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Abstract

We propose a novel trap-based architecture for detecting passive, “silent”, attackers who

are eavesdropping on enterprise networks. Motivated by the increasing number of incidents

where attackers sniff the local network for interesting information, such as credit card numbers,

account credentials, and passwords, we introduce a methodology for building a trap-based net-

work that is designed to maximize the realism of bait-laced traffic. Our proposal relies on a

“record, modify, replay” paradigm that can be easily adapted to different networked environ-

ments. The primary contributions of our architecture are the ease of automatically injecting

large amounts of believable bait, and the integration of different detection mechanisms in the

back-end. We demonstrate our methodology in a prototype platform that uses our decoy injec-

tion API to dynamically create and dispense network traps on a subset of our campus wireless

network. Our network traps consist of several types of monitored passwords, authentication

cookies, credit cards, and documents containing beacons to alarm when opened. The efficacy

of our decoys against a model attack program is also discussed, along with results obtained

from experiments in the field. In addition, we present a user study that demonstrates the be-

lievability of our decoy traffic, and finally, we provide experimental results to show that our

solution causes only negligible interference to ordinary users.

1 Introduction

The ubiquity of wireless networking exposes information to threats that are difficult to detect and

defend against. Even with the latest advances aimed at protecting wireless networks, compromises

still occur that allow sensitive information to be recorded and exfiltrated. Secure protocols such as

Wi-Fi Protected Access 2 (WPA2) can help in preventing network compromise, but in many cases

they are not used for reasons that may include cost, complexity, or overhead. In fact, the 2008 RSA

Wireless Security Survey reported that only 49% of corporate access points (APs) in New York

City (NYC), and 48% in London, used advanced security [8]. To make things worse, only 24% of

the total APs in NYC, and 19% in London, used a WPA2 variant.

1



In general, there is little that can be done to detect passive eavesdropping on networks, and the

problem is only exacerbated with Wi-Fi due to the range of signals and the absence of physical

access barriers. Some techniques that have been applied to wired networks for detecting snoopers,

although unreliably, are based on DNS behavior, or network and machine latency [2]. The nature of

radio communication makes the problem far more challenging; generally speaking, these methods

are not applicable. We address the problem of eavesdropping, and offer a proactive defense that

makes it difficult for snoopers to avoid detection, by targeting the semantic information sought by

the attackers rather than network-level observables that have been the focus of previous efforts. We

broadly target two types of attackers:

1. Insiders, who legitimately have access to a network, but attempt to use it for attaining il-

legitimate goals. In the case of shared-key encrypted wireless networks, (e.g., WEP and

some instances of WPA) malicious insiders may eavesdrop with little difficulty since they

are already within the protective security perimeter. In other cases, there may simply be no

data encryption (e.g., as in many enterprise networks and wireless hotspots), where the only

barriers to separate the outside are firewalls or some form of physical security.

2. Those that successfully infiltrate the network through attacks at the protocol level [3, 4],

password guessing, router hijacking [1, 30], or some vulnerability in Wi-Fi security. As a

concrete example, consider the case of the massive credit card heist that occurred at TJX [22],

in which attackers exploited the vulnerable WEP protocol to gain internal network access.

Once inside, they eavesdropped undetected, acquired additional credentials, and eventually

stole over 45 million credit cards [15].

Our intuition is to confuse, deceive, and detect attackers by leveraging uncertainty. We achieve

this by introducing decoy traffic with enticing information that will eventually cause the eaves-

dropper to undertake some observable action, such as accessing a decoy account using sniffed

credentials. Our methodology for building a trap-based network is designed to maximize the re-

alism of decoy traffic. We propose and demonstrate the utility of a novel architecture based on a

“record, modify, replay” paradigm to automatically generate large quantities of decoy traffic that

are injected into the network. The system continuously regenerates decoys to prevent an adversary

from learning how to recognize bait over time. While the use of decoys is not a new concept,

our contribution lies in the automation of decoy generation and injection, which allows the use of

decoys in large volumes.

Our prototype implementation demonstrates the feasibility of this approach on Wi-Fi networks.

However, the methodology is broadly applicable and can be adopted to conventional wired infras-

tructures. Our proactive defense, which offers a controllable level of protection, is based on the

amount of “bait” traffic one is willing to inject. This amount can be throttled based on a tolerated

level of interference, as indicated in Section 6. Demonstrating decoy efficacy and accuracy against

snoopers requires an indeterminate amount of time. In Section 4, we simulate attacks to show that

the monitoring works well and would capture snoopers if they misuse the stolen credentials. This

assurance depends on whether the snooping adversary captures the decoys that are believed to be
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real. Hence, it is the believability of decoys that is the most important property evaluated in this

work. We posit that the believability of decoy network flows can be measured by their indistin-

guishability from what is real, and we demonstrate decoy flow believability by conducting a user

study that is analogous to the Turing Test [31]. The results presented in Section 5 testify to decoy

realism.

The rest of this paper is organized as follows. Related work is introduced in Section 2, while

the architectural design and prototype implementation of our system is discussed in Section 3.

Legal considerations regarding our methodology are presented in Section 7, and conclusions are in

Section 8.

2 Related Work

The goal of our work is to design a system for generating network traps as a means of proactive

defense against snoopers. Traffic generation has long been studied for a variety of tasks that include

traffic engineering (e.g., load balancing, routing protocols configuration) [16], network simulation

and emulation [32], and many more. To support these applications, many software tools have been

created, ranging from customizable packet generators, such as Hping [13] and Scapy [23], to large-

scale network emulators like ModelNet [32]. Other tools, including Swing [33], focus solely on

traffic generation, but with the end goal of realistic TCP/IP or UDP values and statistically accurate

timing measures. Similarly, Harpoon [24] is a traffic generation tool for creating packet flows with

byte, packet, temporal, and spatial characteristics that match those from existing NetFlow or packet

trace data. Although the goals of realistic TCP/IP values overlap with ours, generating believable

decoys additionally requires realistic application-layer content. The requirements of which vary

from those of the preceding traffic generation efforts, adding to the novelty of our research.

The use of deception, or decoys, plays a valuable role in the protection of systems, networks,

and information. The first use of decoys (in the cyber domain) has been credited to Cliff Stoll [27],

while trying to catch German hackers breaking into the Lawrence Berkeley National Laboratory

(LBNL). His methods included the use of bogus networks, systems, and documents for gathering

intelligence on attackers. Among the many techniques waged, he crafted “bait” files, or in his

case, bogus classified documents that really contained non-sensitive government information, and

attached “alarms” to them so as to know if anyone accessed them. Eventually, a German hacker

was caught, and he was found selling secrets to the KGB.

Deception-based information resources that have no production value other than to attract and

detect adversaries (like those used by Stoll) are commonly known as honeypots. Honeypots serve

as effective tools for profiling attacker behavior and for gathering intelligence to understand how

attackers operate. Honeypots are considered to have low false positive rates, since they are designed

to capture only malicious attackers, except for perhaps an occasional mistake by innocent users.

Spitzner described how honeypots can be useful for detecting insider attacks [25], in addition

to the common external threats for which they are traditionally known. He discusses the use of

honeytokens, which he defines as “a honeypot that is not a computer” [26], citing examples that
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Figure 1: Injection Platform.

include bogus medical records, credit card numbers, and credentials, with descriptions of how they

can be used to detect malicious insiders. Oudot [21] gave a simple example of how honeypots can

be used on wireless networks, but in this case, all of the sessions are the same, making them trivial

to avoid. Grundschober [12] created a sniffer detector for wired networks that relied on simple

scripts to create telnet and ftp sessions with bait information. However, no attention was given

to the believability of the sessions, making them easy to avoid. More importantly, the detector

relied on a network intrusion detection system to detect decoy misuse on the network, rather than

misuse at the application layer, as we do. The benefits of application-layer detection are discussed

in Section 3.3.

Currently, the decoy/honeytoken creation is a laborious and manual process requiring large

amounts of administrative intervention. In contrast, we have devised a system that automatically

generates and disseminates, continuously, decoy information (of various different types) through-

out an operational network to create indistinguishable honeyflows. The indistinguishability of our

honeyflows, the volume at which they can be produced, and the non-interference with real flows

make our work novel.
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Figure 2: Honeyflow creation process.
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Figure 3: SMTP Identifiers.

3 Design and Implementation

Synthetic network traffic is typically generated to support simulations, or emulations, that require

traffic to be structurally and syntactically correct with respect to protocols. In contrast, decoy

traffic is designed with a fundamentally different goal: to deceive the human viewer. In previous

work [5], we formally defined a core set of properties, including believability, non-interference1 ,

detectability, variability, and enticement, for formally guiding the creation of decoys. We used

some of these properties to aid the design of our platform and its evaluation. We posit that achiev-

ing the deception goal requires traffic to be believable, a quality ultimately measured by humans,

in addition to the more general requirements of syntactical and structural correctness. Our system

addresses these objectives with an architecture comprised of several hardware and software com-

ponents that have been designed to support the “record, modify, replay” paradigm for producing

honeyflows. This model produces believable decoys by leveraging human-generated content from

recorded flows, as opposed to relying solely on machine intelligence. Additionally, the resulting

honeyflows contain both cover and carry traffic; carry traffic contains the decoys, whereas cover

traffic includes everything else to support the believability of carry traffic. The architectural com-

ponents of our system, shown in Figure 1, include a decoy traffic generator, a distribution platform

built on commodity hardware, and a set of broadcasters for performing the injection of the various

types of decoys. The implementation details of the aforementioned components are discussed in

the following subsections.

3.1 Automated Decoy Traffic Generator

The Decoy Traffic Generator uses the software API that we developed to produce honeyflows

through a multi-step process, as illustrated in Figure 2. The automated process begins by loading

recorded network data, which might either be a template containing anonymous trace data, or ide-

ally, a complete network trace containing authentic traffic. Note that we have specifically designed

1Note that throughout the paper the use of this term differs from the standard use first introduced by Goguen and

Meseguer [10].
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Table 1: Rules used to match protocols.

Protocol No. of Identifiers % Required

FTP 14 65%

GMail 7 70%

IMAP 10 40%

POP3 5 80%

SMTP 10 50%

the API to handle both types of input due to the ethical and legal issues concerning the recording of

network traffic (see Section 7). Within the university environment, we use the template approach,

in which sets of protocol-specific templates are manually created and passed to the API as input.

The templates contain traffic of various network protocols including TCP session samples for pro-

tocols used by our decoys. The obvious drawback of templates is that the diversity and volume of

the content is limited, which may subtract from the realism of the overall generated traffic. How-

ever, it is important to note that there are other environments in which it is legal and common to

record traffic (e.g., enterprise environments). In these environments, it would be advantageous to

use live network traces as the basis for decoy traffic within which decoys can be added.

Once the API obtains an input trace, a new trace with decoy information is automatically gen-

erated by following these steps:

1. Each input trace consists of multiple protocols and TCP sessions. We demultiplex each

session/protocol into individual trace files for simpler processing.

2. Configuration information (e.g., decoy information, IP/MAC addresses of emulated net-

works) is read from a user specified configuration file.

3. Each demultiplexed trace file is passed through protocol-specific traffic identifier functions

for the protocols we support (currently Gmail, SMTP, POP, IMAP, FTP, HTTP) to find the

best match. The best match is found using predefined rules that examine network trace data

to determine protocols based on the content of application-layer headers and protocol status

messages. The approach relies on the presence of identifiers specific for a given protocol.

The API can handle identifiers that are both simple literal strings or complex regular ex-

pressions. For example, Figure 3 shows the identifiers we use for the SMTP protocol. To

accommodate varying application-layer protocol implementations, we rely on a percentage

of identifiers being present for each protocol, as shown in Table 1, rather than on all of them.

We determined the percentage by manually observing real traffic from various implementa-

tions on a per-protocol basis. Specifically, for the SMTP identifiers we rely on 80% of the

identifiers being present. If the protocol determination does not succeed, the trace is marked

as unknown and the API proceeds to step 6. We note that success in correctly identifying

protocols largely depends on the rules that are manually created.
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4. Identified traces are passed through a protocol modifier function to insert decoy information.

Our API supports rules for adding bait to protocol headers, such as Gmail cookies and SMTP

passwords, as well as protocol payloads (i.e., email bodies, web page contents). Additionally,

our implementation provides rules for creating several types of decoys including: Gmail au-

thentication cookies, URLs, passwords for unencrypted protocols (e.g., SMTP, POP, IMAP),

and beaconed documents as email attachments (see Section 3.3). Moreover, the API can also

be used to introduce bait HTTP flows that contain monitored URLs, or even handle protocol

complexities such as:

(a) Multi-packet editing. If multi-packet editing is required (e.g., insert a decoy file as

attachment into a POP3 trace), we buffer the data in memory. When a boundary is

found (i.e., a protocol status code indicating the end of file), the modifier function stops

buffering and inserts the decoy object. This data is then written back to the output trace

file as multiple packets.

(b) Protocol encoding. The API formats the decoy information appropriately for the given

protocol (e.g., Base64 for POP3 attachments).

5. Rules are used for the replacement of MACs and IPs to those from a predefined set to suit the

environment. For example, we select bogus IP addresses that are consistent with those used

inside a wireless cell, so as to avoid breaking the semantics of the corresponding network

topology. Similarly, the IP/MAC pairing is carefully selected to be persistent throughout

multiple bogus sessions. We note that MACs are generated by combining three octets that

correspond to those belonging to common vendors along with three random octets.

6. Variability and randomness are introduced to the honeyflows using these techniques:

(a) For identified TCP server protocols the client port is randomly generated. However,

since different clients have different ephemeral port ranges (e.g., FreeBSD follows the

IANA dynamic/private port range, Linux uses the range 32768 to 61000, Solaris uses

32768 through 65535, and so forth), we generate the client port either based on the

bogus host that we simulate (in case the client OS is important), or by following the

IANA dynamic/private port range (when the client OS is irrelevant).

(b) TCP sequence numbers are modified to be consistent with the size of the newly gen-

erated packets, whereas heuristics are used to modify aspects of content like names,

addresses, and dates, so that they match those of the decoy identities.

(c) Parameterization of temporal features (e.g., total flow time, inter-packet time) that can

be extracted from NetFlow, or packet trace data [24], can also be used for enabling the

creation of honeyflows that are statistically similar to normal traffic.

7. OS fingerprint models of p0f [35] are used to generate honeyflows that resemble the host

OS. For example, to generate traffic that appears to emanate from a Linux host, we avoid

generating traffic that appears to have come from the MS Outlook email client.
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8. The demultiplexed traces are finally combined into a single trace, which is then broadcasted

to the environment.

3.2 Decoy Broadcaster

The Decoy Broadcaster is the architectural component of our system that is responsible for spread-

ing the bait content inside a network segment. It comprises both hardware and software entities.

Figure 1 illustrates a decoy broadcaster inside the context of our campus-wide wireless network.

The underlying hardware consists of a low-cost, general-purpose, wireless router with the ability

to inject traffic. The device is strategically placed in the vicinity of an AP, so as to maximize the

coverage of the replayed traffic2. Ideally, the bait content should be sniffable by all wireless clients

inside the same cell. An additional requirement of the decoy broadcaster is the support of monitor

mode 3 operation by its wireless network interface card (NIC). Our preliminary experimentation

revealed that monitor mode is the only one that provides the flexibility to inject packets that meet

the needs of our architecture. In all other modes, either it failed or it was limited. For example, in

managed mode we found that it was not possible to modify frame fields such as FromDS, ToDS,

or the MAC address, which are important for creating realistic traffic. Furthermore, it was not pos-

sible to inject anything other than data frames (e.g., ACKs, RTS/CTS). The problem is that such

limitations may create artifacts in the honeyflows that allow sophisticated adversaries to identify

and avoid the bogus traffic.

For our prototype implementation we used Accton MR3201A [17], a mesh router based on

Atheros AR2315 chipset, with 32 MB DRAM and 8 MB flash. The device comes pre-flashed with

a modified version of OpenWRT [20]—a Linux-based firmware for embedded devices. However,

in order to fully utilize the capabilities of the device, we installed a custom OpenWRT image. Our

configuration aims at free space maximization, and negligible CPU usage due to leftover services.

The root filesystem of the device is about 1.8 MB, leaving us with 5.2 MB of free space in the flash

disk. Because of the relatively large portion of free RAM (i.e., almost 24 MB of free memory) we

can use a fraction of it as a ramdrive in order to increase the decoy storage capacity. Therefore, an

additional 15 MB were put aside, using the tmpfs filesystem, giving us in total almost 20 MB of

space for decoys. Accton’s wireless NIC uses the MadWifi [29] driver that supports a wide set of

features such as:

• different operation modes: Station, Master, Ad-Hoc, and so on, including the Monitor mode

• multiple Base-Station IDs (BSSIDs) via different virtual interfaces on top of the same NIC.

That is, the Virtual Access Points (VAPs) feature, which supports virtual interfaces that can

even be in different modes

2Mind you that an active attacker might try to identify bait traffic by communicating directly with a decoy broadcaster

for testing whether it is real or not. However, the act of attempting communication reveals the attacker.
3Monitor mode (RFMON) is one of the six operational modes of an IEEE 802.11 NIC. The remaining five are: Master

(AP), Managed (client associated to an AP, also known as Station), Ad-hoc, Mesh, and Repeater.
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• 4-address header support, dynamic frequency selection, background scanning.

The most important features are the VAPs and monitor mode support. As far as monitor mode is

concerned, we tweaked the MadWifi driver in order to suppress 802.11 ACK frames (only in VAPs

being in RFMON mode), since we have our own ACK frames recorded as part of the decoy traffic,

and ignore ACK timeouts in injected frames4. To inject the honeyflows we ported Tcpreplay [28],

a suite for replaying previously captured traffic for network testing purposes. The typical injection

workflow is specified as follows:

1. A new VAP is created in the Decoy Broadcaster and set in Monitor mode.

2. The bait traffic is uploaded into the Decoy Broadcaster 5.

3. Tcpreplay injects the decoy traffic into the wireless cell.

It is critical that the decoy repository on broadcasters be refreshed regularly. In some cases, this

is required to support the broadcasting of valid bait. For example, we use authentication cookies

(see Section 3.3) as one type of decoy. Since these are valid for only a finite amount of time,

they need to be routinely regenerated. More importantly, however, is that decoy traffic must be

frequently updated so that it remains believable to attackers. If the same traffic was continuously

replayed, it would be easily distinguishable based on the retransmissions of protocol header parts

(e.g.,TCP sequence numbers, IP TTL, TCP/UDP source port numbers, IP ID), which should be

unique for every session.

We considered various approaches for resolving this issue. At one extreme, we may have a

fully centralized solution, which involves preparing new honeyflows in the Decoy Traffic Genera-

tor (see Figure 1) and, disseminating them to the proper Decoy Broadcasters (i.e., certain MAC/IP

addresses for certain cells to avoid having spatial inconsistencies). At the other extreme, a decen-

tralized approach can be employed for “on-the-fly" honeyflow creation within the decoy broadcast-

ers. Each option offers different tradeoffs. For example, a benefit of the centralized approach is

that it requires no intelligence at the decoy broadcasters; they are only dummy bait traffic repeaters.

Drawbacks of the centralized approach include the imposition of additional overhead on the Decoy

Traffic Generator, scalability limitations, and the lack of fine-grained control over injection (i.e., the

delay between the time that the generator decides to send a decoy for injection and the time the ac-

tual injection takes place). The decentralized approach provides more flexibility since it leverages

continuous bait generation with agile decoy broadcasters. Nonetheless, the packet processing re-

quired to create honeyflows, demands devices with considerable capabilities. This tradeoff, though

identified, has not been evaluated in this study and it will be the focus of future research.

4We inject whole sessions: traffic from all communicating parties including ACK frames and retransmissions.
5This can be done either by having another VAP in managed mode and establish a communication channel between

the Decoy Broadcaster and the Decoy Distributor, or by directly utilizing the Ethernet interface of the mini-router.
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3.3 Trap-based Decoys

Our trap-based decoys have the inherent property of being detectable on their own, so they do not

depend on host, or network, monitoring. A benefit of being self-detectable is that the system does

not suffer the characteristic performance burden of decoys that do require additional monitoring.

This form of decoy is made up of “bait” information, such as online banking logins provided by

a collaborating financial institution 6, credit card numbers, login accounts for online servers, and

web-based email accounts. The primary requirement for bait is to be detectable when (mis)used.

One form of bait that we use are Gmail account credentials, including usernames, passwords, and

authentication cookies. In this case, custom scripts access mail.google.com and parse the bait

account pages to gather account activity information. In case of credit card numbers, providers such

as PayPal offer APIs that we begun to use for monitoring their activity. Alternatively, agreements

with other financial institutions allow us to be notified when decoy credit card numbers are used.

We note that obtaining such agreements can be challenging since financial institutions may not

have any incentive to help.

In this work, we make particular use of a certain type of decoy that we refer to as a one-time

decoy. One-time decoys function by revealing themselves as a side-effect of revealing an attacker.

An example of a “one-time decoy” is a bogus and invalid username and password combination that

is indistinguishable from one that is real, except when it is used. An attacker is forced to test the

credential in order to distinguish and validate it. Upon testing the decoy credential and learning that

the password is bogus, the decoy reveals itself as being fake. However, the act of testing, results in

the attacker revealing himself.

We also employ beaconed decoy documents as an additional deceptive layer that is embedded

within the application layer of some network protocols (e.g., email attachments and file uploads).

Using techniques common to malware, beacon decoys are implemented to silently contact a cen-

tralized server when a document is opened, passing to the server a unique token that was embedded

within the document at creation time. The token is used to identify the decoy document and its as-

sociation to the network location of the host accessing it. In the case of the MS Word document

beacons, the examples rely on a stealthily embedded remote image that is rendered when the doc-

ument is opened. The request for the remote image is a positive indication the document has been

opened. Similarly, in the case of PDF document beacons, the signaling mechanism relies on the

execution of JavaScript within the document.

The ability to create vast quantities of variable decoys is important. Ideally, one would want

to inject unique decoys for different periods of time and for different physical locations. Doing so

would allow one to have some idea when and where eavesdropping occurred.

6By agreement, the institution requested that its name be withheld.
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4 Detecting Snoopers

Our system injects a variety of different types of “bait” traffic into Wi-Fi channels, in order to

entice, deceive, and alert us to the presence of malicious eavesdroppers. Enticing and detecting

attackers largely depends on attackers’ goals, whether they pilfer sensitive information to sell on

the black market, or perhaps, some form of espionage. The capacity to expose otherwise elusive

attackers on wireless networks is one of the primary contributions of this work. Unfortunately, the

ability to evaluate this contribution is constrained by the infrequency of attacks in our university

environment. Waiting for such an attack requires an indeterminate amount of time and may not be

practical. Therefore, in order to assess the effectiveness of our system in realistic environments, we

performed two studies. The first experiment was performed at the Defcon ’09 hacking conference

in Las Vegas, to test whether the decoy injection framework would succeed in transmitting decoy

credentials. Additionally, we developed a program to simulate threats known to exist in the wild

(e.g., massive cookie harvesting), and tested it in our campus network. The results from both

studies are presented and discussed below.

4.1 Defcon Experiment

Defcon’s yearly meeting includes the infamous wall of sheep [34], which is an interactive demon-

stration of what can happen when network users do not use the protection of encryption. Defcon

staff eavesdrop the network traffic for unencrypted credentials, which they later post on a publicly

accessible wall as a good-natured reminder of what a malicious person could do.

Throughout the conference we repeatedly injected decoy traffic and waited for some decoy

credentials to appear on the wall. One of our decoy credentials did indeed appear on the wall

of sheep (i.e., the third entry in Figure 4), which is an indication of a successful decoy injection.

Surprisingly, a Gmail decoy alert was triggered after someone logged into one of our Gmail ac-

counts from an IP address in New Jersey, shortly after the account was used in Las Vegas. In that

case, we believe the decoy was the victim of a cookie hijacking attack, but we do not have strong

evidence for this. The Defcon staff post the collected information (although passwords are only

partially shown), but they do not use any credential. However, this does not exclude other partic-

ipants, which were passively monitoring the wireless channel during the conference, from being

malicious.

This experiment provides evidence that our system can successfully detect when a snooper

is using automated tools for harvesting and exploiting credentials in the wild. Though we have

performed a detailed evaluation regarding the quality of our decoy traffic in believability terms

(see Section 5), we expect that a typical adversary will probably utilize automated tools that mas-

sively hunt credentials or other interesting information (e.g., identity data, credit card numbers).

Unfortunately, the Wi-Fi bait traffic we broadcasted was not adequately sniffed. We later learned

that Defcon staff were monitoring the switch mirroring ports as opposed to Wi-Fi radio channels.

However, this is orthogonal to our experiment.
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Figure 4: Defcon ’09 Wall of Sheep.

4.2 Massive Cookie Harvesting

As a practical and relevant alternative to evaluate real attacks, we have developed a program to

simulate threats known to exist in the wild [22]. In particular, we model attackers that attempt

to harvest login cookies in mass (also known as SideJacking [11]), which are broadcasted in the

network unencrypted and can be exploited by an attacker to provide full access to users’ personal

accounts and information. Any web site that allows cookies in clear text (e.g., Yahoo Mail, MSN

Hotmail) is potentially vulnerable to this type of attack; without loss of generality we focus on

Gmail. Our selection of Gmail is partially due to the size of the Gmail user base (113 million

registered users [18]), but also because Gmail provides the means to allow us monitoring access.

Our model attack program is called Gsnoop, and it works by sniffing a specified network con-

nection to identify and record Gmail login cookies. Once a cookie is obtained, Gsnoop uses the

cookie to log into the account and read the author, subject, and date—the selection of which is

arbitrary and for demonstration purposes only—of the first 3 emails as proof of account compro-

mise. While this is fairly benign, the code could be easily extended to do more malicious acts such

as searching the inbox for other valuable credentials (as often found), sending spam, deleting all

contacts, and so forth.

To validate our decoys, we run Gsnoop on the university network, but in a restricted mode

so that it would not login to accounts indiscriminately. The host running Gsnoop was placed

in monitor mode and physically located within twenty feet of one of the Decoy Broadcasters to

ensure sufficient decoy exposure. To conduct the experiment, ten unique honeyflow sessions were

injected by the broadcaster. The honeyflows were generated to contain the authentication cookies

for three different decoy identities.

Results from the attack simulation included exactly one alert for each of the decoys. The

alerts were triggered within ten minutes of the Gsnoop automated attack, validating that the system

worked as intended. The latency between the exploit time and detection time was an artifact of how
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Table 2: False alerts for Gmail Decoys over a 5-month period (based on 36,000 login attempts).

ID Login Errors Error Rate

1 136 .00377

2 140 .00388

3 133 .00369

4 132 .00367

5 136 .00377

frequently the monitoring system was configured to poll for account activity on the Gmail decoys.

In addition to ensuring the validity of the bait cookies, this also provided support for the structural

correctness of the fabricated frames, as well as the operational success of the decoy monitors. As

an additional test of the cookies, we manually sniffed the network, extracted the cookies, and put

them into a browser session using a cookie editor. This ensured there was no bias in our code.

Although there were no false positives recorded in this testing scenario, we have found that false

positives can pose a problem for decoys in general.

Table 2 lists the counts for login errors obtained by the decoy account monitors over a 5-month

period for a selection of the Gmail decoy identities we have. This study was conducted on decoys

before the bait injection system was constructed, to measure the false positives associated with the

monitoring infrastructure alone. For these measurements, we count login errors as false positives

because sometimes we cannot discern whether they are due to account exploit, in which the pass-

word has been changed, or if they were caused by something benign, like a network failure. Most

of the time the login errors occur for all of the decoys simultaneously, and we can be reasonably as-

sured that the problem is due to an infrastructure hiccup. However, on rare occasions we get errors

for accounts on an individual basis (hence, the different numbers). When alerts are generated indi-

vidually, we cannot immediately make the determination as to whether it is a true or false positive.

Resolving the true source of these errors requires waiting to see if account access resumes, which

typically happens within minutes. If it does not, one can be reasonably certain that the account has

been compromised. Combining this information with other traps will likely reveal a snooper with

high accuracy 7.

5 Believability of Bogus Traffic: A Decoy Turing Test

Alan Turing proposed a method to demonstrate “artificial intelligence” through the failure of human

judges to distinguish between human and machine conversational simulators [31]. The imitation

game, as it was named, was conducted over a text-only communication channel, whereby the judge

engaged in conversation with both a human and machine. The machine was said to have passed the

7We are beginning to run the bait injection system and will report in the final version any events we may capture in

the wild.
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Figure 6: DTT Results: Users’ Correctness.

test if the judge could not reliably distinguish between it and the human. Following the notion of

the original imitation game, we designed a Decoy Turing Test (DTT) that relies upon human judges

to distinguish between authentic and machine generated decoy network traffic. Their inability to

reliably discern one traffic source from the other attests to decoy believability.

In our experiment, human judges were solicited and selected based on their prior knowledge

of networking protocols and experience in examining network traces. Our final pool of 15 judges

consisted of PhD’s and graduate students in the network security field, a staff member from the

computing research facility of our department, and a security professional from an antivirus com-

pany. The task for the judges required the analysis of network trace data, created specifically for

this experiment using the injection API. The test trace was created through the process outlined

in Section 3, but with slight modifications to enable a structured study. We constructed our test

data set including traffic from only 10 hosts, assuming the judges would have limited patience and

tolerate only a small volume of data.

To create the test data, we began by recording traffic from 5 hosts on a private network. The

private network was used so that we would not accidentally record other users’ traffic and skirt

legal or ethical boundaries. Due to the fact that the network data were ultimately going to be

distributed to the judges (and perhaps elsewhere), we had users’ on the private network assume

“test” identities that were created for local email, FTP servers, and Gmail accounts. The users

were asked to engage one another in email conversations, surf the web as they would normally, and

perform FTP transactions. We recorded approximately 15 minutes of traffic, in which there were

samples of HTTP, Gmail account activity, POP/IMAP, SMTP, and FTP traffic.

This network trace was then scrubbed of all non-TCP traffic to reduce the volume of data

we would be asking our judges to examine. The resulting trace was passed to the honeyflow

creation process, as shown in Figure 2, for producing honeyflows for each of the 5 hosts. These

honeyflows were loaded with the decoy credentials, given their own MACs and valid university

IP addresses, and finally interwoven with the authentic flows to create a file containing all of the

network trace data. The choice was made to give honeyflows distinct IP addresses to simplify the
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task for the judges. For each of the resulting 10 IP addresses, the judges were asked to make the

binary decision: real or decoy. We requested them to spend at least 15 minutes in their analysis

and they were permitted to use any automated or analysis tool to aid in making the decision.

5.1 Results and Discussion

Figure 5 summarizes the results for each of the 10 hosts. The hosts are arranged in pairs, in which

the right bars correspond to decoys, and the left bars correspond to the authentic traffic. The height

of the bars reflects the number of judges that correctly decided whether a given host was real or

decoy. Although these results alone suggest that judges were able to discern decoys more regularly

than authentic hosts, as shown by the height of the bars on the right, it is important to take into

consideration the judges’ overall correctness. Figure 6 shows the overall correctness for each of

the fifteen judges. Overall, the judges were 49.9% correct, on average, suggesting that we have

achieved the goal of indistinguishable decoys. After interviewing the judges, we concluded that

the bias for decoys in Figure 5, stemmed from their tendency to guess “decoy” more frequently

than not. In other words, decoy was the default decision when a judge was uncertain. Since this

tendency led them to tag real traffic as decoys, one can surmise that the use of decoys in a network

has an additional deterrent value against knowledgeable adversaries.

Although it is not immediately clear from the figures, one of the judges successfully identified

an initial deficiency in the decoys that allowed him to positively distinguish decoys. This judge

achieved 7 out of 10 correct in the DTT by examining the manufacturer of the NICs. The judge

observed obscure manufacturer names (e.g., Shandong New Beiyang Information Technology Co.)

for some MACs used in decoy traffic, which enabled a correct determination to be made about

whether the traffic was bogus or not. We have since fixed this problem by using more common

vendors for our fake MACs, but this incident does speak to the challenge of getting bogus traffic to

look real, especially in the eyes of highly knowledgeable judges. Another challenge was dealing

with judges that have insider knowledge. Our study did include judges with knowledge of the

department network topology, and one who works for the computing facility, but this knowledge

did not help in distinguishing decoys. We should also point out that there were actually 3 users that

had 7 out of 10 correct, but their justification did not turn out to be a true means for distinguishing

decoys. For example, one of the judges said that the IPs of the destination hosts in the traffic did

resolve through reverse DNS. However, these same IPs were found in the real traffic, and hence, this

judge was simply lucky. Regardless, the fact that some, but not all, decoys are correctly identified

is promising, since we only need a single bait to be taken for detection to occur.

The focus of this study was limited to TCP traffic and was conducted offline. It is important

to point out that this excluded aspects of the 802.11 protocol and broadcast traffic. In our case, it

was prudent to exclude these because their inclusion may have overwhelmed the volunteer judges

to the point of not participating. However, we believe that our results for the TCP traffic can be

extended to the 802.11 protocol transmissions (e.g., management frames, control frames, beacons).

We should also note that in conducting the study offline, as we did, we may have limited the

information that might otherwise be available under real-world conditions. It might be possible
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for an adversary to snoop multiple access points, and try to correlate traffic, in order to distinguish

real traffic from decoys. This scenario was outside the scope of our DTT. We plan to address this

in future work, via a large-scale user study and through clustering analysis of captured traces. We

also note that an adversary could possibly determine visually that a particular AP is not in use, and

use this knowledge to distinguish decoy network traffic. Although we did not implement this, the

problem can be easily fixed by only broadcasting decoy traffic when there is real traffic.

6 Interference Measurements

Introducing decoy traffic into an operational network has the potential to interfere with normal

network activities in multiple ways. Our primary concern is that decoys may pollute and corrupt

authentic data, or confuse legitimate users (i.e., they cannot differentiate real from fake). We

address this concern, and minimize the risk of corrupting normal data, by injecting frames that are

not addressed to legitimate hosts or users. Hence, only a passive eavesdropper will observe them.

Injected packets could potentially interfere with legitimate network services. However, this risk

is mitigated because the packets are not addressed to legitimate hosts and they are not forwarded

by the AP. We also have to ensure that we not interfere with existing security infrastructure such

as network monitors. In our case, the Wi-Fi channels were not being monitored, so this is not an

issue. However, if deployed on a wired network, this could be a concern. In particular, care would

have to be taken to ensure that injected honeyflows do not trigger false alerts.

Of secondary concern is the performance impact due to the increased burden on network re-

sources. Flooding Wi-Fi channels with bogus data comes at a performance cost that can be mea-

sured from the side-effects to the available bandwidth, packet error rate, and channel contention.

We posit that there is a tradeoff between the amount of deceptive data we may inject to maximize

the protection level, and the perceived performance as measured by the impact on user applica-

tions. In this section, we present experimental results, which demonstrate that our approach causes

minimal interference to ordinary users.

6.1 Results and Discussion

The testbed created for our experiment, the bandwidth estimation tools employed, as well as our

evaluation methodology, are all described in great detail in Appendices A and B. The two embedded

devices (i.e., Hermes and Hades) that we utilized in our experiments run our customized OpenWRT

image (kernel v2.6.26), whereas everything else runs GNU/Linux (kernel v2.6.24). All our hosts

were in multiuser mode, but no other user tasks were running throughout the experiments. We

performed our tests late at night so as to ensure that the wired Ethernet would be unloaded, and the

wireless utilization would be minimal 8.

8We performed our experiments in an idle frequency. However, side channels were preoccupied, and the DSSS

nature of the IEEE 802.11b/g standard imposes interference from operating devices in nearby frequencies.
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Figure 7: Interference cost.

Initially, we used pathrate to estimate channel capacity (from Zeus to compute03). This would

give us an upper-bound of the wireless channel capacity, since pathrate estimates the minimum link

capacity among all links on a path. The measurement was repeated 15 times in order to estimate the

variance. The reported capacity was 20–22 Mbps. We performed the same test again, but this time

Zeus was directly connected to the wired Ethernet (i.e., bypassing the wireless link of Hermes).

The reported capacity was 94–97 Mbps, which confirms that the limiting factor was, indeed, the

wireless link.

Following that we used wbest from compute02 to Poseidon, so as to estimate the available

bandwidth of the latter. This was done with and without having decoy injection, and the resulting

degradation in the available bandwidth of Poseidon is the actual performance cost of decoy broad-

casting, as observed from an application running on a single host. However, since the available

bandwidth is highly coupled to the underlying channel load, and in order to have more pragmatic

results, we used the nuttcp tool and created contending traffic so as to emulate different channel

loads. Nuttcp created traffic between Zeus and compute03 at various rates, using 1470-byte UDP

datagrams. The actual rates were: 2.2 Mbps, 7.26 Mbps, 11 Mbps, 14.52 Mbps, 16.5 Mbps, and

19.8 Mbps, which correspond to 10%, 33%, 50%, 66%, 75%, and 90%, respectively, of the previ-

ously measured wireless channel capacity. Our choice of upper-bound (and not average) capacity

results in overestimating the bandwidth degradation due to decoy broadcasting; in other words, our

results are pessimistic. Decoy broadcasting was performed from Hades using Tcpreplay, and all

experiments were repeated 15 times.

The results are illustrated in Figure 7. In general terms, there is a decrease in the bandwidth

as the channel load increases. However, generating traffic at rates greater than 66% of the channel

capacity results in packet loss on Zeus (i.e., Zeus generated traffic at 14.52 Mbps, but the actual

rate that compute03 reported was 7 Mbps). The MAC layer of IEEE 802.11 gives a fair share
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Figure 8: Packets successfully injected.

to Zeus and Poseidon—the available bandwidth fluctuates between 11 and 12 Mbps. Apparently,

the performance degradation due to beacon broadcasting is negligible, and the confidence intervals

indicate that the difference between the two scenarios is statistically insignificant.

The regulating factor in the whole process is the actual rate at which injection is performed.

Notice that we evaluate our proposal under a realistic scenario. The decoy traffic was comprised

by 828 packets in total, and included an HTTP login into a Gmail account, an FTP login, and an

IMAP login. Tcpreplay reported 0.04 Mbps (12pps), since it replays the traffic by maintaining

the corresponding timing information. Replaying at higher rates will not give us any benefit as

Figure 8 suggests: number of packets that were injected by Hades and successfully intercepted by

Zeus. We used one VAP (see Section 3.2) for monitoring the injected packets, and a different one

for connecting to Hermes and generating traffic. Even at moderate loads we cannot successfully

inject the whole set of decoys due to the fact that we suppressed retransmissions and ACKs. The

number of packets successfully injected, however, are a considerable portion of the total 828 set

of packets, and hence they demonstrate that there is a relatively high probability of successfully

conveying them to a potential snooper. The confidence intervals indicate that the channel load does

not significantly affect the number of packets that we can successfully inject. This is mostly due to

the slow rate that we used during the replay process.

Our experimental testbed, though simple, indicates that deceptive traffic can be broadcasted at

negligible cost. Yet, the implications of large-scale deployments on campus-wide Wi-Fi networks

cannot be asserted without further experimentation. Mobility, multi-rate support, diversity in traffic

patterns (i.e., different packet sizes, burst vs. bulk transfers), and the dynamic nature of the wireless

medium in general, can affect the absolute cost of decoy broadcasting. However, our results are

encouraging in that we can perform deceptive traffic injection successfully at a small cost, and

allow us to further investigate larger-scale deployments.
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7 Risks and Legal Considerations

As we already noted in the previous sections, our study relied on protocol specific templates that

were manually created and used as input to the decoy API. To increase the diversity of the bogus

content, live network traces could be used instead. While employing this approach, numerous legal

considerations must be made. More specifically, several US federal privacy laws9 limit access to

network data. The Wiretap statute [6] regulates the collection of electronic communications con-

tents, and in general, it prohibits third parties from intercepting and recording traffic. The Pen/Trap

statute is similar [7], but regulates the recording of addressing information for electronic commu-

nications. In both of these statutes, there exist several provider exceptions that permit employees

of a network operator to record communications to the extent necessary to protect the operator. We

believe that this exception would enable our approach of using live network traces as a basis for

decoy traffic to be legally deployed in a corporate environment.

The believability of our honeyflows stems from the “record, modify, replay” model. Replaying

recorded flows can potentially expose sensitive information, but it is information that has already

been exposed on the network (although a compromise may have occurred after initial exposure).

In employing this strategy, one must consider the tradeoffs (i.e., the replay risk) against the benefit

of being able to detect an intruder when he may not have been able to otherwise.

8 Summary

Decoy trap-based security defenses, and deception in general, are powerful tools against a wide

range of threats in wireless environments. We have demonstrated a system that shows the feasibility

of automatically generating large amounts of believable decoy information, without interfering with

normal operations. We used human subjects to evaluate the believability of the generated decoys,

and showed that is difficult to distinguish them from the real thing; our experienced judges achieved

only 49.9% accuracy on average, which is equivalent to random guessing. We also demonstrated

decoy efficacy against automated tools that are designed to harvest and exploit credentials in mass

by sniffing network transmissions. Finally, we evaluated our system in a real wireless network

that someone was monitoring and successfully detected eavesdropping and exploitation attempts.

Considerable work remains to address the potential challenges that active adversaries may pose,

such as those that may snoop multiple access points and try to correlate traffic, or those that may

use additional sources (like an administrator) to discern decoys without testing them.
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A Interference Testbed

Five hosts were employed for the needs of our study. Hermes and Hades are identical Accton

mini-routers flashed with our customized OpenWRT firmware. Hermes acted as a legitimate AP

for providing connectivity to the Internet and to the rest of the university infrastructure. The se-

lected radio mode was IEEE 802.11g and the operating channel was verified with a monitoring

utility to be idle (i.e., no other WLANs operated on the same frequency) during the experiments.

Hades was placed in monitor mode and positioned nearby Hermes for broadcasting the decoy traf-

fic (see Section 3.2). Poseidon is a laptop that was used for measuring its performance degradation

during injection, and Zeus is a workstation used to generate different channel loads. Finally, com-

pute02 and compute03 serve as traffic source/sink either for estimating the available bandwidth on

Poseidon, or assisting Zeus in channel load generation. Both of them belong to an 8-node clus-

ter (cluster.cs.columbia.edu) that is part of the departmental computing facilities. Zeus

and Poseidon were associated to Hermes and further connected to compute cluster via the campus

wired network.

B Bandwidth estimation

The capacity of Hermes (i.e., Hermes Wi-Fi network) is approximated using pathrate [9]. Different

channel loads where emulated using the invasive nuttcp [19] tool, whereas the available bandwidth

of Poseidon was estimated using wbest [14]. We note that capacity is defined to be the maximum

throughput that a network path can provide to an application, when there is no competing traffic

(i.e., cross traffic). Available bandwidth, on the other hand, is the maximum throughput that a path

can provide to an application, given the path’s current cross traffic load.
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