposing fake usernames and passwords
to Tor exit nodes. Our previous effort describes various eaves-
dropping incidents detected between August 2010 and May
2011. Thereafter, based on the activities of various adver-
saries who logged into our system using the exposed user
credentials and on ideas and concepts borrowed from vari-
ous related research efforts (such as using decoy documents
to detect insider attacks; proposed by Bowen et al. [10-12]),
we have extended our system with the following components:

Honeypots Based on the detected activities of some
eavesdropping incidents (described later in Sect. 3) we
have added SSH and FTP honeypots to the system.
Beacon-bearing decoy documents We deployed a web
server which hosts decoy documents, generated using
D3[10,13], presenting fake but alluring information such
as fake credit card numbers, and usernames and pass-
words to fake paypal . comaccounts. These documents
contain beacons that are triggered when the documents
are opened, connecting to a remote site and reporting
information such as time and IP address of the host
from which the document was accessed. The URLs to
these decoy documents are regularly exposed to Tor exit
nodes through HTTP GET and POST messages with the
hope that potential eavesdropper would reuse the exposed
URLs to access the decoy documents.

Apart from the above additions, we have also explored
how our system could be used to detect more advanced eaves-
dropping incidents, such as HTTP cookie hijacking and SSL
MITM attacks. We describe these in Sect. 5.

As a proof of concept, we have deployed various decoy
servers and honeypots, and transmitted decoy traffic to these
systems via all Tor exit nodes. Our system has been opera-
tional for over 30 months. During this period, it has detected
18 incidents of eavesdropping by Tor exit nodes (some of
which have been previously described in our related previ-
ous work [15]). In some cases, the adversary connected back
to our decoy server from the same exit node itself while in

Detection and analysis of eavesdropping

207

others the adversary connected back from other exit nodes or
hosts in other networks. Often, an eavesdropping exit node
stopped serving Tor traffic soon after the eavesdropping inci-
dent was detected and in one case even reappeared after sev-
eral months.

In summary, the main contributions of this paper are the
following:

— An architecture for detecting various forms of traffic
snooping by nodes of anonymous communication net-
works (and proxy servers in general) that involves the
exposure of reusable decoy information, such as plain-
textuser credentials and URLSs to sensitive appearing doc-
uments containing beacons.

— A prototype of our proposed system using various decoy
servers and honeypots that has been deployed in the Tor
anonymous communication network.

— A detailed forensic analysis of the eavesdropping inci-
dents recorded by our system.

2 Background information
2.1 Anonymous network communication systems

Anonymous network communication systems enable users
to hide their identity from their communication peers. Most
of these systems rely on sending traffic via one or more
proxies and may additionally encrypt traffic, using concepts
presented by Chaum [16], to obfuscate the true source or
destination of messages. Such systems are often classified
as low-latency and high-latency anonymous communication
systems. Low-latency systems are designed to be efficient
for semi-interactive applications such as web browsing and
instant messaging. High-latency systems are geared toward
delay tolerant applications such as e-mail. Low-latency net-
work anonymization systems are further classified based on
the routing paradigms they employ—those that are derived
from onion routing [21], and those that are based upon
Crowds [44]. Systems such as Tor [22], JAP [31], and I2P [28]
employ deterministic routing, wherein the set of proxies
through which the traffic is sent is known by the connec-
tion or session initiator. Systems such as GNUNet [8], Bit-
Blender [7], and OneSwarm [30] employ probabilistic traf-
fic routing schemes similar to Crowds. Each traffic forward-
ing relay in such a system randomly chooses to send the
traffic either to the destination or to another relay in the
system.

Tor Tor [22] is closely modeled on the onion routing [43]
paradigm and is one of the most widely used low-latency
anonymity networks, with an estimated user base of more
than 500,000 users (as of March 2013 [52]). Tor aims to pro-

tect the anonymity of Internet users by relaying user TCP
streams through a network of overlay nodes run by volun-
teers. Tor also supports responder anonymity through hidden
services.!

The Tor overlay network consists of over 2,500 proxies,
known as onion routers (ORs), which are mostly operated by
volunteers scattered across the globe. User traffic is relayed
through circuits, which are formed by persistent TLS connec-
tions between different nodes. By default, Tor circuits con-
sist of three nodes: the first one is known as the entry node,
the second one as the middleman, and the third is called the
exit node. During circuit establishment, a Tor client negoti-
ates shared secret keys with the relays that it chooses for the
circuit. Thereafter, the client uses these keys to encrypt the
transmitted messages in multiple layers of encryption, start-
ing with the public key of the exit node. Each of the nodes
then first “peels off”” one layer of encryption and then for-
wards the message to the next node on the circuit. The exit
node decrypts the final layer of encryption, which reveals the
original plain-text message of the user, and forwards it to its
actual destination through a regular TCP connection. Thus, if
in-transit traffic is intercepted by eavesdroppers, they cannot
determine the actual source or destination of the traffic.

Figure 1a presents the basic steps for the creation of a new
Tor circuit consisting of three onion routers:

1. The Tor client queries the directory service to obtain a
list of the available Tor relays.

2. The client uses a set of relays to create Tor circuits. By
default, circuits are created using three relays.

3. The client selects one of the circuits and creates a TCP
connection to its entry node. Traffic is forwarded through
the circuit to the exit node, which communicates directly
with the actual destination.

Tor also provides configurable access control features to
exit node operators. Usually, Tor exit nodes are configured to
allow traffic forwarding for only a small set of TCP services.
The supported services are defined by the operator of the exit
node through the specification of an exit policy.

Crowds Reiter et al. designed Crowds [44] for anonymous
web browsing. Crowds is based on the principle of proba-
bilistic forwarding. Like Tor (and other onion routing sys-
tems), it relies on an overlay network for enabling responder
anonymity. The nodes of the overlay network are called jon-
dos. A web browser using this system forwards a web request
to a randomly chosen jondo. Upon receiving the request, the

I A TCP-based service can keep its IP address hidden (and thus its
identity) by replacing the IP address with a hidden service URL. These
URLs end in a virtual top-level domain called “.onion” and are resolved
by a Tor clients while initiating connection to the hidden service.

@ Springer

208

S. Chakravarty et al.

Exit Node connects
to requested
service .

TCP/IP
based
service

Tor circuit establishment

link

{
Middleman
jui)

Internet

g

Directory
\ Server

Communication to

Tor Node @
directory services

Unencrypted Link —
TLS Encrypted Link g=—p-

Directory Server D

(a)

Fig. 1 Overview of different anonymity networks based on routing
paradigms. a Basic steps for communicating through Tor. The client
obtains a list of the available Tor relays from a directory service (D),

jondo forwards the request to another jondo with probability
pr or sends it directly to the intended web service. Figure 1b
schematically represents the functioning of the crowds. Many
of modern anonymity preserving P2P file-sharing systems
such as GNUNet [9], BitBlender [7], and OneSwarm [30]
are derived from Crowds. We do not focus further on Crowds
paradigm we have implemented and demonstrated our archi-
tecture for the Tor network.

2.2 Network and system misbehavior detection

Our work is closely related to research efforts that involve the
exposure of enticing decoy information or resources to lure
potential adversaries, with the objective of identifying them
and their modus operandi. One of the first uses of decoy infor-
mation for enabling the observation of real malicious activity
has been documented by Clifford Stoll [48]. In his book, The
Cuckoo’s Egg [49], the author recounts his efforts to trap an
intruder that broke into the systems of the Lawrence Berke-
ley National Laboratory. As part of his efforts to monitor
the actions and trace the intruder’s origin, he generated fake
documents containing supposedly classified information that
would lure the intruder to come back and stay longer on the
compromised computer.

Computer-based systems and resources deployed widely
with the objective of luring prospective adversaries and
intruders for logging their identities and actions are widely
known as honeypots [41,47]. Such systems have no produc-
tion value other than being compromised and subsequently
aid in tracking the actions of the attacker. Honeypots have
been extensively used for modeling, logging, and analyzing

@ Springer

Client using
Crowds

—Web Servers

.cf"i':wdslondos relav"i}i
............. WWW requests k

Client using
Crowds

(b)

establishes a circuit using multiple Tor nodes @), and then starts for-
warding its traffic through the newly created circuit 3. b Crowds users
establish paths via Jondos to web services

attacks originating from sources not only external to an net-
work [27,56], but also from within its perimeter [13].

Complementary to honeypots, researchers and system
administrators often use honeytokens [46] which are pieces
of information with purpose no other than being intercepted
or stolen and abused by an adversary. Any use of these hon-
eytokens clearly indicates unauthorized access. The decoy
credentials used in our approach, which we describe in detail
in the next section, can be classified as a variety of honeyto-
kens.

More recently, Bowen et al. [11] proposed the use of decoy
documents to detect misbehaving entities within the perime-
ter of an organization. The decoy documents contained
embedded “beacons,” such as scripts or mac-ros, which are
executed when the document is opened. The authors used
fake tax records bearing information appearing to be “sen-
sitive” and enticing to an adversary. In case a document is
opened, the embedded beacon connects to an external host
and transmits information such as time of access and IP
address of the hosts used to open the document.

In another related research work, Bowen et al. [12] used
real WiFi traffic as a basis for the generation of decoy traffic
with realistic network interactions. An API is used to insert
bait content, such as popular webmail service cookies, FTP
and HTTP messages, and so on into these decoy packets. The
packets were then broadcasted through an unencrypted Wi-Fi
network and exposed to potential eavesdroppers. Unsolicited
connection attempts to the services, using the bait credentials,
are marked as illegitimate. In their experiments, the authors
replayed gmail.com and PayPal .com messages carry-
ing credentials and cookies for decoy accounts, and utilized
the last login IP address feature of these services for deter-

Detection and analysis of eavesdropping

209

mining illegitimate connection attempts. Such techniques are
not applicable anymore as the aforementioned popular web
mail and financial services encrypt their connections with
SSL.

There has been little effort in detecting misbehaving over-
lay nodes of anonymity networks. In a work most closely
related to ours, McCoy et al. [34] attempted to detect eaves-
dropping on malicious Tor exit routers by taking advantage of
the IP address resolution functionality of network traffic cap-
turing tools. Packet sniffing tools such as tcpdump [33] are
by default configured to resolve the IP addresses of the cap-
tured packets to their respective DNS names. Their system
transmitted, via Tor exit nodes, TCP SYN packets destined
to unused IP addresses in a block owned by the system’s
operator. When the packet capturing program attempted to
resolve the IP address of a probe packet, it issued a DNS
request to the authoritative DNS server. The system’s oper-
ator had access to the traffic going to this authoritative DNS
server. Thus, requests to this DNS server with the unused IP
address were an indication that probe packets had been inter-
cepted by some packet capturing program and could be traced
back to the network host where they were captured. However,
when capturing traffic on disk, t cpdump by default does not
resolve any addresses, and in any case the eavesdropper can
trivially disable this functionality, rendering the above tech-
nique ineffective.

In contrast to that work, our system does not require access
to the DNS server traffic. We employ decoy clients and
servers which communicate via Tor exits and present easily
reusable sensitive appearing information such as user creden-
tials and URLSs to sensitive appearing documents which also
contain beacons such as those described above. The system
periodically monitors the client and server logs for unso-
licited connection attempts to the server which are marked
as suspicious. Our system is flexible enough to be adapted
to detect eavesdropping in various different protocols. As a
proof of concept, we have augmented the system we pre-
sented in our previous paper [15] with an SSH honeypot
and decoy FTP and HTTP servers presenting decoy docu-
ments containing beacons. Additionally, we explored detect-
ing HTTP cookie hijack from traffic going to social network
sites and HTTPS man-in-the-middle attacks by malicious
exit node operators.

3 System architecture

In this section, we present the architecture of our traffic eaves-
dropping detection system that we have deployed for Tor. We
describe the design of the decoy traffic transmission mech-
anism and the corresponding decoy services, as well as the
approach we used for incident data collection and correlation.

3.1 Approach

Eavesdropping on network traffic is a passive operation with-
out any directly observable effects. However, the fact that
some traffic has been intercepted can be potentially inferred,
when a third party that should not have access to the inter-
cepted data uses it. For example, an eavesdropper can steal
user credentials for services that do not use application-layer
encryption, such as user names and passwords for Web sites
with poor user authentication implementations, or for servers
that use clear-text sign-in protocols, such as FTP or IMAP.
Thereafter, any attempt by the eavesdropper to access the
user’s account is an observable event. The problem with the
latter lies in (a service) identifying whether the use of a set
of credentials was made by a third party or the user.

Our approach is based on the assumption that an eaves-
dropper will use the intercepted data in some manner. We use
two types of decoy data that are not used in any other way, to
determine with certainty that data was intercepted by a proxy.
First, we use decoy authentication credentials to decoy ser-
vices, essentially honeypots, under our control. The use of
these credentials with our services at a later time is a clear
indication that eavesdropping occurred. Second, we transmit
URLSs to decoy documents containing information of poten-
tial value, such as decoy PayPal . com accounts, and fake
financial transactions including fake credit card information.
Later downloads of these documents also indicate eavesdrop-
ping. Every decoy is uniquely transmitted through exactly
one proxy, so that we can later associate its use with it.

We further exploit the fact that the eavesdropper will prob-
ably attempt to open these documents to collect further infor-
mation. We use D-Cubed [10] to automatically generate the
PDF and Microsoft Word documents and embed beacons,
basically scripts, into them. These documents present infor-
mation about fake Pay-Pal . com and credit card accounts,
to lure adversaries. These scripts get launched automatically,
when the documents are viewed by the eavesdropper, con-
necting to a remote host under our control, and transmitting
information such as the IP address of the host used to open
these documents. This aids us in gathering more information
about adversaries, e.g., their geographic location based on
their IP address.

Figure 2 illustrates the overall design of our system when
applied on the Tor network. A client under our control period-
ically connects through Tor to our decoy server and transmits
easily reusable clear-text information, such as user authen-
tication credentials. As a result, such easily re-usable and
potentially sensitive information is exposed to exit nodes
of Tor circuits (and any other network entity between the
exit node and the decoy server). Both the client and the
server record detailed information about any attempted con-
nection (such as user credentials, URLSs, and connection
time stamps). These logs are thereafter periodically tal-

@ Springer

210

S. Chakravarty et al.

Fig. 2 Overall architecture of
the proposed traffic interception
detection system when applied
on the Tor network

Internet

via Tor

Client Logs

lied to determine unsolicited connection attempts, which are
marked as suspicious.

In more detail, as the system is continuously running, the
following steps take place periodically:

1. The client connects to the decoy server through Tor and
sends information such as unique user authentication cre-
dentials (in case of IMAP and SMTP decoy servers)
in clear-text, and URLs for sensitive appearing decoy
documents containing beacons (in case of HTTP decoy
server) through clear-text HTTP GET and POST protocol
messages. The client creates circuits through all the exit
nodes. Using unique user credentials and URLs per exit
node helps in identifying the actual exit node involved
when eavesdropping is detected.

The decoy server maintains detailed record for each ses-

sion that may include the user name and password (for

IMAP and SMTP), the IP address of the exit node used

in the connection, the URL pointing to the unique decoy

documents, and the time stamp corresponding to when
the connection to the decoy server was established.

. After a successfully completed session on the decoy
server, the system attempts to correlate it with a recently
completed client session. Connections observed on the
server for which there are no corresponding client con-
nection attempts are labeled as suspicious.

Each of the unique user credentials and URLs to decoy
documents is associated with exactly one exit node and is
exposed to it through a Tor circuit terminating at that node.
Thus, the exit node involved in a particular eavesdropping
incident is known based on the given set of credentials or

@ Springer

Bait traffic

SSH Honeypot

Malicious
Tor Exit
Re

Decoy FTP

pat -
[— =]
yA—

- : MITHI Detection
NEN Various HTTPS Sites

e
~ — > M j PayPal
N~ o +EHD
Decoy Social Networking

Sites
Servers

\
HTTP Cookie \
Hijack
Detection

@)
Correlate connection

U b o Server Logs
initiation times with receive times

URLs used in the unsolicited session observed by the decoy
server.

Our system has been optimized compared to our initial
prototype [15] for gathering more information regarding the
adversaries’ activities. Attempts to reuse some of the IMAP
decoy credentials with other services, like FTP and SSH,
urged us to also set up honeypots with decoy FTP and SSH
services running. Moreover, we used the FTP server to also
serve decoy documents. We describe all incidents in detail
and present up-to-date information for new and previously
detected eavesdroppers [14], in Sect. 4.

Note that our approach can be adapted to detect more
advanced traffic interception attacks. In Sect. 5, we describe
an extension that can detect HTTP cookie hijacking attacks
and man-in-the-middle attacks by malicious Tor exit nodes.

3.2 Implementation

Although Tor can forward the traffic of any TCP-based net-
work service, in practice not all exit routers support all appli-
cation protocols. For example, SMTP relay through port 25
is blocked by the majority of Tor exit nodes to prevent spam-
mers from covertly relaying their messages through the Tor
network. Consequently, the first important decision we had
to take before beginning the implementation of our prototype
system was to choose a set of services that are supported by a
large number of Tor exit nodes. At the same time, candidate
services should support unencrypted authentication through
a clear-text protocol, while the services themselves should
entice potential eavesdroppers.

Tor exit nodes are usually configured to allow traffic
forwarding or only a small set of TCP services. The ser-

Detection and analysis of eavesdropping

211

1000

900

800

21 FTP
23 Telnet
700

25 SMTP-relay
80 HTTP

110 POP3

143 IMAP

587 SMTP-delivery
3128 Squid proxy
3306 MySql
5060 SIP
5190 ICQ/AOL-IM
5222 XMPP
8080 HTTP-alt

600 ¢
500 -
400
300
200

100 -

Exitrouters that allow traffic relaying

0+

Service port number

Fig. 3 Number of Tor exit nodes that allow traffic relaying through dif-
ferent TCP port numbers, for services that support clear-text protocols

vices allowed are defined by the operator of the exit node
through the specification of an exit policy. To determine the
most widely supported unencrypted application protocols,
we queried the Tor directory servers and retrieved the number
of exit nodes that allowed each different protocol. Figure 3
presents the number of Tor exit nodes that at the time of the
experiment allowed the relaying of traffic through various
TCP port numbers. In accordance with the results obtained
by McCoy et al. [34], widely used applications such as web
browsing, email retrieval, and instant messaging are allowed
by alarge number of exit nodes. We found approximately 900
exit nodes that allowed access to port 80. We also found 644
exit nodes supporting exit to IMAP (port 143) and 455 exit
nodes supporting SMTP delivery (port 587). Both these pro-
tocols support plain-text user authentication. They involve
transmission of plain-text usernames and passwords.?
Credentials for accessing users’ messages that may con-
tain sensitive private information, or for sending e-mails
through verified user addresses, can be of high value for a
malicious eavesdropper. This led us to choose the IMAP and
SMTP protocols for our prototype implementation. Further-
more, due to the wide prevalence of exit nodes that allow
exit for web traffic, we decided to use HTTP GET and POST
messages to expose URLs of decoy documents containing
beacons, stored on a decoy web server that we control.

3.2.1 Decoy traffic transmission and eavesdropping
detection

Our decoy traffic transmission subsystem is based on a cus-
tom client that supports the IMAP and SMTP protocols. The

2 In contrast to SMTP relay (port 25), SMTP through port 587 is dedi-
cated to message submission for delivery only for users that have reg-
istered accounts on the server.

client has been implemented using Perl, and service proto-
col emulation is provided by the Net : : IMAPClient and
Net: : SMTP modules. We use curl [24] for transmitting
the HTTP GET and POST messages to expose the URL of
decoy documents to the exit nodes. The clients and servers are
hosted on Intel x86 based machines running Ubuntu Linux.

Every day, for each service, our Tor client connects to the
decoy service several times via circuits through each of the
exit nodes. This is achieved by establishing a new Tor circuit
for each connection, and enforcing each circuit to use a par-
ticular exit node. Once a connection has been established, the
client authenticates on the server using a unique set of creden-
tials associated with the particular combination of exit node
and decoy server.> Thereafter, the client performs activities,
such as browsing through some folders in case of IMAP, or
sending a fake e-mail message in case of SMTP, so as the
protocol message exchanges appear realistic. In case some
exit node is not accessible, the corresponding set of creden-
tials is skipped. Similarly, when a new exit node joins the
overlay network, a new set of credentials for each decoy ser-
vice is generated for use only with that exit node. To achieve
this, the Tor directory services are periodically queried and
fresh list of exit nodes supporting exit to the requisite service
(IMAP or SMTP delivery) is retrieved. Thereafter, new user
credentials are assigned to the set of fresh exit nodes.

Usernames are generated as a combination of names
in various languages [38] and random numbers using
language confluxer [39] and prop [40]. Passwords
for these usernames are generated using pwgen [54].

Similar to the decoy IMAP and SMTP client processes,
a routine sends and retrieves decoy documents to and from
a decoy web server, through circuits via each Tor exit. The
process exposes URLs of the decoy documents carrying the
beacons, to the exit node through HTTP POST and GET mes-
sages. Each exit node is associated with a set of unique decoy
documents which are sent to and received from the server,
through HTTP POST and GET messages, respectively. We
assume rogue exit nodes to be snooping on HTTP traffic and
accessing the exposed decoy document URLs.

Under normal operational conditions, the number of con-
nections successfully initiated by the client each day, through
each exit node, should equal to the number of connections
received by the server from each of these exit nodes. For
each successfully initiated connection, the client-side scripts
log information such as exit node involved decoy creden-
tials used and the connection start and end times. The cor-
responding information for these connections, as seen at the

3 In other words, for each exit node that allows access to IMAP, we cre-
ated a unique username and password. This unique association of the
exit node and the exposed user credential helps identify the eavesdrop-
ping exit nodes that snoop on these exposed credentials and connect
back to our decoy server.

@ Springer

212

S. Chakravarty et al.

server, is obtained from the server’s logs. Any unsolicited
successful connection using some of the previously trans-
mitted decoy credentials is labeled as an illegitimate suspi-
cious connection attempt. Such suspicious connections are
identified by tallying the connections initiated by our client
to those received by the server, based on the logs recorded at
the client and the server. Specifically, upon the completion
of a successful connection, the decoy server sends directly
(not through Tor) to the client all the recorded information
about the recently completed session. The client then com-
pares the connection details, including the set of credentials,
decoy documents, the exit node involved, and the start and
end times of the connections recorded by both the client and
the server, against the recently completed connections. For
each connection successfully initiated by the client, the sys-
tem checks whether the corresponding connection can be
identified from the server logs. Since the system knows the
exit node involved each connection, and the fact that it is used
with exactly one set of decoy credentials, it is expected that
for each connection initiated by the client, there is exactly one
connection arriving at the server that matches the said con-
nection attempt. In case no matching connection is found,
the system generates a report that includes the time of the
last generated connection that used the intercepted creden-
tials, the time of the unsolicited connection to the server, the
IP address of its initiator, and the exit node involved in the
incident.

3.2.2 Important implementation considerations

During the implementation of our prototype system, we dealt
with various issues related to improving the accuracy of our
traffic interception detection approach, or with cases where
interesting design trade-offs came up. We briefly describe
some of these issues in the rest of this section.

Quality of decoy traffic and honeypot services The believ-
ability of the decoy traffic [12] is a crucial aspect of the effec-
tiveness of our approach. For instance, a decoy IMAP session
using an account that does not have a realistic folder structure,
or that does not contain any real e-mail messages, might raise
suspicions to an eavesdropper. Repeating the same actions in
every session, or launching new sessions at exactly the same
time every day, can also be indications that the sessions are
artificially generated. In our prototype system, we vary the
connection times and activity in each session, and we use
realistically looking folder structures for the IMAP accounts
and send innocuous-appearing e-mail messages. The inboxes
of these decoy accounts contain messages attached with
decoy documents containing the beacons, generated from
the D-Cubed system, presenting enticing information such
as decoy PayPal . com accounts and fake financial transac-
tions involving fake credit card numbers. These documents

@ Springer

are attached to e-mail messages containing banking jargon
to reduce suspicion.

As mentioned above, in some of the eavesdropping inci-
dents, the adversaries actually tried to access other services
such as SSH and FTP using the exposed IMAP creden-
tials. Thus, we installed a FTP server, hosting user accounts
corresponding to each of the IMAP users. Each of these
accounts used the same passwords, which were used the
IMAP accounts. The users’ FTP directories were also popu-
lated with decoy documents containing the beacons. Further,
to make these accounts appear innocuous, we also placed
documents taken from [45] and source code documentations
and help files taken from an open source program.

To track the behavior of adversaries who may try to log
in to SSH accounts using the exposed IMAP credentials, we
installed kippo [18], an open-source, medium-interaction,
and easy to configure SSH honeypot, on the virtual machine
hosting our FTP server. Kippo supports multiple users and
thus seemed well suited for our setup consisting of several
hundred fake user accounts and passwords. These fake SSH
user accounts of kippo used the same usernames creden-
tials as those used for the IMAP and FTP accounts. The
IMAP serverredirects all FTP and SSH requests to this virtual
machine hosting the SSH honeypot and the decoy FTP server.

Time Synchronization Accurate time synchronization
between the client and the decoy server(s) ensures proper cor-
relation of the connections generated by the client with the
connections received by the server, and the correct identifica-
tion of any unsolicited connections. Although the volume of
our decoy connections is very low, allowing any illegitimate
connections to easily stand out, the clocks of all hosts in our
architecture are kept synchronized using the Network Time
Protocol. The sub-second accuracy of NTP allows the precise
correlation of the connection start and end times observed on
both the client and server. This offers an additional safeguard
for the verification of the detected traffic interception inci-
dents.

Eavesdropping Incident Verification Besides the accurate
correlation between the start and end times, logged by the
client and the server, we have taken extra precautions to avoid
any inaccurate classification of our generated decoy connec-
tions as illegitimate. For each connection launched by the
client, the system also keeps track of the circuit establishment
times by monitoring Tor client’s control port. Moreover, we
have enabled all the built-in logging mechanisms provided
by the Tor software. On the server side, all the incoming
and outgoing network traffic is captured using tcpdump. In
addition to the server logs, the captured traffic provides valu-
able forensic information regarding the nature of illegitimate
connections, such as the exact sequence of protocol messages
sent by the attacker’s IMAP, SMTP, and HTTP clients.

Detection and analysis of eavesdropping

213

4 Deployment results

Our prototype implementation has been continuously oper-
ational in the Tor network since August 2010. During the
course of over 30 months of its operation, our system has
detected sixteen traffic interception incidents. In this sec-
tion, we describe the eavesdropping and subsequent mali-
cious connection attempts using the snooped user creden-
tials. We analyze the consequent activities of the intruders
as they were recorded in the decoy server logs. Our incident
description Web site [14] contains information about the exit
nodes involved in each incident and details of the activities
of the intruders once they logged in our decoy server using
the snooped user credentials.

4.1 Eavesdropping incidents

The observed eavesdropping incidents were related to dif-
ferent exit nodes, and all the related illegitimate connections
were received by our decoy IMAP server. Based on the inter-
cepted credentials used in each unsolicited connection, we
were able to identify the Tor exit node involved in each inci-
dent. Information about the detected incidents (e.g., date, exit
node location, and activities recorded by the server) is pre-
sented in Table 1. The detail of the remaining incidents are
available in our Web site [14].

While most of the incidents involved a different exit node,
there were some, such as one in India and another one in
South Korea, which eavesdropped on exposed credentials
repeatedly and connected back to our decoy server. The ones
in India, hosted in the same ISP network, repeatedly con-
nected back to our decoy server for weeks. Even after we
modified the passwords associated with the IMAP accounts,
the exit operators learnt the modified passwords by snoop-
ing on the traffic and connected back to the decoy server
with these new passwords. The node in South Korea eaves-
dropped on our decoy traffic three times. Although after each
connect-back attempt the exit node was inaccessible, it sur-
faced after sometime and again attempted to eavesdrop on
the decoy traffic.

There were also several incidents in which the malicious
exit nodes were not accessible for days after the eavesdrop-
ping incidents and subsequent connect-back attempts. Also,
as evident from Table 1, in the majority of the incidents, the
adversaries connect to the decoy server via other exit nodes
or hosts, probably as an attempt to hide their true identities.
However, in the first four incidents, which occurred together,
the connect-back attempts originated directly from the exit
nodes at which the decoy user credentials were exposed. All
these connect-back attempts occurred within four to 6 h after
the exposure of the decoy credentials, an interval signifi-
cantly shorter compared to the rest of the incidents. We thus
speculate that these first four eavesdropping cases were coor-

dinated by the same individual or group, probably using the
same tools or methodology in each case.

Ten eavesdropping incidents were detected between
August 2010 and April 2011. These have been described in
detail in our previous paper [15]. Eight new incidents were
detected between November 2011 and March 2012. By and
large, in each of these incidents, the modus operandi of the
adversaries was similar to that of the previous incidents.

The first of these incidents that occurred in November
2011 involved an exit node in the UK. The exit node operator
connected back to our server via a host that was running
in a cloud service provider’s network. Thereafter, in several
instances, the involved exit node was inaccessible soon after
the eavesdropping incident.

The second incident (the 12th one in Table 1) involved an
exit node in Russia. In this, the adversary tried to connect to
an SSH server using the exposed credentials, which prompted
us to install an SSH honeypot. All SSH connections arriving
to the IMAP server, involving the decoy credentials, were
directed to the SSH honeypot.

The next incident involved an exit node in South Korea
which had eavesdropped earlier in September 2010 and con-
nected to the decoy server via another exit node. Thereafter,
it was inaccessible for a considerable period of time after
which it resurfaced and eavesdropped again.

The fourth incident involved an exit node in Germany.
The adversary connected back to the decoy server several
times via an exit node in the Netherlands. In each of these
connect-back attempts, the adversary connected to our decoy
server for a few minutes and logged out. After analyzing
the exchanged protocol messages, it seems that the adver-
sary connected to the server without using any known mail
client program (perhaps using their own custom mail client
that simply connects and disconnects, thereby checking the
validity of the credentials).*

The fifth one involved an exit node in the Netherlands. The
exit node operator connected back to our decoy server via an
exit node in Switzerland. The malicious exit node operator
connected to our decoy server only once for a short duration
and then logged out.

The sixth incident involved an exit node in the USA. The
exit node operator eavesdropped and subsequently connected
back to the decoy server via an exit node in Canada. The
adversary connected several times to the decoy server, using
an email client program (possibly Kmail).

4 Mail clients generally execute a set of commands on the server to fetch
the various user directories associated with an account. The absence of
such commands and zero payload length could be a strong indication
that the adversary does not use any known mail client. We have studied
the various protocol messages exchanged by various popular mail client
programs.

@ Springer

214

S. Chakravarty et al.

Table 1 Observed traffic

interception incidents during Incident number Date

Exit node location

Remarks

first 21 months of the

deployment 1 Aug.’10 US Same pattern as in incidents 2, 3, and 4
Connect-back from the same exit node
2 Aug.’10 Hong Kong Same pattern as in incidents 1, 3, and 4
Connect-back from the same exit node
3 Aug.’10 UK Same pattern as in incidents 1, 2, and 4
Connect-back from the same exit node
4 Aug.’10 The Netherlands Same pattern as in incidents 1, 2, and 3
Connect-back from the same exit node
5 Sep.”10 S. Korea Connect-back from a different exit node
Sep.’10 Hong Kong Connect-back from a third party host
EXxit node not accessible upon detection
7 Sep.”10 India Connect-back from third-party hosts
EXxit node not accessible upon detection
8 Jan.’11 Germany Connect-back from third-party hosts
Attempt to use SSL through the IMAP
STARTTLS command
9 Apr.’11 India Connect-back from third-party hosts and other Tor
relays
10 Apr.’11 India Same as 9. Both exit nodes in the same
ISP network and many of the third-party
connect-back hosts were in the same networks
(mostly in Europe and India)
Was involved in incident 7
11 Nov.’11 UK Connect back via a host in a web-hosting and cloud
service providing organization
12 Nov.’11 Russia Connect back via another host in a Russian ISP
13 Nov.’11 S. Korea Exit node involved in incident 5
14 Jan.’12 Germany Connect back via another Tor exit in The Netherlands
In all cases, the eavesdropper 15 Jan.’12 The Netherlands Connect back via another Tor exit in Switzerland
zgg/liﬁz&g::;icﬁigi‘gi d 16 Jan.’ 12 usS Connect back via another host in a Canadian ISP
decoy credentials 17 Jan.’ 12 S. Korea Exit node involved in incidents 5 and 13
18 Mar. ’12 Estonia Connect back via another host in a Polish ISP

The next one involved the exit node in South Korea, the
one whose operator had eavesdropped twice previously. Each
time the exit node operator connected back to our server, the
exit node became inaccessible for several weeks and resur-
faced, only to be detected again by our system. After this sev-
enth incident, the exit node was finally blacklisted by Tor’s
operators.

Finally, the eighth incident (the 18th one listed in Table 1)
involved an exit node in Estonia, whose operator eaves-
dropped and connected back to our decoy server via an exit
node in Poland. There was only one connect-back attempt by
the adversary that lasted for about 10 min.

Figure 4 presents this time differences between the expo-
sure of the decoy credentials and the subsequent connect-
back attempts for each of the incidents. The horizontal axis
represents the eavesdropping and connect-back events. The
vertical axis denotes the time delay between the exposure

@ Springer

25
20
—_—
[
h“
3
£ 15
N
>
s
[}
o 104
[}
E
i
5
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Incidents

Fig. 4 Time difference between the exposure of the decoy credentials
and the first connect-back attempt on the decoy server

Detection and analysis of eavesdropping

215

9,210 (S)
9,10, 14 (S)

O Tor exit node
<© Non-Tor node

T .
5 R P
10,15 (s()@w1 2i(S);
4,15 (ES) 12,(E)

E: Exit node involved in eavesdropping
S - S: Source of connect-back attempt

-——< o e,

£

Fig. 5 Locations of the Tor exit nodes involved in the observed traffic interception incidents, and the non-Tor hosts that connected back to the
decoy servers. Numbers refer to the corresponding incidents listed in Table 1

of the decoy credential and its subsequent usage in connect-
back attempts.

The map in Fig. 5 presents an overall view of the geo-
graphic locations of the exit nodes and the third-party hosts
involved in the observed incidents. Tor and non-Tor nodes
are represented using different symbols. We used basic geo-
IP address lookup tools which provide only country-level
accuracy, so the points on the map denote only the country
in which each host was located. The number next to each
point corresponds to the incident number, as presented in
Table 1.

Apart from detecting eavesdropping on plain-text protocol
messages, our system could be used to detect more advanced
attacks. In the next section, we demonstrate how our system
could be used to detect SSL man-in-the-middle attacks. We
detected an exit node in Russia that was involved in such
attacks.

4.2 Adversaries’ activities

In some of the incidents, the adversary connected to the decoy
server using popular e-mail clients, while in the rest, they
connected directly to the server and manually issued proto-
col command messages. Popular e-mail clients issue a cer-
tain default set of commands to access the mail folders such
as INBOX, Drafts, Sent, and so on. The IMAP proto-
col allows users to issue various commands that can result
in fetching the contents of these folders. Each mail clients
issues a somewhat different set of commands to fetch the
contents of these folders. The commands, and their order
in which they are issued, can be treated as a ‘“‘signature”
for the client. We analyzed the signatures of various pop-
ular e-mail clients (e.g., Thunderbird, MS Outlook,

Balsa [5], Claw [17], Sylpheed [50], Kmail [32]
and Evolution [25]) to determine the possible e-mail
clients the adversaries used. From the network traffic, cor-
responding to the time when the adversaries connected to
the decoy server using IMAP clients, it appears that Kmail,
Evolution,and Thunderbird were commonly used for
connecting to our decoy server.

In the incidents where the adversary connected manu-
ally to the IMAP server, we observed the adversary exe-
cuting various different kinds of commands. In one, adver-
saries connected and switched to TLS mode so as to hide
their activities. We thereafter turned off the capability in
the server to switch to TLS mode after establishing con-
nections. In another incident, the adversary issued esoteric
IMAP4 ACL [35] commands. In yet others, the adversary
tried to use credentials to log into services such as FTP
and SSH. These services were, however, inaccessible using
the decoy user credentials. These activities compelled us
to install the decoy FTP server and SSH honeypot. The
IMAP server redirects the connection attempt to FTP and
SSH services to the decoy FTP server and SSH honeypot
so as to lure the attackers to the download decoy docu-
ments or try to execute programs from the terminal interface,
thereby aiding in gathering further information about such
attackers.

4.3 Volume of decoy traffic injected

For each connection to the IMAP decoy server and subse-
quent protocol message exchanges, we sent approximately
15.4KB of traffic. For 644 decoy accounts, each correspond-
ing to a unique exit node, this number totals to approximately
10MB. In case of such connections and exchanges to the

@ Springer

216

S. Chakravarty et al.

Table 2 Available bandwidth of

the malicious exit nodes as Incident number Advertised Bandwidth Remarks
reported.by htp://torstatus. 1 Unknown Relay was not running when accessed
blutmagie.de/
2 Unknown Relay was not running when accessed
3 44 Mbit/s Guard node with high uptime
4 20.8 Mbit/s Guard node with high uptime
5 1.4 Mbit/s Advertises high uptime
6 56 Kbit/s Advertises high uptime, runs directory service
7 Unknown Relay was not running when accessed
8 856 Kbit/s Guard node with high uptime, runs directory service
9 150 Kbit/s Non-guard exit node
10 100 Kbit/s Non-guard exit node
11 Unknown Relay was not running when accessed
12 1 Mbit/s Guard node with relatively high uptime
13 320 Kbit/s Non-guard exit node
14 8.5 Mbit/s Non-guard exit node with high bandwidth and uptime
15 Unknown Relay was not running when accessed
16 336 Kbit/s Non-guard exit node
17 320Kbit/s Non-guard exit node
18 1.6 Mbit/s Guard node with relatively high uptime

SMTP decoy server, we sent about 21.3 KB of traffic. For 455
decoy SMTP accounts, this figure comes out to be approxi-
mately 9.7 MB.

4.4 Attributes of the exit nodes involved in the incidents

Table 2 shows the available bandwidth of the exit nodes
that were involved in the detected incidents. Two of the
exit nodes advertised very high available bandwidth (44
and 20.8 Mbit/s, respectively) and thus are very likely to
be selected in Tor client circuits, as the default Tor circuit
node selection mechanism is biased toward nodes with high
advertised available bandwidth [20]. There were some which
advertised somewhat lesser bandwidth of 8.5 and 1.4 Mbit/s.
Finally, there were some which advertised yet lower band-
widths of less than 1 Mbit/s. Both of the high bandwidth, and
two of the lower bandwidth nodes, were guard nodes® with
high up-times.

> This difference is primarily due to the different lengths of IMAP and
SMTP messages. The overhead due to Tor protocol messages, involving
circuit setup, key exchanges, accounting, and circuit termination, does
not vary significantly between IMAP and SMTP.

6 By default, a fixed set of entry nodes used by Tor clients to defend
against traffic analysis attacks that can be launched by malicious entry
and exit nodes.

@ Springer

5 Other efforts and possibilities: HTTP session cookie
hijack and SSL MITM detection

Apart from detecting eavesdropping on plain-text user cre-
dentials and HTTP URLs, our system is capable of being
used for various other complex forms of traffic eavesdrop-
ping and misuse detection. As a proof of concept, we tried
to detect HTTP cookie hijack attacks and SSL man-in-the-
middle attacks by malicious exit nodes. We elaborate more
on these efforts in this section.

5.1 Detection of HTTP session hijacking

Besides snooping on users’ traffic, an adversary that has
access to unencrypted network data can also mount HTTP
session hijacking attacks against users that connect to social
networking sites like facebook.com. Previously, such
sites had no option to encrypt user traffic except while authen-
ticating them. Now, even when using HTTPS, there are var-
ious facebook.com applications that switch to HTTP
and never switch back to HTTPS again, thereby exposing
HTTP session cookies to eavesdroppers. In a session hijack-
ing attack, the attacker can steal the session cookie that is
included in the HTTP requests of authenticated users and
use it to access the user’s account. The fact that social net-
working sites are among the most frequently accessed Web
sites Tor [36], combined with the ease of hijacking user ses-
sions using tools like Firesheep [26], makes the possibility of

http://torstatus.blutmagie.de/
http://torstatus.blutmagie.de/

Detection and analysis of eavesdropping

217

mounting session hijacking attacks on Tor exit nodes quite
attractive for adversaries.

For detecting session cookie hijack attacks, we create sev-
eral fake facebook . com user profiles. In this scheme, the
decoy traffic consisted of activity generated by connecting
to these facebook.com profiles and performing canned
activities such as checking messages and status updates.
However, we could not create unique facebook . com pro-
files for each of the approximately 900 Tor exit nodes that
supported exit for web traffic. We thus created about twenty
accounts and repeatedly logged into facebook.com by
reusing the accounts. We exposed the first account in our
list to the first exit node in our list, second account to the
second one in our list, and so on till the twentieth account.
After logging in, our system checked the various user profile
pages and private message folders for new messages. This
process exposes the session cookies to the exit node several
time for each of the accounts. Thereafter, our system waited
for a few minutes and checked the first twenty accounts for
changes in profiles such as status update messages or private
messages to others users in the contact list of the hijacked
profile. Then, we again exposed the first user account in our
list to the twenty-first exit node, the second one to the twenty-
second and so on. We used a £ irefox browser automation
framework, called iMacros [29], to perform these periodic
logins and canned interactions. We ran our system for about
6 months but did not find any eavesdropping exit nodes sniff-
ing on Facebook cookies.

5.2 SSL man-in-the-middle attack detection

Man-in-the-middle attacks have been observed by some
malicious exit nodes [4] that try to intercept and compro-
mise SSL key establishment process and use unverifiable or
self-signed certificates. Our system can easily be adapted to
detect such man-in-the-middle attacks. To do so, we need to
transmit SSL connections via Tor exit node to SSL services
whose certificates can otherwise be verified. If in some cases
we are unable to verify the server certificate when accessing
the server via an exit node, we would conclude that the exit
node has possibly manipulated the server to client traffic and
might be intercepting the SSL connection establishment. In
our setup, we used curl to connect to popular HTTPS sites
such as popular webmail services and banks and checked
whether server certificate could be verified. One could use
other tools such as Tor SSL. MITM Checker [37] for check-
ing the certificates. This process is repeated for all exit nodes.
We found one exit node through which when SSL traffic was
exposed, the server certificate verification failed. This node
was, however, already blacklisted in the Tor directory ser-
vices and would not normally be selected when using the
default Tor client configuration. In fact, more recently, Win-
ter and Lindskog [55] have demonstrated that there are sev-

eral exit nodes in Russia which are involved in various kinds
of SSL man-in-the-middle attacks. Based on their observa-
tions, they claim that these might be operated by the same
individual (or group).

6 Discussion and future work
6.1 Detection confidence

Internet traffic crosses multiple network elements until it
reaches its final destination. The encrypted communication
used in anonymity networks protects the original user traf-
fic from eavesdropping by intermediate network elements,
such as routers or wireless access points, until it reaches the
boundary of the overlay network. However, the possibility of
traffic interception is not eliminated, but is rather shifted to
the network path between the exit node and the actual des-
tination. Consequently, the transmitted decoy credentials in
our proposed approach might not necessarily be snooped on
the exit node of the overlay, but on any other network ele-
ment toward the destination. This means that in the incidents
detected by our system, the decoy credentials could have been
intercepted at some other point in the network path between
the exit node and the decoy server, and not at the exit node
itself.

Although the above possibility can never be ruled out com-
pletely, we strongly believe that in all incidents the decoy cre-
dentials were indeed intercepted at the involved exit node for
the following reasons. The ease of installing and operating a
Tor exit node means that not only adversaries can easily set
up and operate rogue exit nodes, but also that exit nodes oper-
ated by honest individuals may be running on systems that
lack the latest software patches, or have poor security config-
urations. This may enable adversaries to easily compromise
them and misuse the hosted Tor exit node. At the same time,
most of the network elements beyond a Tor exit node are
under the control of ISPs or other organizations that have
no incentive to blatantly misuse intercepted user credentials
by directly attempting to access the user’s accounts. Further-
more, in some of the cases, the adversary connected back to
the decoy server from the same exit node involved in the par-
ticular eavesdropping incident, raising even more suspicion
that the exit node was rogue or has been compromised. In
several cases, the involved exit node was inaccessible imme-
diately following the connect-back attempt. In many cases,
the eavesdropping adversaries connected back to the decoy
server via other exit nodes, so as to hide their true sources.
Such typical actions of almost all adversaries shift the suspi-
cion toward Tor relay operators.

Increasing Detection Confidence Using Multiple Decoy
Servers. As part of our future work, we plan to use multi-

@ Springer

218

S. Chakravarty et al.

ple decoy servers scattered in different networks. Thereafter,
we could check for eavesdropping and subsequent replay of
user traffic, on each of the decoy servers. If eavesdropping
is attempted on a traffic going to only a subset of the decoy
servers, then it might be due to a malicious network router
intercepting the path connecting the exit node to the said
decoy servers. If, however, eavesdropping is attempted for
the traffic going to all the decoy servers via an exit node,
it might have been perpetrated by the said exit node. Fur-
thermore, one may use different sets of user accounts and
decoy documents for the different decoy servers. Each of the
exit nodes would thus be exposed to multiple sets of decoy
user credentials, each one associated with a different decoy
server. If, for a given exit node, eavesdropping is detected
for one set of decoy user credentials or decoy documents,
and not for others, then it might have been on network ele-
ments between the exit node and the corresponding decoy
server, corresponding to the said set of decoy credentials or
documents. However, if eavesdropping is detected for all the
decoy user credentials or documents exposed to it, it might
likely be involving the exit node, because the network routers
in the paths from the exit node to the individual decoy servers
are exposed to different decoy user credentials. It seems less
likely that a network router on a certain path would know
the decoy user credentials that are exposed to routers on
other network paths. That said, these measures do not com-
pletely rule out the scenarios wherein the adversary happens
to eavesdrop on the traffic when the client access only one
of the decoy servers and not the other(s) or when the net-
work paths intervening the exit nodes and the decoy servers
intersect (and share common network elements).

6.2 Traffic eavesdropping and anonymity degradation

Traffic eavesdropping on anonymous communication sys-
tems might not lead to direct degradation of network
anonymity. However, inadvertently leaking user information
such as login credentials can reveal vital information about
the users, such as identity, location, service usage, social con-
tacts, and so on. Specifically for Tor, the anonymity set com-
monly refers to all possible circuits that can be created, or
the set of all possible active users of the system [19].

Traffic eavesdropping might help reveal information like
the language and content of the messages, the particular
dialect of the users, or other peculiarities that might help
reducing the size of the anonymity set. For instance, a mali-
cious exit node operator might see traffic carrying user data
in Greek. Combined with the knowledge that there are about
seven ISP networks in Greece, this information might help
reducing the anonymity set significantly. Other clues such as
the actual accessed content, the time of access, and the desti-
nation of the traffic can as well aid the process of determining
a user’s identity.

@ Springer

6.3 Lessons learnt

Until recently, there were no adequate research efforts to
identify malicious eavesdropping nodes of anonymous com-
munication networks. Popular anonymization networks like
Tor are prone to Sybil attacks [23], where an adversary
could run a few malicious nodes and attract a large frac-
tion of the traffic [6] to aid traffic analysis attacks [3,42].
In such attacks, an adversary, capable of observing net-
work traffic statistics in several different networks, corre-
lates the traffic patterns in them and associates otherwise
seemingly unrelated network connections. The process can
lead an adversary to the source of an anonymous connection.
Such attackers, running malicious nodes (e.g., malicious Tor
exit nodes), could eavesdrop on users’ traffic to gather pri-
vate information. In fact, powerful government organizations
could be operating nodes with high bandwidth, in several
networks, to collect sensitive data and aid traffic analysis
attacks.

We have explored ways of identifying such malicious exit
nodes by deliberately exposing them with “sensitive appear-
ing” but fake traffic (such as fake usernames and passwords
for e-mail accounts), destined to decoy servers under our
control. Such eavesdroppers, having access to traffic enter-
ing and leaving exit nodes, could also be potential traffic
analysis attackers. Therefore, by determining eavesdroppers,
one could be potentially identifying attackers who may also
launch other types of attacks.

Our prototype system uses decoy traffic for some common
TCP/IP services that support plain-text user authentication
messages. We have successfully demonstrated that the strat-
egy could be used to identify malicious Tor exit nodes. Based
on the modus operandi of the eavesdropping adversaries,
and their activities recorded in the logs of the decoy servers,
we augmented our system to gather more information about
the adversaries and explored possibilities of using our strat-
egy with more advanced kinds of eavesdropping activities,
such as HTTP cookie hijacking attacks and SSL man-in-the-
middle attacks.

7 Conclusion

Users of various anonymous communication networks and
proxying architectures often misconstrue the anonymity
guarantees offered by such systems with end-to-end confi-
dentiality. The use of encryption in anonymity networks, like
Tor, protects the confidentiality of the user traffic as itis being
relayed within the overlay network. This protects the origi-
nal user traffic against surveillance by local adversaries, as
for example in the case where the user is connected through
an unsecured public wireless network. Even when encrypted
using SSL, users are not safe from man-in-the-middle attacks.

Detection and analysis of eavesdropping

219

In this paper, we have focused on the problem of detecting
malicious eavesdropping nodes of proxying architectures,
especially anonymity networks. To tackle this problem, we
have presented an approach involving the use of decoy net-
work traffic injection to detect rogue nodes of anonymity
networks engaged in traffic eavesdropping. Our approach is
based on the injection of bait credentials and decoy docu-
ments, through Tor, to decoy services such as IMAP, SMTP,
and HTTP, with the aim to entice prospective snoopers to
intercept and actually use the bait credentials and docu-
ments. The system can detect if a set of credentials has been
intercepted, by monitoring for unsolicited connections to the
decoy servers and by the alerts generated by the decoy doc-
uments containing the beacons, exposed to the exit nodes.
We additionally run Honeypots to gather more information
of the attacker. Moreover, our system can be easily adapted
to detect more advanced traffic interception attacks such as
HTTP cookie hijack and SSL man-in-the-middle attack.

Our prototype has been operational for over 30 months.
During this period, the system detected eighteen incidents of
traffic interception, involving exit nodes across the world. In
all cases, the adversary attempted to take advantage of inter-
cepted bait IMAP credentials by logging in on the decoy
server, in some cases from the same exit node involved in
the eavesdropping incident. Our system continues to run
and detect eavesdropping by malicious exit node operators.
Details of the latest incidents can be obtained from our Web
site [14].

Acknowledgments This work was supported by DARPA and ONR
through Contracts DARPA-WO11NF-11-1-0140 and ONR-MURI-
N00014-07-1-090, respectively. Any opinions, findings, conclusions,
or recommendations expressed herein are those of the authors and do
not necessarily reflect those of the US Government, DARPA, or ONR.

References

1. Anonymizer, Inc. http://www.anonymizer.com/

2. Anonymouse. http://anonymouse.org/

3. Back, A., Moller, U., Stiglic, A.: Traffic analysis attacks and trade-
offs in anonymity providing systems. In: Proceedings of the 4th
International Workshop on Information Hiding(IHW), pp. 245-
257. Springer, London (2001)

4. Known bad relays. https:/trac.torproject.org/projects/tor/wiki/
doc/badRelays

5. Balsa—An e-mail client for GNOME. http://balsa.gnome.org/

6. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-
resource routing attacks against tor. In: Proceedings of the 2007
ACM Workshop on Privacy in Electronic Society (WPES), pp. 11—
20 (2007)

7. Bauer, K., McCoy, D., Grunwald, D., Sicker, D.: Bitblender: light-
weight anonymity for bittorrent. In: Proceedings of the work-
shop on Applications of private and anonymous communications,
AIPACa’08, pp. 1:1-1:8. ACM, New York, NY, USA (2008)doi:10.
1145/1461464.1461465

8. Bennett, K., Grothoff, C.: Gnunet: gnu’s decentralized anonymous
and censorship-resistant P2P framework. http://gnunet.org/

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.

20.

21.

22.

23.

24.
25.
26.
217.
28.
29.
30.

31.
32.
. McCanne, S., Leres, C., Jacobson, V.: Tcpdump and libpcap. http://

34.

35.

36.

. Bennett, K., Grothoff, C.: GAP—practical anonymous networking.

In: Proceedings of the Privacy Enhancing Technologies Workshop
(PET), pp. 141-160 (2003)

Bowen, B.M., Hershkop, S., Keromytis, A.D., Stolfo, S.J.: D-
cubed. http://sneakers.cs.columbia.edu/ids/RUU/Dcubed/
Bowen, B.M., Hershkop, S., Keromytis, A.D., Stolfo, S.J.: Baiting
inside attackers using decoy documents. In: Proceedings of the 5th
International ICST Conference on Security and Privacy in Com-
munication Networks (SecureComm), pp. 51-70 (2009)

Bowen, B.M., Kemerlis, V.P., Prabhu, P., Keromytis, A.D., Stolfo,
S.J.: Automating the injection of believable decoys to detect snoop-
ing. In: Proceedings of the Third ACM Conference on Wireless
Network Security (WiSec), pp. 81-86 (2010)

Bowen, B.M., Salem, M.B., Hershkop, S., Keromytis, A.D., Stolfo,
S.J.: Designing host and network sensors to mitigate the insider
threat. IEEE Secur. Priv. 7, 22-29 (2009). doi:10.1109/MSP.2009.
109

Chakravarty, S., Polychronakis, M., Portokalidis, G., Keromytis,
A.D.: Details of various eavesdropping incidents. http:/
dph72nibstejmee4.onion/decoys_via_tor/map.html

Charavarty, S., Portokalidis, G., Polychronakis, M., Keromytis,
A.D.: Detecting traffic snooping in tor using decoys. In: Proceed-
ings of the 14th International Symposium on Recent Advances in
Intrusion Detection, pp. 222-241 (2011)

Chaum, D.L.: Untraceable electronic mail, return addresses, and
digital pseudonyms. Commun. ACM 24(2), 84-90 (1981)

Claws mail. http://www.claws-mail.org

Desaster: kippo ssh honeypot. http://code.google.com/p/kippo
Diaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring
anonymity. In: Proceedings of the 2nd International Conference
on Privacy Enhancing Technologies. PET’02, pp. 54—68. Springer,
Berlin (2003)

Dingledine, R., Mathewson, N.: Tor path specification. https://
gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;
f=path-spec.txt

Dingledine, R., Mathewson, N., Syverson, P.: Onion Routing.
http://www.onion-router.net/

Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-
generation onion router. In: Proceedings of the 13th USENIX Secu-
rity Symposium, pp. 303-319 (2004)

Douceur, J.R.: The sybil attack. In: Proceedings of International
‘Workshop on Peer-to-Peer Systems (2001)

Stenberg, D.: kippo curl. http://curl.haxx.se

Evolution. http://projects.gnome.org/evolution

Firesheep. http://codebutler.com/firesheep

The Honeynet Project. http://www.honeynet.org/

I2P Anonymous Network. http://www.i2p2.de/

iOpus™: iMacros©. http://www.iopus.com/imacros/

Isdal, T., Piatek, M., Krishnamurthy, A., Anderson, T.: Privacy-
preserving P2P data sharing with oneswarm. In: Proceedings of
the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), pp. 111-
122 (2010)

JAP. http://anon.inf.tu-dresden.de/

Kmail—mail client. http://kde.org/applications/internet/kmail

www.tcpdump.org/

Mccoy, D., Bauer, K., Grunwald, D., Kohno, T., Sicker, D.: Shining
light in dark places: understanding the tor network. In: Proceedings
of the 8th International Symposium on Privacy Enhancing Tech-
nologies (PETS), pp. 63-76 (2008)

Meyers, J.: IMAP4 ACL extension. http://www.ietf.org/rfc/
rfc2086.txt

Mulazzani, M., Huber, M., Weippl, E.R.: Tor HTTP usage and
information leakage. In: Proceedings of the IFIP Conference on

@ Springer

http://www.anonymizer.com/
http://anonymouse.org/
https://trac.torproject.org/projects/tor/wiki/doc/badRelays
https://trac.torproject.org/projects/tor/wiki/doc/badRelays
http://balsa.gnome.org/
http://dx.doi.org/10.1145/1461464.1461465
http://dx.doi.org/10.1145/1461464.1461465
http://gnunet.org/
http://sneakers.cs.columbia.edu/ids/RUU/Dcubed/
http://dx.doi.org/10.1109/MSP.2009.109
http://dx.doi.org/10.1109/MSP.2009.109
http://dph72nibstejmee4.onion/decoys_via_tor/map.html
http://dph72nibstejmee4.onion/decoys_via_tor/map.html
http://www.claws-mail.org
http://code.google.com/p/kippo
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=path-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=path-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=path-spec.txt
http://www.onion-router.net/
http://curl.haxx.se
http://projects.gnome.org/evolution
http://codebutler.com/firesheep
http://www.honeynet.org/
http://www.i2p2.de/
http://www.iopus.com/imacros/
http://anon.inf.tu-dresden.de/
http://kde.org/applications/internet/kmail
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.ietf.org/rfc/rfc2086.txt
http://www.ietf.org/rfc/rfc2086.txt

220

S. Chakravarty et al.

37.

38.

39.

40.
41.

42.

43.

44,

45.

46.

47.

Communications and Multimedia Security (CMS), pp. 245-255
(2010)

Palfrader, P.: Tor SSL MITM check. http://svn.noreply.org/svn/
weaselutils/trunk/tor-exit-ssl-check

Pound, C.: Chris Pound’s language machines. http://www.ruf.rice.
edu/~pound/

Pound, C.: Language confluxer. http://www.ruf.rice.edu/~pound/
new-lc/

Pound, C.: Prop. http://www.ruf.rice.edu/~pound/prop

Provos, N.: A virtual honeypot framework. In: Proceedings of the
13th USENIX Security Symposium, pp. 1-14 (2004)

Raymond, J.F.: Traffic analysis: protocols, attacks, design issues,
and open problems. In: Proceedings of Designing Privacy Enhanc-
ing Technologies: Workshop on Design Issues in Anonymity and
Unobservability, pp. 10-29. Springer, LNCS 2009 (2000)

Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous con-
nections and onion routing. IEEE J. Sel. Areas Commun. 16, 482—
494 (1998)

Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transac-
tions. ACM Trans. Inf. Syst. Secur. 1, 66-92 (1998)

Services, O.U.C.: The university of oxford text archive. http://ota.
ahds.ac.uk/

Spitzner, L.: Honeytokens: the other honeypot. http://www.
symantec.com/connect/articles/honeytokens-other-honeypot
Spitzner, L.: Honeypots: catching the insider threat. In: Proceedings
of the 19th Annual Computer Security Applications Conference
(ACSAC) (2003)

@ Springer

48.

49.

50.

51.

52.

53.

54.

55.

56.

Stoll, C.: Stalking the wily hacker. Commun. ACM 31(5), 484497
(1988)

Stoll, C.: The cuckoo’s egg: tracking a spy through the maze of
computer espionage. Doubleday, New York (1989)
Sylpheed-lightweight and user-friendly e-mail client. http://
sylpheed.sraoss.jp/en

Furry, T.. TOR exit-node doing MITM attacks. http://www.
teamfurry.com/wordpress/2007/11/20/tor-exit-node-doing-mitm-
attacks/

Tor metrics portal. http://metrics.torproject.org/

Tor metrics portal: number of users. http://metrics.torproject.org/
users.html

Ts’o, T.. Password generator. http://sourceforge.net/projects/
pwegen/

Winter, P., Lindskog, S.: Spoiled onions: exposing malicious tor
exit relays. Technical Report, Karlstad University (2014). URL
http://veri.nymity.ch/spoiled_onions/techreport.pdf

Yuill, J., Zappe, M., Denning, D., Feer, F.: Honeyfiles: deceptive
files for intrusion detection. In: Proceedings of the 2nd IEEE Work-
shop on Information Assurance (WIA), pp. 116-122 (2004)

http://svn.noreply.org/svn/weaselutils/trunk/tor-exit-ssl-check
http://svn.noreply.org/svn/weaselutils/trunk/tor-exit-ssl-check
http://www.ruf.rice.edu/~pound/
http://www.ruf.rice.edu/~pound/
http://www.ruf.rice.edu/~pound/new-lc/
http://www.ruf.rice.edu/~pound/new-lc/
http://www.ruf.rice.edu/~pound/prop
http://ota.ahds.ac.uk/
http://ota.ahds.ac.uk/
http://www.symantec.com/connect/articles/honeytokens-other-honeypot
http://www.symantec.com/connect/articles/honeytokens-other-honeypot
http://sylpheed.sraoss.jp/en
http://sylpheed.sraoss.jp/en
http://www.teamfurry.com/wordpress/2007/11/20/tor-exit-node-doing-mitm-attacks/
http://www.teamfurry.com/wordpress/2007/11/20/tor-exit-node-doing-mitm-attacks/
http://www.teamfurry.com/wordpress/2007/11/20/tor-exit-node-doing-mitm-attacks/
http://metrics.torproject.org/
http://metrics.torproject.org/users.html
http://metrics.torproject.org/users.html
http://sourceforge.net/projects/pwgen/
http://sourceforge.net/projects/pwgen/
http://veri.nymity.ch/spoiled_onions/techreport.pdf

	Detection and analysis of eavesdropping in anonymous communication networks
	Abstract
	1 Introduction
	2 Background information
	2.1 Anonymous network communication systems
	2.2 Network and system misbehavior detection

	3 System architecture
	3.1 Approach
	3.2 Implementation
	3.2.1 Decoy traffic transmission and eavesdropping detection
	3.2.2 Important implementation considerations

	4 Deployment results
	4.1 Eavesdropping incidents
	4.2 Adversaries' activities
	4.3 Volume of decoy traffic injected
	4.4 Attributes of the exit nodes involved in the incidents

	5 Other efforts and possibilities: HTTP session cookie hijack and SSL MITM detection
	5.1 Detection of HTTP session hijacking
	5.2 SSL man-in-the-middle attack detection

	6 Discussion and future work
	6.1 Detection confidence
	6.2 Traffic eavesdropping and anonymity degradation
	6.3 Lessons learnt

	7 Conclusion
	Acknowledgments
	References

