
An Accurate Stack Memory Abstraction and Symbolic Analysis Framework for

Executables

Kapil Anand, Khaled Elwazeer, Aparna Kotha, Matthew Smithson, Rajeev Barua

University of Maryland

College Park

{kapil,wazeer,akotha,msmithso,barua}@umd.edu

Angelos Keromytis

Columbia University

New York

angelos@cs.columbia.edu

Abstract—This paper makes two contributions regarding
reverse engineering of executables. First, techniques are pre-
sented for recovering a precise and correct stack memory model
in executables in presence of executable-specific artifacts such
as indirect control transfers. Next, the enhanced memory model
is employed to define a novel symbolic analysis framework
for executables that can perform the same types of program
analysis as source-level tools. Frameworks hitherto fail to
simultaneously maintain the properties of correct representa-
tion and precise memory model and ignore memory-allocated
variables while defining symbolic analysis mechanisms. Our
methods do not use symbolic, relocation, or debug information,
which are usually absent in deployed binaries. We describe our
framework, highlighting the novel intellectual contributions of
our approach, and demonstrate its efficacy and robustness by
applying it to various traditional analyses, including identifying
information flow vulnerabilities in five real-world programs.

I. INTRODUCTION

Reverse engineering executable code has received a lot of

attention recently in the research community. The demand

for advanced executable-level tools is primarily fueled by a

rapid rise in zero-day attacks on several popular applications.

It is a well-known fact that most of the applications used

on a daily basis are IP-protected software that are available

only in the form of executables. Robust reverse-engineering

tools are required to completely analyze the impact of latest

cyberattacks on such applications, to define efficient counter

strategies and to certify their robustness against such attacks.

Reverse engineering tools are also essential for continuous

software maintenance. Various organizations such as US

Department of Defense [1] have critical applications that

have been developed for older systems and need to be ported

to future secure versions in light of exposed vulnerabilities.

In many cases, the application source code is no longer

accessible requiring these applications to continue to run on

outdated configurations. This engenders a need for advanced

tools which enable identification and extraction of functional

components for reuse in new applications.

The applicability of a reverse-engineering framework in

the above scenarios of vulnerability detection, software

certification and software maintenance entails three desired

features: 1) The recovered intermediate representation (IR)

should be functional such that it can be employed to recover

a functional source code or recompiled to obtain a working

rewritten binary. A non-functional code also fails to capture

the complete application behavior, resulting in inaccurate

analysis results. 2) Since executables mainly contain mem-

ory locations instead of explicit program variables, the IR

should have a precise memory abstraction to effectively

reason about memory operations in presence of executable-

specific features such as indirect control transfer instructions

(CTI) and lack of procedure prototypes. The paucity of

registers in x86 ISA further underscores this requirement by

allocating most of the variables to memory locations. 3) The

framework must support advanced analyses mechanisms on

the recovered IR, enabling the same kind of analysis that

can be done on the original source code. Unfortunately, ob-

taining all three features in a framework is very challenging

when dealing with stripped binaries which have no symbolic

or debugging information.

Executable specific artifacts such as indirect CTIs com-

plicate the task of recovering a precise memory abstraction

while maintaining the functionality in IR. A memory ab-

straction involves associating each stack memory reference

to a set of variables on the memory stack. In order to recover

such an abstraction, we need to determine the value of stack

pointer at each program point in a procedure relative to

its value at the entry point. This is usually accomplished

by analyzing each stack modification instruction, including

CTIs which can possibly modify the stack pointer due to

several reasons such as cleanup of arguments.

However, the modification in the value of stack pointer

cannot be easily determined in all scenarios. For example,

in case of an indirect CTI, the stack modification is deter-

ministic only if all its statically determined possible targets

modify the stack pointer by the same value. However, such

targets might modify the stack pointer by different values,

or a call to an external function with an unknown prototype

might have a statically indeterminable impact on the value

of stack pointer. Existing frameworks [2], [3] require that the

return from a CTI should always modify the stack pointer

by a deterministic constant value.

We present techniques for recovering a precise memory

model and functional IR in such scenarios. Our mechanism

formulates a set of constraints using control flow constructs

in the caller procedure to compute the value of stack

modification at a call-site. The constraints are solvable in

most scenarios. When the constraints cannot be solved, it

embeds run-time checks to maintain the functionality of IR.

This enhanced memory model improves the precision of

several analysis techniques for executables. In our second

contribution, we employ this memory model and present

a novel symbolic analysis for executables, Symbolic Value

Analysis, which enables analysis similar to source code.

Symbolic analysis [4], [5] is employed for a variety of ap-

plications like alias analysis and security analysis. In source

code, only pointer and array accesses are considered memory

accesses, hence such symbolic analysis methods [4], [5] only

focus on instructions involving program variables. Due to

a large percentage of memory operations in executables, a

symbolic analysis framework for executables must employ

a precise memory model.

However, existing frameworks either ignore memory mod-

els while recovering a symbolic abstraction or do not recover

a symbolic abstraction. Several executable techniques [6],

[7], [8] restrict their analysis to only the registers and

handle memory locations in a very conservative manner.

Consequently, these methods lose a great deal of preci-

sion at each memory access. On the other hand, several

popular analysis frameworks for executables, notably Value

Set Analysis (VSA) [3] and related methods [9], analyze

memory accesses but represent values of program variables

as a set of integral values and memory locations, which do

not represent the symbolic relations between these variables.

The primary contributions of our work are the following:

→ Precise and correct stack memory abstraction: We

present a hybrid static-dynamic mechanism to deter-

mine the impact of executable specific artifacts such as

indirect CTIs on the value of stack pointer, resulting in a

functional representation and a precise memory model.

This mechanism can be employed to improve the

precision of any existing memory analysis framework

such as VSA [3] and others [9].

→ Novel Symbolic Analysis: Based on the improved

memory model, we formulate a novel Symbolic Value

Analysis which computes symbolic abstraction for vari-

ables as well as for memory locations.

→ Applications: We extend our analysis for several appli-

cations such as security analysis, redundancy removal

and demonstrate that client applications become less

effective when memory tracking is not enabled.

We evaluated our techniques with SPEC2006 benchmark

suite as well as several real world programs such as Apache

server. Our techniques improve the precision of memory

models by 25% in programs containing significant number

of indirect CTIs. This improved memory model enhances

the precision of Symblic Value Analysis by 20% on average.

 main:
1 sub 24, $esp //Local Allocation
2 mov $10, 8(%esp) //Access (%esp+8)
3 call *%eax // An Indirect call
4 mov $20, 12(%esp) //Access
 //(%esp+12+UNKNOWN)
 ……

Figure 1: An example demonstrating the imprecision in the

presence of indirect calls, second operand in the instruction

is the destination

Our techniques are scalable and analyze large programs such

as gcc in less than 5 minutes.

II. MOTIVATION

In this section, we demonstrate the limitation of existing

frameworks in obtaining a functional IR with a precise

memory model and the relative importance of considering

the underlying memory model for symbolic abstraction.

Precise and correct stack memory abstraction : A

source program has an abstract stack representation where

the local variables are assumed to be present on the stack

but their precise layout is not specified. In contrast, an

executable has a fixed physical stack layout.

To recreate an IR, the physical stack must be decon-

structed to individual abstract frames per procedure. Since,

each frame comprises variables from the source code, a

memory model is defined as precise if each frame can

be divided into abstract locations analogous to the original

variables.

Previous methods [3] have approached this problem in

two steps. First, all the instructions in a procedure which

can modify the stack pointer are analyzed to compute the

maximum size to which the stack can grow in a single

invocation of the procedure. Next, each such abstract frame

is further abstracted through a set of a-locs. An a-loc is

characterized by two attributes: its relative offset in the re-

gion with respect to other a-locs and its size. The a-loc

representation requires the determination of the value of the

stack pointer at each program point in a procedure relative

to its value at the entry point.

As highlighted in Section I, this is usually accomplished

by tracking each update to the stack pointer. However,

several artifacts might result in a non-deterministic stack

modification, invalidating the inherent assumption in previ-

ous frameworks [3]. We characterize the impact of a CTI I

on the value of stack pointer using the following definition:

StackDiff(I) = Stack Pointer after I - Stack Pointer

before I.

The term StackDiff can be applied to either the CTI

or a corresponding called procedure, and represents the

stack modification amount in either case. StackDiff of

a CTI can be positive if the called procedure cleans up

its arguments, or zero if it does not. In theory, it can be

negative if the procedure leaves some local allocations on

the stack, although we have not observed this in compiled

code. Several approaches have been suggested to calculate

the value of StackDiff by symbolically evaluating all

the stack modification instructions in a procedure [3]. As

per these methods, StackDiff at an indirect CTI is

deterministic if all possible targets have the same value of

StackDiff. Thereafter, the stack pointer in the caller pro-

cedure is adjusted by StackDiff amount. This adjustment

is imperative for maintaining the correctness of data-flow.

However, StackDiff cannot be determined statically

in all scenarios. For example, possible targets of an indi-

rect CTI might have different StackDiff, or an external

function with an unknown prototype might have a statically

unknown StackDiff. In such scenarios, existing frame-

works either result in an imprecise memory abstraction or

fail to maintain the correctness. As per CodeSurfer/X86, “if

it cannot determine that the change is a constant, it issues

an error report” (Section 4.2) [3]. Hence, the corresponding

frame cannot be represented through a-locs, resulting in

an imprecise memory model. IDAPro applies a constraint-

based mechanism to compute the values of StackDiff

independent of the called procedures. However, when the

underlying method fails to determine a unique solution,

it compromises the correctness by accepting one feasible

solution (which could be wrong) out of an infinite number

of possible outcomes [10].

Fig 1 illustrates an example of such a scenario. In Fig 1,

a local region of size 24 is allocated in a procedure, conse-

quently, the memory access at Line 2 results in the discovery

of an a-loc at offset 16. Suppose the possible targets

of the indirect CTI at line 3 have different StackDiff

values. Consequently, esp after Line 3 has an unknown

offset relative to its value at the entry point of the procedure.

Hence, no a-loc can be identified at Line 4. On the other

hand, if StackDiff value is calculated wrongly, it results

in an incorrect data-flow at Line 4.

Our hybrid mechanism maintains the precision as well

as functionality. Our static mechanism enables abstraction

through a set of a-locs and dynamic mechanism guaran-

tees the correctness when StackDiff cannot be computed.

Symbolic abstraction: Since executables extensively em-

ploy memory locations, not analyzing them for symbolic

analysis in executables results in imprecise symbolic re-

lations. Fig 2(a) shows a source code example and the

relations between various computations determined through

symbolic analysis. Fig 2(b) shows a sample code which

might arise when the example in Fig 2(a) is converted to

an executable. Here, variables a, b, c and d are allocated

to memory locations. Since existing symbolic analyses for

source code [4] as well as for executables [6] do not

propagate symbolic expressions across memory locations, a

new symbol is defined at every memory reference instruction.

As evident from Fig 2(c), the resulting symbolic relations

are conservative and yield imprecise program information.

We observe that representing a symbolic abstraction for

int main(){
 int a,b,d;

scanf(“%d”,&a);
 if(a>0)
 return;
 b=a+2;
 ……
 c=a+12;
 d=b+10;
 }

Symbolic
Relations:
b=a+2
c=a+12
d=a+12

Allocations: a: -4(%ebp) b:-8(%ebp) No With
 c: -12(%ebp) d:-16(%ebp) Memory Memory
 abstraction abstraction
main:
1 mov $esp,$ebp
2 sub 24,$esp //Local Allocation
3 lea -4(%ebp),4(%esp) //mov &a for arg
4 mov ptr,(%esp) //mov “%d” for arg
5 call scanf
6 mov -4(%ebp), %eax //Load a x1 x1
7 jg L1: //Return if a>0
8 add $2, %eax //Compute a+2 x1+2 x1+2
9 mov %eax, -8(%ebp) //Store b
 …
10 mov -4(%ebp), %eax //Load a x2 x1
11 add $12, %eax //Compute a+12 x2+12 x1+12
12 mov %eax, -12(%ebp) //Store c

13 mov -8(%ebp), %eax //Load b x3 x1+2
14 add $10, %eax //Compute b+10 x3+10 x1+12
15 mov %eax, -16(%ebp) //Store d
L1:
 ret

 (a) (b) (c) (d)

Figure 2: (a) A sample C code (b) Corresponding assembly

code, the second operand in the instruction is the destination

(c) Symbolic relations on the assembly code with no memory

abstraction (d)Symbolic relations on the assembly code with

memory abstraction

memory locations can eliminate this limitation. Fig 2(d)

shows the symbolic relations when a symbolic abstraction

is maintained for memory locations as well. Suppose, the

variable a (-4(%ebp)) has value x1 in the enviroment of

symbolic abstraction. Hence, the representation of symbolic

abstraction for memory locations implies that the variable

%eax at Line 6 and Line 10 is assigned value x1. Similarily,

the memory location -8(%ebp) at Line 9 and the variable

%eax at Line 13 are assigned value x1+2. Propagation of

these values results in symbolic relations that are similar to

those obtained through the source code.

III. OVERVIEW

Fig 3 presents an overview of our binary analysis frame-

work. Our framework is built over existing SecondWrite

framework as presented in [11]. SecondWrite translates the

input x86 binary code to a functional program represented

in the intermediate representation (IR) of the LLVM Com-

piler [12]. SecondWrite implements various mechanisms

to obtain an IR which contains features like procedures,

procedure arguments and return values. This conversion back

to a compiler IR is not a necessity for the work we present;

any binary system can use our analysis. LLVM IR obtained

above is passed through our analysis system.

A key challenge in binary analysis is discovering which

portions of the code section in an input executable are

definitely code. SecondWrite implements speculative disas-

sembly and binary characterization, proposed by Smithson

and Barua [13], to efficiently address this problem. The

indirect CTIs are handled by translating the original target

to the corresponding location in IR through a call translator

procedure [13]. Each recognized procedure (through specu-

lative disassembly) is initially considered a possible target of

the translator, which is pruned further using alias analysis.

LLVM

front

end

LLVM IR

optimizations

Binary

reader &

Disassembler

x86 ISA

XML

Symbolic

Analysis

LLVM IR

LLVM IR Optimized
x86 backend C.C++

Fortran

 Input

binary

C back-end

Redundancy

Elimination

Parallelization

OUR NEW FRAMEWORK

Binary

Analysis

Tools

EXISTING SECONDWRITE FRAMEWORK

Security Analysis

Alias Analysis

LLVM IR

Output

binary

Output

C code

EXISTING LLVM COMPILER

Figure 3: Organization of the system

A. Limitations/Assumptions

Memory assumptions: Similar to most executable anal-

ysis frameworks [3], [14], [15], our techniques assume that

executables follow the standard compilation model where

each procedure may allocate an optional stack frame in one

direction only and each variable resides at a fixed offset in

its corresponding region. Like most static binary tools, we

do not handle self modifying or obfuscated code.

IV. RECOVERING PRECISE MEMORY MODEL

In this section, we discuss our hybrid static-dynamic

solution to obtain a functional representation with a pre-

cise memory model. We first present a symbolic constraint

mechanism to determine the value of StackDiff for each

CTI where it is unknown. Next, we discuss our solution

for maintaining the functionality even when StackDiff

at some CTIs cannot be solved. Our analysis employs the

prototypes of well-known library functions, similar to to

the IDAPro’s FLIRT database [2], for determining their

StackDiff value. We assume that existing methods [3]

are able to determine the value of StackDiff for each

procedure, which holds true under the assumptions of stan-

dard compilation model.

A. Static Computation

A CTI I can result in an unknown StackDiff in three

cases, which we collectively refer to as Unknown CTIs.

Case 1: I is a direct CTI to an external procedure with

unknown prototype.

Case 2: I is an indirect CTI with unresolved targets.

Case 3: I is an indirect CTI and its targets have different

StackDiff.

In such scenarios, our mechanism employs several bound-

ary conditions imposed by the control flow inside the

corresponding caller procedure to determine StackDiff.

The proposed constraint formulation does not require us to

determine the precise set of targets of an indirect CTI, which

itself is an extremely challenging problem.

We define symbolic values XI and SI for representing

StackDiff and local stack height at a CTI I. Every stack

modification instruction in a procedure is analyzed to derive

an expression of SI in terms of the XIs. The resulting

Unknown Symbolic Values : XI , where XI = StackDiff of procedure call I

Initial/Helper Variables :

Targ(T): Set of procedures targeted by call target address T

StackDiff(f): StackDiff of procedure f

Y_SET(F) = ∪f∈FStackDiff(f)

BeginP = Entry point of procedure P; PredBB = Predecessors of basic block BB;

BeginBB,EndBB = Entry point,terminator of basic block BB

SI = Stack height after instruction I;

SBB = Stack height at beginning of basic block BB;

PrevI = the previous instruction to I (I 6= BeginBB)

SI’ = if (I 6= BeginBB) then SPrevI else SBB
R : A register, Size(R): Size of register R, N: A constant

Initial Conditions : SBeginP = 0

Data flow rules :

For every instruction I:

I = push R ⇒ SI = SI’ + size(R)

I = pop R ⇒ SI = SI’ - size(R)

I = add esp, N ⇒ SI = SI’ - N

I = sub esp, N ⇒ SI = SI’ + N

I = jmp L ⇒ SBeginL = SI’
I = call Y ⇒

if (Y_SET(Targ(Y)) contains a single constant C)

SI = SI’ + C

else

SI = SI’ + XI

default (if not an invalidation condition) ⇒ SI = SI’

Boundary Conditions :

1. ∀ BB: ∀ Pred ∈ PredBB, SBeginBB = SEndPred
2. I = ret : Constraint SI’ = 0

Invalidation Conditions :

1. I = esp ← ... /* Any assignment except in data-flow rules*/

2. I accesses return address

Figure 4: Data flow rules used to determine stack modifica-

tions in a procedure P

expressions are transformed into a linear system of equations

that can be solved to calculate the value of XIs.

Fig 4 presents the rules for generating symbolic con-

straints and equations in a particular procedure P. It presents

rules for analyzing each stack modification instruction, a

set of initialization and boundary conditions for solving the

symbolic equations and a set of conditions which invalidate

our symbolic constraints for the current procedure.

In an x86 program, several instructions can modify the

value of stack pointer. The local frame in a procedure

is usually allocated by subtracting a constant value from

esp. Similarly, the local frame is deallocated by adding

a constant amount to esp. Push and pop instructions

implicitly modify the stack pointer by the size of amount

pushed onto the stack. The rules in Fig 4 incorporate the

deterministic modification at each CTI. An indeterministic

modification is modeled symbolically as XI. The dataflow

rules in Fig 4 obtain an expression for SI considering each

such stack modification instruction.

In order to solve the above symbolic equations, Fig 4

generates two constraints based on the control flow in

procedure P. These conditions hold true for every executable

following the standard compilation model [3]:

→ ∀Pred ∈ PredBB, SBeginBB = SEndPred: This condi-

tion implies that at a merge point in the control flow

of a procedure, the stack height at the end of every

predecessor basic block must be equal. Otherwise, any

subsequent stack access might access different stack

locations depending on the path taken at run time,

resulting in an indeterminate behavior.

→ SI’ = 0 ∀ ret ∈ P: In an x86 program, a return

instruction loads an address from the location pointed

by esp and sets the program counter to the loaded

value. Since the return address is pushed by the caller

procedure and a compiled program usually does not

access the return address directly, esp can refer to

the return address only if stack height SI’ is zero.

Thereafter the return instruction may optionally specify

an operand to clean up some incoming arguments, so

StackDiff could be positive or zero.

Fig 4 also formulates the following conditions which

invalidate the assumptions behind our boundary conditions.

In such situations, we discontinue our static mechanism and

rely on our dynamic mechanism to maintain the correctness.

→ I = esp ← ... : Any assignment to esp other than

those in data-flow rules implies a local frame allocation

of variable size. In such a scenario, the boundary

conditions fail to obtain a solution for XI. However,

this condition arises in extremely rare circumstances of

variable size arrays on stack frame.1

→ I accesses return address: In a usual compiled code,

StackDiff is either zero or positive. In theory, pro-

cedures could have a negative StackDiff, implying

that the procedure leaves some local allocations on the

stack. In such scenarios, esp would not point to the

return address at the point of return. Hence, a return

must be implemented by explicitly accessing the return

address from the middle of the stack. This invalidates

the assumption behind our boundary condition 2 and

we resort to run-time checks.

The resulting symbolic equations are solved by employing

a custom linear solver that categorizes the equations into

disjoint groups based on the variables used in every equation.

A group is solved only if the number of equations is equal

to the number of unknowns. We keep propagating calculated

values to other groups until no more calculated values are

present. Once we obtain a solution of XI for each I in

a procedure, we can obtain a safe abstraction of abstract

memory regions into a set of a-locs using the methods in [3].

B. Dynamic Mechanism

As mentioned above, the above method does not guarantee

a solution for all the scenarios. For example, it fails to deter-

mine the value of StackDiff in basic blocks containing

multiple CTIs each with an unknown XI value. Below, we

discuss our dynamic mechanism to handle all the three cases

of Unknown CTIs presented in Section IV-A.

Case 1: Since this case represents control transfer to an ex-

ternal procedure, the body of the called procedure cannot be

1Code produced by popular compilers contains x86 idioms like leave
instruction which implicitly assign a previously stored value to esp. Such
idioms are currently handled explicitly in our framework.

Sym := Sym+T|T
T :=T*F|F
F := l | n
l := [IR Variables]
n := [Int]

Figure 5: Grammar for symbolic expressions. + and * are

standard arithmetic operators, Int is the set of all integers,

IR Variables are symbols in the obtained intermediate rep-

resentation

modified. Such scenarios are handled by calling the external

procedure using a trampoline. The trampoline dynamically

computes the shift in stack pointer value before and after

the call using inline assembly instructions.

Case 2 and Case 3: Recall from Section III, an indirect

CTI is translated to the corresponding location in IR using

a switch statement inside a call translator procedure. In

such scenarios, StackDiff is declared as an explicit return

variable in the call translator procedure. The definition of the

call translator is modified to return the value of StackDiff

for the called procedure in each switch statement.

V. SYMBOLIC VALUE ANALYSIS

Our technique, Symbolic Value Analysis, is a flow-

sensitive, context insensitive analysis which computes a

conservative over-approximation of a set of symbolic values

that each data object (variables and a-locs) can hold at

each program point. Symbolic Value Analysis is based on

memory model obtained in Section IV.

As explained in Section I, Symbolic Value Analysis needs

to define precise rules for computing symbolic abstractions

at memory access instructions. Sec V-A first presents the

abstraction for representing the symbolic values in our

analysis and subsequent sections discuss the intraprocedural

and interprocedural versions of the analysis.

A. Symbolic Abstraction

Fig 5 presents the grammar for representing the symbolic

expressions in our abstraction. As evident from Fig 5,

symbolic expressions are numeric algebraic polynomials

containing sums of product terms of variables.

Symbolic Value Set: A symbolic value set is a

finite set of symbolic expressions defined by the Grammar

in Fig 5. It constitutes a conservative over-approximation of

the the set of symbolic values that each data object holds.

The abstraction supports standard arithmetic set operators

such as Addition (⊕) and Multiplication (⊗). The abstraction

also supports a Widen (∇) operator. This operator imple-

ments the inherent widening operation in our environment.

If the required cardinality increases beyond a limit, we

invalidate the current symbolic value set. This operation

prevents the exponential blowup of symbolic expressions.

∇SymValSet1 = {if |SymValSet1| > LIMIT, then >

else SymValSet1}
(1)

B. Intraprocedural Analysis

Our analysis defines three kind of memory regions, as-

sociated with procedures (Stack), global data (Global)

and heaps (HeapRgn). The method presented in Section IV

enables us to precisely abstract the above memory regions

through a set of a-locs in the presence of indirect CTIs.

Our method assumes that the symbols corresponding to

the binary code’s registers have been converted to single-

static assignment (SSA) form before running our analysis.

Since in SSA form each variable is assigned exactly once, a

single symbolic map is sufficient to maintain flow-sensitive

symbolic value sets for variables. However, memory

locations are usually not implemented in SSA format in

IR. Consequently, a symbolic map is maintained at each

program point to represent flow-sensitive symbolic value

sets for memory locations. Hence, symbolic value analysis

effectively computes the following maps:

SR: Map between Vars and their corresponding symbolic value sets.

SMe: Map between a-locs and their corresponding symbolic value sets before a

program point e

Executables regularly employ the indirect-addressing

mode for accessing memory locations. After obtaining

a-locs using the framework in Section IV, VSA [3] is

employed to determine the set of memory addresses which

each memory access instruction can access. Given a set of

a-locs, VSA can compute an over-approximation of the

set of a-locs that each register and each a-loc holds at

a particular program point.

The algorithm is implemented on the IR, but we present

our algorithm on C-like pseudo instructions for ease of

understanding. Each instruction in the IR implements a

transfer function which translates the symbolic maps defined

at its input to the symbolic maps at its output. The following

definitions are introduced to ease the presentation.

Ri: IR (SSA) variables; e : A program point; r: Data object (Var or a-loc)

SM’e: Map between a-locs and their symbolic value sets after program point e

SR(r): Mapping of Var r in map SR; SMe(r): Mapping of a-loc r in map SMe

Meme(r):Set of memory addresses that r can hold at point e (obtained by VSA)

(r,SV): Pairing between a data object r and a symbolic value set SV

The memory abstraction includes a concept of fully ac-

cessed and partially accessed a-locs. In order to under-

stand partial a-locs, consider that Meme(r) contains a

list of memory addresses that the data object r can hold

at current program point e. If this object is dereferenced

in a memory access instruction of size s, the a-locs,

that are of size s and whose starting addresses are in

set Meme(r), represents the fully accessed a-locs. The

partially accessed a-locs consists (i) a-locs whose

starting addresses are in Meme(r) but are not of size s and

(ii) a-locs whose addresses are in Meme(r) but whose

Name Operation Transfer Function

1. Assignment R1 := R2
SR = {SR − SR(R1)} ∪ {(R1, SR(R2))}

2. Arithmetic R3 := R2OP R1
if OP = +

tmp = ∇(SR(R2) ⊕ SR(R1))

if OP = ∗

tmp = ∇(SR(R2) ⊗ SR(R1))

else //Create a new symbolic expression

tmp = R3

SR = {SR − SR(R3)} ∪ {(R3, tmp)}

3. Load R1 := ∗(R2)
{F, P} = ∗(Meme(R2), s)

if |P | = 0

tmp = ∇(
⋃

v∈F

SMe(v))

else

tmp = >

SR = {SR − SR(R1)} ∪ {(R1, tmp)}

4. Store ∗(R2) := R1
{F, P} = ∗(Meme(R2), s)

if |F | = 1 & |P | = 0 &Func is not recursive &

F has no heap a-locs //Strong Update

SM
′
e = {{SMe − SMe(v)} ∪

{(v, SR(R1))} | v ∈ F}

else //Weak Update

SM
′
e = {{SMe − SMe(y) | y ∈ {F ∪ P}} ∪

{(v,∇(SR(R1) ∪ SMe(v))) | v ∈ F} ∪

{(p,>) | p ∈ P}}

5. SSA Phi Rn+1 =

φ(R1, R2, ..., Rn)
SR = {SR − SR(Rn+1)} ∪ {R1,∇(

⋃

i∈(1,n)

SR(Ri))}

Table I: Transfer functions for each instruction in a pro-

cedure Func. Here, s denotes the size of dereference in a

memory access instruction.

starting addresses and size do not meet the condition to be

fully accessed a-locs. Using the notation from [3], this

operation is mathematically represented as:

{F,P} = *(Meme(r),s)

Here, F represents the fully accessed and P represent

the partially accessed a-locs. As the name suggests, only

some portion of a partial a-loc is updated or referenced

in a memory access instruction. Hence, they are treated

conservatively in our analysis, as will be explained below.

Table I shows the mathematical forms of transfer func-

tions for each instruction. Below, each of these transfer

functions is discussed in detail.

1. Assignment: e: R1 := R2

This is the basic operation where symbolic analysis behaves

similarly to the concrete evaluation. Any existing entry in

the symbolic map SR corresponding to the variable R1

(computed in an earlier iteration) is removed from the map

and the symbolic value set of variable R2 is assigned to

variable R1.

2. Arithmetic Operation: e: R3 := R2 OP R1

In such scenarios, the analysis evaluates the symbolic values

according to the underlying mathematical operator. The eval-

uation is defined for addition, subtraction and multiplication

operators. Addition and multiplication are handled by em-

ploying the underlying (⊕) and (⊗) operators respectively.

Subtraction operation is handled analogous to the addition

by reversing the sign of each coefficient in the symbolic

expressions of second operand, R1. Since the remaining

operations are not represented, a new symbolic expression

is introduced to represent the result of the computation.

3. Memory Load e: R1 := *(R2)

The analysis relies on obtaining the a-locs accessed by

this instruction. If the current instruction does not access

any partial a-loc, the symbolic value of variable R1 is

computed by unioning the symbolic values corresponding

to each of the possible a-loc. Otherwise, it is assigned >.

4. Memory store e: *(R2) := R1

The propagation of symbolic values is governed by cur-

rent memory store accessing a single a-loc or multiple

a-locs. If the current memory store only updates a single

fully accessed a-loc (strong update), the existing symbolic

values of the destination memory location is replaced by

the symbolic set. Otherwise, the new symbolic values are

unioned with the existing ones to obtain the updated sym-

bolic value set of fully accessed a-locs (weak update).

The partially accessed a-locs are assigned symbolic >.

Memory regions corresponding to the stack frame of a re-

cursive procedure or to heap allocations potentially represent

more than one concrete a-loc. Hence, the assignments to

their a-locs are also modeled by weak updates.

5. SSA Phi Function: e : Rn+1 = φ(R1, R2, ..., Rn)
At join points in the control flow of a procedure, the

symbolic value sets from all the predecessors are unioned

to obtain a new symbolic value set.

C. Interprocedural propagation

Interprocedural analysis requires the correct handling of

symbolic values at callsites and return points.

Several binary analysis frameworks [16], [3], including

SecondWrite [11], implement various analyses to recognize

the arguments. Once the arguments are recognized, formal

arguments and returns are represented as a part of procedure

definition and actual arguments and returns are explicitly

represented as a part of a call instruction in the IR.

The symbolic value set of a formal argument for a

procedure P is computed by unioning the symbolic value sets

of corresponding actual arguments across all the call-sites

for procedure P. Mathematically, the initialization of formal

fi of procedure P, where aci represents the corresponding

actual argument at a callsite c, is represented as

SR = {SR− SR(fi)} ∪ {(fi,∇(
⋃

∀c∈CallSites(P)

SR(aci)))} (2)

The return variables are also handled in a similar manner. In

order to propagate the symbolic values of memory locations,

the memory symbolic maps from each call site need to be

unioned to determine the symbolic map at entry point Pentry

of a procedure P .

SMPentry =
⋃

∀c∈CallSites(P)

SMc (3)

Similarly, Symbolic map, just after a call instruction C, is

computed by unioning the symbolic maps at all the return

points in the called procedure P.

The externally called procedures are handled in one

of the following three ways. First, procedures which are

known not to affect the memory regions (e.g. puts, sin)

are modeled as identity transformers (a NOP). External

procedures like malloc, which create a memory region,

are also modeled as identity transformers since we already

handle these procedures by defining a memory abstraction

HeapRgn corresponding to each allocation site. External

procedures like free, which destroy a memory region,

are conservatively modeled as NOP by our analysis. Next,

unsafe but known external procedures (e.g. memcpy) are

handled by widening the symbolic value set of all a-locs

in the memory regions possibly accessed by the procedure.

Unknown external procedures (which include user defined

libraries) are handled by widening the symbolic value set of

registers and all a-locs in all the memory regions.

VI. RESULTS

Our techniques are implemented as part of the Second-

Write framework presented in Section III. The evaluation is

performed on several benchmarks from the SPEC2006 and

OMP2001 suites and some real world programs, as listed

in Table II. Benchmarks are compiled with gcc v4.3.1 with

O3 flags (Full optimization) and results are obtained on a

2.4GHz 8-core Intel Nehalem machine running Ubuntu.

A. Functional Representation and Precise Memory Model

Fig 6 and Fig 7 present the statistics regarding our

hybrid mechanism for obtaining precise memory model and

functional IR. We only present statistics for benchmarks

containing non-negligible Unknown CTIs (negligible defined

as ≤ 10 or number of procedures containing Unknown CTI

≤ 1%). Of 33 programs in Table II, 11 had non-negligible

unknown CTIs. Fig 6 presents the fraction of procedures

containing Unknown CTI in each of these benchmarks. It

divides this fraction into scenarios where the static mecha-

nism was able to determine the value of StackDiff and

where the dynamic mechanism was required to maintain the

functionality. Case 1 (Section IV-A) does not arise since

we employ the prototypes for standard library procedures.

We never hit the invalidation conditions stipulated in Fig 4,

justifying the assumptions behind our formulation.

Fig 7 illustrates the additional a-locs derived as a result

of successful constraint solutions, normalized with respect to

original a-locs of type Stack (Section V-B). As evident, we

were able to obtain 10% more a-locs in C benchmarks

and 30% more a-locs in C++ benchmarks on average.

This enhanced a-locs abstraction is employed in our

symbolic value analysis framework.

2

6

10

14

18

bzi
p2

sj
en

g

om
net

pp

so
ple

x

h26
4

ca
ct

us
dea

l

povr
ay

per
lb

en
ch gcc

xa
la

n
A
VG

Benchmarks

%
 o

f
p

ro
c
e
d

u
re

s

Static Dynamic

Figure 6: Percentage of procedures with

unknown CTIs. The static represents

cases when constraint solvers succed

0

10

20

30

40

50

60

bzi
p2

sj
en

g

om
net

pp

so
ple

x

h26
4

ca
ct

us
dea

l

povr
ay

per
lb

en
ch gcc

xa
la

n

A
VG

-C

A
VG

-C
++

Benchmarks

%
 o

f
n

e
w

 A
lo

c
s

Figure 7: Additional alocs added as a

result of constraint solvers, normalized

to original number of alocs

0.4

0.5

0.6

0.7

0.8

0.9

1

bzi
p2

sj
en

g

om
net

pp

so
ple

x

h26
4

ca
ct

us
dea

l

povr
ay

per
lb

en
ch gcc

xa
la

n
A
VG

Benchmarks

N
o

rm
a
li

z
e
d

 a
g

a
in

s
t

o
ri

g
in

a
l

a
-l

o
c
s

Figure 8: Variables requiring a new

symbolic alphabet in presence of addi-

tional a-locs

Application Source Lang LOC # Proc Time(s) Mem

(MB)

bwaves Spec2006 F 715 22 4.25 24.47

lbm Spec2006 C 939 30 0.8 1.03

equake OMP2001 C 1607 25 0.64 3.62

mcf Spec2006 C 1695 36 0.31 2.85

art OMP2001 C 1914 32 0.36 2.74

wupwise OMP2001 F 2468 43 1.37 5.68

libquantum Spec2006 C 2743 73 1.30 6.30

leslie3d Spec2006 F 3024 32 8.24 23.72

namd Spec2006 C++ 4077 193 19.46 111.53

astar Spec2006 C++ 4377 111 1.49 8.39

bzip2 Spec2006 C 5896 51 4.8 90.27

milc Spec2006 C 9784 172 41.16 19.68

sjeng Spec2006 C 10628 121 9.93 34.98

sphinx Spec2006 C 13683 210 7.11 31.19

zeusmp Spec2006 F 19068 68 37.85 285.48

omnetpp Spec2006 C++ 20393 3980 21.66 58.24

hmmer Spec2006 C 20973 242 12.13 36.52

soplex Spec2006 C++ 28592 1523 21.21 144.14

h264 Spec2006 C 36495 462 29.56 220.53

cactus Spec2006 C 60452 962 25.65 185.05

gromacs Spec2006 C/F 65182 674 47.82 252.33

dealII Spec2006 C++ 96382 15619 114.30 240.18

calculix Spec2006 C/F 105683 771 192.99 404.32

povray Spec2006 C++ 108339 3678 71.01 242.61

perlbench Spec2006 C 126367 2183 94.18 210.37

gobmk Spec2006 C 157883 4188 60.66 242.19

gcc Spec2006 C 236269 6426 280.37 490.68

xalan Spec2006 C++ 267318 30,062 264.97 183.75

gzip Compress C 10671 98 1.42 20.06

tar Compress C 20518 343 9.58 18.85

ssh Web clinet C 73335 887 40.57 22.55

lynx Browser C 135876 2106 140.08 73.01

apache WebServer C 232931 2026 37.98 232.12

Table II: Applications Table

B. Symbolic Value Analysis

Table II shows the analysis time and storage requirements

of our Symbolic Value Analysis on various applications. The

numerical value of Limit, the maximum size of a symbolic

value set, was kept to 5. The analysis time and the required

storage is largely a function of number of procedures in

the benchmark. The analysis time is typically low, within

1 minute, for most of the benchmarks except for some

intensive benchmarks like gcc and dealII.

In order to understand the importance of tracking memory

locations, we obtain the percentage of symbolic expressions

that containing at least one symbolic alphabet propagated

through a memory location, as a percentage of symbolic

expressions for all IR variables. We observe that 35% of

symbolic expressions contain alphabets propagated through

memory locations. An extended version of the paper [17]

presents a detailed figure. In absence of an abstraction for

memory locations, the analysis would have introduced a new

alphabet in all these expressions. This validates our central

contribution that tracking memory locations is essential for

effective symbolic analysis on executables.

In order to understand our symbolic abstraction, we

divided the objects into various categories according to

the size of their symbolic value set. On average, 64% of

objects can be abstracted with a single symbolic expression

in our symbolic domain, 16% of objects need multiple

expressions and 20% of objects cannot be represented with

finite symbolic abstraction (>) [17]. Maintaining a symbolic

value set instead of a single symbolic expression allows us

to maintain this extra precision for 16% of data objects.

Fig 8 captures the enhancement in the precision of

Symbolic Value Analysis with the presence of additional

a-locs derived by the constraint mechanism. According

to Table I, a load instruction accessing an unknown memory

location is represented by a new symbolic alphabet. Fig 8

demonstrates the decrease in the number of load instructions

requiring a new alphabet while employing additional a-locs.

The presence of additional a-locs enhances the precision of

symbolic value analysis by 10% to 50% in several programs.

C. Applications

As mentioned before, symbolic analysis is employed in

multiple source-level analysis. Here, we demonstrate that

our Symbolic Value Analysis enables us to extend several

source-level analyses to executables.

Value numbering: It has been shown that even highly

optimized executables contain large amount of redundant

instructions. For example, Fernandez et al. [18] observed that

around 30% of memory references in an optimized program

are redundant. Redundancy elimination simplifies the inter-

mediate representation, thereby aiding other optimizations

and speeding up subsequent binary analysis. For example,

time taken by bug testing tools for solving a query can be

cut in half by simplifying the query first [19].

As explained in Section II, memory based symbolic anal-

ysis frameworks obtain more complete symbolic relations

0.8

1

1.2

1.4

1.6

1.8

b
w

a
v
e
s

lb
m

e
q

u
a
k
e

m
c
f

a
rt

w
u

p
w

li
b

q
u

a
n

t
le

s
li

e
3
d

n
a
m

d
a
s
ta

r
b

z
ip

2
m

il
c

s
je

n
g

s
p

h
in

x
z
e
u

s
m

p
o

m
n

e
tp

h
m

m
e
r

s
o

p
le

x
h

2
6
4

c
a
c
tu

s
g

ro
m

a
c
s

d
e
a
l

c
a
lc

u
li

x
p

o
v
ra

y
g

o
b

m
k

p
e
rl

g
c
c

x
a
la

n
A

V
G

Benchmarks

N
o

rm
a
li
z
e
d

 #
 E

q
u

iv
a
le

n
t

c
o

m
p

u
ta

ti
o

n
s

Without memory-based symbolic analysis With memory-based symbolic analysis

Figure 9: Normalized improvement in detection of equivalent

computations (No Symbolic analysis = 1.0)

between computations in an executable, exposing more

equivalences than defined by traditional Value numbering.

We define an abstract interpretation based algorithm on

the lattice of symbolic expressions. Fig 9 compares the num-

ber of equivalent computations determined in three cases:

one when no symbolic analysis is performed, second when

symbolic analysis is employed only for variables (obtained

by neglecting the transfer functions for memory load and

memory store in Table I) and third, when memory based

symbolic analysis is employed to determine equivalence.

Hence, the second case is similar to existing source-level

methods of symbolic analysis since it tracks only variables.

As evident, numbering employing memory-based symbolic

analysis is able to expose around 40% more equivalent

computations in executables than base value numbering

(when no symbolic analysis is applied). This figure also

shows that symbolic analysis based only on variables is

not sufficient in exposing more equivalences in executables

and exposes only 3% more equivalences than discoverable

when no symbolic analysis is applied. This underscores the

importance of maintaining symbolic abstraction for memory

locations in improving the efficacy of the applications.

Security analysis : Information flow violations repre-

sent one of the most serious security challenges in mod-

ern software systems. Source-level information-flow frame-

works [20] employ scalable thin slicing to accurately reason

about information propagation in the presence of pointers.

However, the lack of a scalable framework to accurately

track memory locations in an executable forces the existing

executable analyses to ignore memory references [21], re-

sulting in an imprecise detection of violations. Consequently,

most of the executable level frameworks resort to dynamic

information-flow analysis for detecting the violations. Our

framework statically detects information flow violations in

executables with a high degree of precision and a small

number of false alarms.

Here we evaluate our framework for detecting two impor-

tant security flaws namely format string vulnerability and

directory traversal vulnerability [22]. Format string flaws

arise due to an unsafe implementation of variable-argument

Program Exploit

Ref

Type False

Alarms

False

Alarms

(Source

Tools)

muh

pfingerd

wu-ftpd

gzip

tar

 CAN-2000-0857

 NISR16122002B

 CVE-2000-0573

 CVE-2005-1228

 CVE-2001-1267

 Format String

 Format String

 Format String

 Dir Traversal

 Dir Traversal

 0

 2

 0

 1

 0

 0

 0

 6

 0

 0

Figure 10: Security Analysis

functions like printf in C library. In such functions, a format

string argument specifies the number and type of other

arguments. However, there is no runtime routine to verify

that the function was actually called with the arguments

specified by the format string. Similarly, a directory traversal

vulnerability arises when a filename supplied by an user

is employed in a file-access procedure without sufficient

validation. Intuitively, information flow violations can be

detected by checking the presence of insecure values in the

symbolic expressions corresponding to a sensitive variable.

In order to detect these two vulnerabilities, we define the

user input functions as corrupting functions and variable

argument functions and file open functions as sensitive

functions respectively. The presence of a symbolic alphabet,

defined at a callsite of any corrupting function, in the

symbolic value set corresponding to underlying argument

of any sensitive function signifies a vulnerability.

Fig 10 shows the evaluation of our method on five

programs with known vulnerabilities. As evident, we are

able to detect these vulnerabilities, reporting fewer false

alarms than source-level tools [22]. Our method fails to

detect any of the vulnerabilities if the symbolic propagation

across memory locations is disabled.

VII. RELATED WORK

Binary analysis: There has been several binary analysis

frameworks such as BitBlaze [19], Jakstab [23], IDAPro [2],

CodeSurfer/x86 [3] and others. None of these tools obtain

a functional IR or perform customized symbolic analysis.

Several binary rewriters such as PLTO [15], UQBT [8]

obtain a functional IR, but it has very imprecise memory

abstraction, which is not suitable for advanced binary anal-

yses. As described in Section II, IDAPro comes the closest

in trying to deal with the problem of indirect CTIs, but they

do not guarantee a functional IR.

The work that is closely related to symbolic value analysis

are frameworks proposed by Debray et al. [6], Amme et

al. [7], Balakrishnan et al. [3] and Guo et al. [9]. Debray et

al. [6] and Amme et al. [7] present alias-analysis algorithms

for executables. However, their biggest limitation is that they

do not track memory locations and hence, lose a great deal of

precision at each memory access. Balakrishnan et al. [3] and

Guo et al. [9] present memory analysis algorithms that find

an over-approximation of the set of constant and memory

address ranges that each abstract data object can hold.

However, as presented in Section II, such an abstraction is

not suitable for symbolic analysis applications. Further, the

IR recovered by these frameworks is not functional.

Symbolic Analysis: There has been an extensive body

of work employing symbolic analysis for analyzing and

optimizing programs. Cousot [24] proposed an early method

for discovering the linear relationships between variables.

Rugina et al [25] employ symbolic constraint solvers to

determine symbolic bounds of each variable. Symbolic anal-

ysis has been used extensively to support the detection of

parallelism [4]. However, all these above methods obtain

symbolic expressions for only the variables and not memory

locations, hence they lose a great deal of precision when

applied to executables.

Value numbering: Several source code algorithms to

discover equivalences are based on an algorithm by Kil-

dall [26]. Later, Bodik et al [5] and others proposed

more precise algorithms for discovering equivalences using

backward symbolic propagation and path sensitive analysis.

However, all these algorithms are based on variables alone

and none of these variables propagate value numbers across

memory locations.

VIII. CONCLUSIONS

In this paper, we have proposed techniques to obtain a

functional and precise representation from executables and

presented methods to adapt symbolic analysis for executa-

bles. The improved memory model considerably enhances

the precision of our symbolic analysis framework and novel

symbolic analysis framework improves the efficacy of vari-

ous analyses. In the future, we plan to extend this framework

for other purposes like binary understanding.

REFERENCES

[1] Announcement for Binary Executable Transforms,
http://www07.grants.gov/.

[2] IDAPro disassembler, http://www.hex-rays.com/idapro/.

[3] G. Balakrishnan and T. Reps, “Analyzing memory accesses
in x86 executables,” in In CC. Springer-Verlag, 2004, pp.
5–23.

[4] M. R. Haghighat and C. D. Polychronopoulos, “Symbolic
analysis for parallelizing compilers,” ACM Trans. Program.
Lang. Syst., vol. 18, no. 4, pp. 477–518, Jul. 1996.

[5] R. Bodı́k and S. Anik, “Path-sensitive value-flow analysis,”
ser. POPL ’98, 1998, pp. 237–251.

[6] S. Debray, R. Muth, and M. Weippert, “Alias analysis of
executable code,” in POPL ’98, 1998, pp. 12–24.

[7] W. Amme and et al., “Data dependence analysis of assembly
code,” Int. J. Parallel Program., vol. 28, no. 5, pp. 431–467,
Oct. 2000.

[8] C. Cifuentes and M. V. Emmerik, “Uqbt: Adaptable binary
translation at low cost,” Computer, vol. 33, no. 3, pp. 60–66,
2000.

[9] B. Guo, M. J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman,
and D. I. August, “Practical and accurate low-level pointer
analysis,” ser. CGO ’05, 2005, pp. 291–302.

[10] Simplex method in IDA Pro, http://www.hexblog.com/?p=42.

[11] K. Anand, M. Smithson, K. Elwazeer, A. Kotha, J. Gruen,
N. Giles, and R. Barua, “A compiler level intermediate
representation based binary analysis and rewriting system,”
in EuroSys 2013.

[12] C. Lattner and V. Adve, “LLVM: A compilation framework
for lifelong program analysis & transformation,” in CGO,
2004, pp. 75–87.

[13] M. Smithson and R. Barua, “Binary Rewriting without Relo-
cation Information,” USPTO patent pending no. 12/785,923,
May 2010.

[14] G. Balakrishnan and T. Reps, “Divine: discovering vari-
ables in executables,” ser. VMCAI’07. Berlin, Heidelberg:
Springer, 2007, pp. 1–28.

[15] B. Schwarz, S. Debray, G. Andrews, and M. Legendre,
“PLTO: A link-time optimizer for the intel ia-32 architecture,”
in In Proc. 2001 Workshop on Binary Translation, 2001.

[16] J. Zhang, R. Zhao, and J. Pang, “Parameter and return-value
analysis of binary executables,” in COMPSAC ’07, 2007, pp.
501–508.

[17] A Symbolic Analysis Framework for analyzing executables,
http://www.ece.umd.edu/∼barua/icsm13-extended.pdf.

[18] M. Fernández, R. Espasa, and S. K. Debray, “Load redun-
dancy elimination on executable code,” ser. Euro-Par ’01,
2001, pp. 221–229.

[19] D. Song and et al., “Bitblaze: A new approach to computer
security via binary analysis,” ser. ICISS ’08, 2008, pp. 1–25.

[20] O. Tripp and et al., “Taj: effective taint analysis of web
applications,” ser. PLDI ’09. New York, NY, USA: ACM,
2009, pp. 87–97.

[21] M. Cova, V. Felmetsger, G. Banks, and G. Vigna, “Static
detection of vulnerabilities in x86 executables,” ser. ACSAC
’06, 2006, pp. 269–278.

[22] S. Z. Guyer and C. Lin, “Client-driven pointer analysis,” ser.
SAS’03, 2003, pp. 214–236.

[23] J. Kinder and H. Veith, “Jakstab: A static analysis platform
for binaries,” ser. CAV ’08, 2008, pp. 423–427.

[24] P. Cousot and N. Halbwachs, “Automatic discovery of linear
restraints among variables of a program,” in POPL, 1978, pp.
84–96.

[25] R. Rugina and M. Rinard, “Symbolic bounds analysis of
pointers, array indices, and accessed memory regions,” SIG-
PLAN Not., vol. 35, no. 5, pp. 182–195, May 2000.

[26] G. A. Kildall, “A unified approach to global program opti-
mization,” ser. POPL ’73, 1973, pp. 194–206.

