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Computational Decoys for Cloud Security

Georgios Kontaxis, Michalis Polychronakis, and Angelos D. Keromytis

Abstract Cloud-based applications benefit from the scalability and efficiency of-
fered by server consolidation and shared facilities. However, the shared nature of
cloud infrastructures may introduce threats stemming from the co-location and com-
bination of untrusted components, in addition to typical risks due to the inevitable
presence of weaknesses in the infrastructure itself. As a result, adversaries may be
able to place themselves in monitoring proximity to high-value targets and gain
unauthorized access to sensitive data. In this paper we present DIGIT, a system that
employs decoy computation to impede the ability of adversaries to take advantage
of unauthorized access to sensitive information. DIGIT introduces uncertainly as
to which data and computation is legitimate by generating a mix of real and decoy
activity within a cloud application. Although DIGIT may not impede intruders in-
definitely, it prevents them from determining whether a captured system is handling
actual or bogus processing within a reasonable amount of time. As adversaries can-
not easily distinguish between real and decoy activity, they have to either risk trig-
gering beacon-bearing data that can be traced back to them, or expend significant
effort to pinpoint any actual data of interest, forcing them to reveal their presence.

1.1 Introduction

The multifaceted benefits of cloud computing have led to its rapid adoption for
the deployment of online services and applications. As businesses and individuals
increasingly rely on the cloud, the threat of unauthorized data access or full com-
promise of cloud services becomes more pertinent. The recent spate of security
breaches in major online services [1–3, 6, 13, 25, 29] is indicative, and shows that
despite major advances in security research and engineering, vulnerabilities in soft-
ware components, protocol design, system configuration, operational procedures,
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and other aspects of complex systems will continue to put cloud-based applications
at risk.

The increasing sophistication of attack methods and exploitation techniques has
shown that even the latest protection techniques can be bypassed, and the most up-
to-date detection systems can be evaded. The added need of defending against ten-
ants who have legitimate access but behave maliciously against other users of the
same cloud service increases the complexity of the problem [23]. This situation ne-
cessitates the implementation of domain-specific “defense in depth” strategies that
combine multiple and diverse security measures. Prior research on cloud security
has focused on various aspects of cloud infrastructures, including data and network
isolation [20], software attestation [11], and data availability [10,16]. Although most
research efforts have focused on systems and methods for hardening cloud-based
systems and enabling the detection and prevention of security incidents, less at-
tention has been given to “second-line” defenses for hindering attackers that have
managed to gain access to parts of a system, or insider threats.

In this work we propose the concept of computational decoys, a novel approach
that encompasses deceptive information and “throw-away” computation to impede
the ability of an adversary to take advantage of any initial success they may have in
compromising a system. The main goal of our approach is to introduce uncertainty
as to the validity and authenticity of data captured by an adversary after gaining
unauthorized access in one or more hosts, and in some scenarios, reveal the presence
of the adversary.

We have applied this approach in DIGIT, a deceptive information generation, in-
jection, and tracking system aimed at detecting and confusing adversaries in cloud
settings. The system is based on a large number of application replicas, some of
which (the “deception set”) are provided with fake inputs. An adversary control-
ling a malicious or compromised replica will be uncertain as to the validity of any
captured data. The whole process is orchestrated by an application-level proxy that
mixes and dispatches real and fake requests to primary and decoy application repli-
cas, respectively. Primary and decoy replicas can be swapped at any time simply by
changing the source of inputs, increasing the confusion to potential adversaries.

A key aspect of the proposed mechanism is the believability of the generated
decoy traffic, and consequently the fidelity of the evoked computation on a decoy
replica. Enticing decoy traffic is generated automatically based on real client traffic
using context-aware protocol field randomization. The generated inputs can contain
specially crafted data whose misuse by an adversary can be subsequently detected.
Examples of such enticing bait information include documents with built-in “bea-
cons,” URLs or credentials to honeypots or sites whose access can be directly or
indirectly monitored, credit card and bank account numbers with triggers, and so
on [8,9]. Other types of decoy information that we propose to use include deceptive
documents in the file system and entries in database tables (or entire databases)—the
exact type of bait used depends on the application. Besides application-level proto-
cols, deceptive computation can be introduced at different levels, e.g., by simulating
user activity at a higher level through the generation of key strokes and mouse input
operations.
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1.2 Threat Model

Our threat model revolves around a cloud computing environment where partitioned
applications handle data-oriented user requests. We consider adversaries that have
infiltrated one or more but not all server instances or modules of a cloud application,
and have the ability to monitor the execution of the server program as well as its data
flows, including user requests and program responses. We assume that, in case more
than one cloud instances have been breached, adversaries may correlate informa-
tion received from different back-end points. However, adversaries do not have the
ability to simultaneously monitor network traffic both inside and at the edges of the
cloud. This means that adversaries cannot determine whether a specific connection
comes directly from the outside, or originates from a cloud-local proxy.

Finally, we consider that the amount of data collected in a production environ-
ment prohibits efficient analysis by humans within a realistic time frame. Therefore,
we assume that an adversary’s efforts to verify the quality of captured information
are automated and rely on behavioral heuristics as well as grammatical and statisti-
cal analysis of the data rather than human interpretation of the content and context
of the collected information. Note that server instances are oblivious to the use of
computational decoys, and thus cannot hint an attacker as to their existence. Any
access of decoy information by an attacker will lead to an alert signaling the breach,
as well as to the immediate identification of the breached instance, as decoys are
unique to the environment in which they have been deployed and their recipient.

1.3 Design

In this section we present the design of our application-level system that uses com-
putational decoys to deceive an infiltrating adversary stealing information. Our de-
sign can be overlaid on top of existing infrastructures without rearranging the pro-
duction environment. Figure 1.1 illustrates the modular structure of our proposed
system and presents the data relationships within the system itself, as well as the
exchange of flows within a cloud-computing setup.

A set of application replicas with identical functionality as the original appli-
cation servers and components receives decoy requests. All requests to application
replicas are handled normally, as if they were real, resulting in decoy computation
and system activities indistinguishable from those of real application instances. The
main component of DIGIT is placed at the edge of the cloud where a typical SSL ter-
minator or load balancer typically terminates user connections. This choice is made
for two main reasons: first, the system must be interposed in the communication of
clients with the cloud, and second, this placement enables the system to acquire a
high-level view of the application instances operating at any given time. The overall
operation of the system consists of four stages: incoming traffic interception and
classification, decoy generation, decoy dissemination, and outgoing traffic reconcil-
iation.
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Fig. 1.1 High-level overview of DIGIT’s architecture. DIGIT is designed as an overlay on top of
existing cloud infrastructures, and consists of an application-level traffic interception and decoy
generation system, and application replicas with identical functionality as the original application
servers and components. The modular design of the system allows it to be easily extended with
support for more applications (application-level traffic interception) and evolve the quality of the
decoys (decoy generation).

Initially, the system intercepts and identifies the type of incoming application
traffic. The type is defined as the combination of application protocol (e.g., HTTP)
and target application (e.g., messages targeting the end points of an e-commerce
site). Recognizing the type of incoming traffic is necessary for proceeding with traf-
fic analysis and the generation of decoys tailored to the particular application. Traf-
fic interception, shown in the center part of Figure 1.1, is organized around a series
of application-specific modules that register traffic filters with the core interceptor
module. Upon a match with one of these filters, the appropriate module is called and
the system forwards any related incoming traffic to the analysis module.

That analysis module is aware of the application protocol and identifies spe-
cific messages to provide the necessary context to the decoy generation modules.
The analysis phase takes into account context-specific information such as client
sessions. The output of the analysis phase consists of an application and message
specific template which will be used for decoy generation. Although we aim at pro-
ducing such templates in real time, an administrator can provide them based on
protocol specifications of a specific application. In that case, the output of the anal-
ysis phase is a reference containing a specific template for use. towards the decoy
generation component.

The decoy generation component receives message templates (and optionally
context-related information) and produces decoy messages that are required to be
indistinguishable from the original message when they reach an application server
instance. To do so it follows a generation-evaluation cycle that can be extended to
be reactive to feedback from the evaluation phase.

The decoy dissemination component follows decoy generation and utilizes knowl-
edge about the setup of a cloud environment to distribute decoys and legitimate mes-
sages among the instances of an application server. It makes no assumptions about
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the status of an application, e.g., whether it is compromised or not. It may take into
account information from the load balancer so as to distribute decoys and legitimate
messages in a manner similar to the load balancer’s intended behavior.

Finally, the decoy reconciliation component receives responses to the decoy and
legitimate requests from the application instances, discards the decoy responses, and
forwards the legitimate responses to the client. Optionally, if copies of the legitimate
message were given to more than one instances, it attempts to synthesize a consistent
view of the appropriate response through the formation of a response consensus.

Security Model.

Although DIGIT does not assume anything about the security of the cloud in which
it operates, there should be security guarantees about its own components. The
DIGIT proxy and its associated components should be protected against remote
attacks from an adversary. This is analogous to the protection offered by a trusted
platform module (TPM) [30] in single-system computing. As long as the TPM itself
remains secure it can be effective in its role as a crypto-system.

Target integration.

Considering DIGIT as a gateway component in a cloud setup is only our initial
approach. Effectiveness and scalability factors drive the question whether DIGIT
could be realized closer to the actual system it protects. It would be interesting
to investigate whether hardware, hypervisor or even application-driven approaches
could introduce deceptive computation.

1.4 Decoy Generation

The key challenge in generating decoy traffic is that it should appear realistic and in-
distinguishable from actual user-generated traffic. We aim to satisfy this requirement
based on the assumption that an attacker has a limited view of the cloud infrastruc-
ture and controls and monitors the behavior of a subset of the application server
instances. Our goal is for decoy requests to carry the same properties as the actual
user input and make the server to behave in the same way. We assume that actual
and decoy computation on an application replica is the same as long as, given a real
and a corresponding decoy request, similar or identical code execution paths are
followed. Currently, we do not place any context-related constraints (e.g., a series
of valid protocol messages or application requests that a user would be unlikely to
perform in a specific order) as we assume that an attacker would not attempt to dis-
tinguish decoys in such manner. However, our approach can be extended to include
more decoy evaluation heuristics.
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Fig. 1.2 Decoy traffic generation based on an (optionally feedback-assisted) generation-evaluation
approach. As more evaluation heuristics become available, the quality of generated decoys can
adapt to actual user traffic. Decoy messages that achieve high fidelity are stored in a database for
future use.

Figure 1.2 presents the process of generating realistic computational decoys. De-
coy generation begins with a set of templates for protocol messages generated by
popular client applications (e.g., web browsers). Templates are used to generate ran-
dom permutations in the acceptable value space for the parameters or content of a
given message type. For instance, if the message is an HTTP GET request carrying
the “PIN” parameter with a space of four numeric characters ([0-9]{4}) the sys-
tem would generate all permutations. Alternatively, for a “search word” parameter
with a space defined by a dictionary of the English language we would generate an
appropriate number of decoys or enough realistic decoys to satisfy a given quota.

The system then evaluates all generated decoys against the actual user input from
a training set using the heuristics mentioned above. Decoy messages that exhibit
similar or identical application server behavior are kept, while the rest are discarded.
As dynamic binary instrumentation is computationally expensive, we make a time-
space trade-off and store the produced decoys for future use rather than carry out
real-time generation and evaluation.

Early Prototype.

To assess our decoy generation approach we have implemented as an early prototype
the common scenario of web applications in a cloud environment. The focus of our
prototype is the automated generation of HTTP message decoys, an effort which is
expected to act as a guideline on practical requirements in system components and
procedures so that we may adjust our design if necessary.

Our HTTP server is Lighttpd, which uses a single-threaded queue-based work-
flow for processing user requests. We chose this server due to its simpler control flow
compared to multi-threaded event-based server implementations, which enables us
to create more easily compare the control flow graphs of real and decoy executions.
In a production environment, an attacker might have to deal with the complexity
introduced by multi-threaded event-based servers when trying to identify abnormal
execution behavior.

We implemented a tool for the Pin dynamic binary instrumentation framework
[19] to output the control flow graph of Lighttpd, initially at the function level, and
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later at the basic block level. The tool runs twice for the same legitimate user input,
in our case an HTTP GET request, to identify the invariant parts of the control
flow graph. We then run the tool for each generated decoy and compare the output
graph to the invariant graph of the legitimate input to decide which variations of the
original input qualify as realistic decoys.

Our example scenario consists of a simple service that handles single-keyword
dictionary queries. The application returns an HTTP 404 “Not Found” status code
and no content for queries with a keyword not contained in a pre-defined dictionary,
and an HTTP 200 status and the relevant content for matching keywords. Our goal
was to generate and evaluate decoys based only on the knowledge that the applica-
tion expected HTTP GET requests that carried a parameter named “query,” and that
the parameter accepted input of arbitrary length in the character space a–z. Overall,
assuming zero knowledge about the internals of the web application, we were able
to produce decoy inputs that returned valid HTTP status codes and content given
user inputs with the same behavior.

1.5 Related Work

The concept of deception in the context of computer systems and networks, with the
aim to mislead intruders and reveal their presence and actions, has been applied in
many variations and at multiple levels [24, 34].

The use of diversionary mechanisms for inducing intruders to spend precious
time on non-essential part of a system, and eventually reveal their presence has
been considered since the days of mainframe computers. Early proposals included
the insertion of pseudo-flaws in existing system components and the installation of
entrapment modules [17].

Fully-blown computer traps purposely set up and heavily monitored by security
administrators to lure prospective intruders are widely known as honeypots [21,
22, 26, 28]. Honeypots do not have any legitimate users and do not provide any
regular production service. Therefore, under normal conditions they should remain
idle, neither receiving nor generating any traffic, or generating any other activity.
Shadow honeypots [4] combine honeypots with network-level anomaly detection
mechanisms to enable their integration with production systems.

Besides decoy systems or system components, the use of decoy information can
also confuse intruders and unveil their actions. Decoys may consist of bogus med-
ical records, credit card numbers, credentials, and other bait data relevant to each
case, also known as honeytokens [27] or honeyfiles [33]. When a bait file is stolen
and later accessed, it can transparently send an alert that reveals the location of the
action. Bowen et al. have proposed techniques for generating believable decoys in-
distinguishable from actual data at the network and host level [8, 9]. They do so by
capturing real-user actions in a production environment, such as opening documents
and browsing the web, and then replaying within virtual machines to simulate the
presence of a human operator, thus making them more believable to an infiltrating
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adversary. Bojinov et al. [7] propose a methodology for generating password decoys
that closely resemble the ones of a particular user. To do so they analyze the gram-
matical properties of each password, output corresponding templates and use them
to generate similar, thus realistic, passwords.

Currently, our system uses protocol message templates to generate realisti-
cally looking application traffic and activity. However, several techniques for au-
tomatically extracting protocol specifications from their corresponding implemen-
tations [5, 18, 32], or protocol messages [12, 14, 15] can also be employed. Wang
et al. [31] have employed differential black-box protocol analysis to uncover the
syntax and semantics of application-level single-sign-on protocols. They are thus
able to automatically identify message attributes that are unique to the session, user
or device as well as integrity-verification fields, parameter propagation chains and
authentication-enabling secrets.

1.6 Conclusion

In this paper we have presented our work on DIGIT, a system which employs com-
putational decoys to introduce uncertainty and deceive an adversary who has infil-
trated a cloud setup for stealing user information. Our design can be overlaid on
top of an existing infrastructure which remains agnostic to the use of decoys. We
generate realistic application-specific decoys by requiring that they carry the same
properties and result in the same behavior by the server instance located at the back-
end of the cloud.
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