
Chapter 9
Practical Software Diversification Using
In-Place Code Randomization

Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

Abstract The wide adoption of non-executable page protections has given rise to
attacks that employ return-oriented programming (ROP) to achieve arbitrary code
execution without the injection of any code. Existing defenses against ROP ex-
ploits either require source code or symbolic debugging information, or impose a
significant runtime overhead, which limits their applicability for the protection of
third-party applications. Aiming for a practical mitication against ROP attacks, we
introduce in-place code randomization, a software diversification technique that can
be applied directly on third-party software. Our method uses various narrow-scope
code transformations that can be applied statically, without changing the location
of basic blocks, allowing the safe randomization of stripped binaries even with par-
tial disassembly coverage. We demonstrate how in-place code randomization can
prevent the exploitation of vulnerable Windows 7 applications, including Adobe
Reader, as well as the automated construction of reliable ROP payloads.

9.1 Introduction

Attack prevention technologies based on the No eXecute (NX) memory page pro-
tection bit, which prevent the execution of malicious code that has been injected
into a process, are now supported by most recent CPUs and operating systems [49].
The wide adoption of these protection mechanisms has given rise to a new exploita-
tion technique, widely known as return-oriented programming (ROP) [61], which
allows an attacker to circumvent non-executable page protections without injecting
any code. Using return-oriented programming, the attacker can link together small
fragments of code, known as gadgets, that already exist in the process image of the
vulnerable application. Each gadget ends with an indirect control transfer instruc-
tion, which transfers control to the next gadget according to a sequence of gadget

Network Security Lab, Columbia University
e-mail: {vpappas,mikepo,angelos}@cs.columbia.edu

169

{vpappas, mikepo, angelos}@cs.columbia.edu

170 Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

addresses injected on the stack or some other memory area. In essence, instead of
injecting binary code, the attacker injects just data, which include the addresses of
the gadgets to be executed, along with any required data arguments.

Several research works have demonstrated the great potential of return-oriented
programming for bypassing defenses such as read-only memory [21], kernel code
integrity protections [40], and non-executable memory implementations in mobile
devices [29] and operating systems [72, 67, 71, 70]. Consequently, it was only a
matter of time for ROP to be employed in real-world attacks. Recent exploits against
popular applications, such as the ubiquitous Adobe Reader for Windows, use ROP
code to bypass exploit mitigations that are enabled even in the latest OS versions,
including Windows 7 SP1. ROP exploits are included in the most common exploit
packs, and are actively used in the wild for mounting drive-by download attacks [14,
56].

9.1.1 Existing Defenses

Attackers are able to a priori pick the right code pieces before launching a ROP
attack because parts of the code image of the vulnerable application remain static
across different installations. Address space layout randomization (ASLR) [49] is
meant to prevent this kind of code reuse by randomizing the locations of the exe-
cutable segments of a running process. However, in both Linux and Windows, parts
of the address space do not change due to executables with fixed load addresses [34],
or shared libraries incompatible with ASLR [72]. Furthermore, in some exploits,
the base address of a DLL can be either calculated dynamically through a leaked
pointer [46, 70, 60], or brute-forced [62].

Other defenses against code-reuse attacks complementary to ASLR include
compiler extensions [47, 54], code randomization [33, 16, 43], control-flow in-
tegrity [11], and runtime solutions [27, 22, 26]. In practice, though, most of these
approaches are almost never applied for the protection of the COTS software cur-
rently targeted by ROP attacks, either due to the lack of source code or debugging
information, or due to their increased overhead. In particular, from the above tech-
niques, those that operate directly on compiled binaries, e.g., by permuting the or-
der of functions [16, 43] or through binary instrumentation [11], require precise and
complete extraction of all code and data in the executable sections of the binary. This
is possible only if the corresponding symbolic debugging information is available,
which however is typically stripped from production binaries.

On the other hand, techniques that do work on stripped binary executables using
dynamic binary instrumentation [27, 22, 26], incur a significant runtime overhead
that limits their adoption. These defenses are based on monitoring either the fre-
quency of ret instructions [22, 26], or the integrity of the stack [27]. At the same
time, instruction set randomization (ISR) [42, 13] cannot prevent code-reuse attacks,
and current implementations also rely on heavyweight runtime instrumentation or
code emulation frameworks.

9 Practical Software Diversification Using In-Place Code Randomization 171

9.1.2 In-Place Code Randomization

Starting with the goal of a practical mitigation against the recent spate of ROP
attacks, in this paper we present a novel code randomization method that can
harden third-party applications against return-oriented programming. Our approach
is based on narrow-scope modifications in the code segments of executables using
an array of code transformation techniques, to which we collectively refer as in-place
code randomization [55]. These transformations are applied statically, in a conserva-
tive manner, and modify only the code that can be safely extracted from compiled
binaries, without relying on symbolic debugging information. By preserving the
length of instructions and basic blocks, these modifications do not break the seman-
tics of the code, and enable the randomization of stripped binaries even without
complete disassembly coverage.

The goal of this diversification process is to eliminate or probabilistically mod-
ify as many of the gadgets that are available in the address space of a vulnerable
process as possible. Since ROP code relies on the correct execution of all chained
gadgets, altering the outcome of even a few of them will likely render the ROP code
ineffective. The introduced uncertainty raises the bar for the construction of reliable
ROP code, as attackers cannot safely assume that a given gadget will perform the in-
tended computation. By randomly choosing and applying different transformations
in each instance of the protected application, an attacker will not always be able to
choose a safe subset of gadgets that will always remain unchanged.

Still, although quite effective as a standalone mitigation, in-place code random-
ization is not meant to be a complete prevention solution against ROP exploits, as
it offers probabilistic protection and thus cannot deliver any protection guarantees.
However, it can be applied in tandem with existing randomization techniques to in-
crease process diversification. This is facilitated by the practically zero overhead of
the applied transformations, and the ease with which they can be applied on existing
third-party executables.

In the rest of this chapter, we provide some background information on return-
oriented programming, discuss the principles of in-place code randomization and
the code transformations on which it is based, and present some experimental results
using publicly available ROP exploits and automated ROP code generation toolkits.

9.2 From Return-to-Libc to Return-Oriented Programming

9.2.1 Code-Reuse Attacks

The introduction of non-executable memory page protections in popular OSes, even
for CPUs that do not support the No eXecute (NX) bit, led to the development of the
return-to-libc exploitation technique [28]. Using this method, a memory corruption
vulnerability can be exploited by transferring control to code that already exists in

172 Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

the address space of the vulnerable process. By jumping to the beginning of a library
function such as system(), the attacker can for example spawn a shell without the
need to inject any code.

Frequently though, especially for remote exploitation, calling a single function is
not enough. In these cases, multiple return-to-libc calls can be “chained” together by
ensuring that before returning from one function to the next one, the stack pointer
has been correctly adjusted to the beginning of the prepared stack frame for the
next call. For instance, for a function with two arguments, this can be achieved by
first returning to a short instruction sequence such as pop reg; pop reg; ret;
found anywhere within the executable part of the process image [53, 52]. The pop
instructions adjust the stack pointer beyond the arguments of the previously exe-
cuted function (one pop for each argument), and then ret transfers control to the
next chained function. This approach, however, is not applicable in cases where the
function arguments need to be passed through registers. In that case, a few short in-
struction sequences ending with a ret instruction can be chained directly to set the
proper registers with the desired arguments, before calling the library function [44].

9.2.2 Return-Oriented Programming

In the above code-reuse techniques, the executed code consists of one or a few short
instruction sequences followed by a large block of code belonging to a library func-
tion. Hovav Shacham demonstrated that using only a carefully selected set of short
instruction sequences ending with a ret instruction, known as gadgets, it is pos-
sible to achieve arbitrary computation, obviating the need for calling library func-
tions [61]. This powerful technique, dubbed return-oriented programming, in essence
gives the attacker the same level of flexibility offered by arbitrary code injection
without injecting any code at all—the injected payload comprises just a sequence of
gadget addresses intermixed with any necessary data arguments.

In a typical ROP exploit, the attacker needs to control both the program counter
and the stack pointer: the former for executing the first gadget, and the latter for
allowing its ret instruction to transfer control to subsequent gadgets. Depending
on the vulnerability, if the ROP payload is injected in a memory area other than the
stack, e.g., the heap, then the stack pointer must first be adjusted to the beginning
of the payload through a stack pivot [31, 72]. In a follow up work [20], Checkoway
et al. demonstrated that the gadgets used in a ROP exploit need not necessarily end
with a ret instruction, but with any other indirect control transfer instruction. This
also allows the use of any general purpose register in place of the stack pointer
as an “index” register for controlling the execution of the gadgets, bypassing any
protections based on stack integrity.

Almost a decade after the introduction of the return-to-libc technique [28], the
wide adoption of NX-based exploit mitigations in popular OSes sparked a new in-
terest in more advanced forms of code-reuse attacks. The introduction of return-
oriented programming [61] and its advancements [19, 21, 40, 20, 29, 17, 59, 66, 72,

9 Practical Software Diversification Using In-Place Code Randomization 173

71] led to its adoption in real-world attacks [14, 56]. ROP exploits are facilitated
by the lack of complete address space layout randomization in both Linux [34],
and Windows [72, 41], which otherwise would prevent or at least hinder [62] these
attacks.

The ROP code implementations used in recent exploits against Windows applica-
tions is mostly based on gadgets ending with ret instructions, which conveniently
manipulate both the program counter and the stack pointer, although a couple of
gadgets ending with call or jmp are also used for calling library functions. In all
publicly available Windows exploits so far, attackers do not have to rely on a fully
ROP-based implementation for the whole malicious code that needs to be executed
after triggering a memory corruption vulnerability. Instead, ROP code is used only
as a first stage for bypassing DEP [49]. Typically, once control flow has been hi-
jacked, the ROP code allocates a memory area with write and execute permissions
by calling a library function like VirtualAlloc, copies into it some plain shell-
code included in the attack vector, and finally jumps to the copied shellcode which
now has execute permission [31].

9.3 Approach

In-place code randomization is based on the randomization of the code sections
of binary executable files (both libraries and executables) that are part of third-party
applications, using an array of binary code transformation techniques. The objective
of this randomization process is to break the code semantics of the gadgets that are
present in the executable memory segments of a running process, without affecting
the semantics of the actual program code.

The execution of a gadget has a certain set of consequences to the CPU and mem-
ory state of the exploited process. The attacker chooses how to link the different
gadgets together based on which registers, flags, or memory locations each gadget
modifies, and in what way. Consequently, the execution of a subsequent gadget de-
pends on the outcome of all previously executed gadgets. Even if the execution of a
single gadget has a different outcome than the one anticipated by the attacker, then
this will affect the execution of all subsequent gadgets, and it is likely that the logic
of the malicious return-oriented code will be severely impacted.

9.3.1 Why In-Place?

The concept of software diversification [23] is the basis for a wide range of protec-
tions against the exploitation of memory corruption vulnerabilities. Besides address
space layout randomization [49], many techniques focus on the internal random-
ization of the code segments of executable, and can be combined with ASLR to
increase process diversity [33]. Metamorphic transformations [68]. such as the inter-

174 Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

spersion of ineffectual instructions throughout the code, can shift gadgets from their
original offsets and alter many of their instructions, rendering them unusable. An-
other simpler and probably more effective approach is to rearrange existing blocks
of code either at the function level [15, 16, 43, 5], or with finer granularity, at the ba-
sic block level [7, 6]. If all blocks of code are reordered so that no one resides at its
original location, then all the offsets of the gadgets that the attacker would assume
to be present in the code sections of the process will now correspond to completely
different code.

These transformations require a precise view of all the code and data objects
contained in the executable sections of a PE file, including their cross-references,
as existing code needs to be shifted or moved. Due to computed jumps and inter-
mixed data [45], complete disassembly coverage is possible only if the binary con-
tains relocation and symbolic debugging information (e.g., PDB files) [65, 43, 58].
Unfortunately, debugging information is typically stripped from release builds for
compactness and intellectual property protection.

For Windows software, in particular, PE files (both DLL and EXE) usually do re-
tain relocation information even if no debugging information has been retained [63].
The loader needs this information in case a DLL must be loaded at an address
other than its preferred base address, e.g., because another library has already been
mapped to that location. or for ASLR. In contrast to Linux shared libraries and PIC
executables, which contain position-independent code and can be easily loaded in a
arbitrary location within a process’ address space, Windows binaries contain abso-
lute addresses, e.g., as immediate instruction operands or initialized data pointers,
that are valid only if the executable has been loaded at its preferred base address.
The .reloc section of PE files contains a list of offsets relatively to each PE section
that correspond to all absolute addresses at which a delta value needs to be added in
case the actual load address is different [57].

Relocation information alone, however, does not suffice for extracting a complete
view of the code within the executable sections of a PE file [7, 65]. Without the
symbolic debugging information contained in PDB files, although the location of
objects that are reached only via indirect jumps can be extracted from relocation
information, their actual type—code or data—still remains unknown. In some cases,
the actual type of these objects could be inferred using heuristics based on constant
propagation, but such methods are usually prone to misidentifications of data as
code and vice versa. Even a slight shift or size increase of a single object within a PE
section will incur cascading shifts to its following objects. Typically, an unidentified
object that actually contains code will include PC-relative branches to other code
objects. In the absence of the debugging information contained in PDB files, moving
such an unidentified code block (or any of its relatively referenced objects) without
fixing the immediate displacement operands of all its relative branch instructions
that reference other objects, will result to incorrect code.

Given the above constraints, we choose to use only binary code transformations
that do not alter the size and location of code and data objects within the executable,
allowing the randomization of third-party PE files without symbolic debugging in-
formation. Although this restriction does not allow us to apply extensive code trans-

9 Practical Software Diversification Using In-Place Code Randomization 175

formations like basic block reordering or metamorphism, we can still achieve par-
tial code randomization using narrow-scope modifications that can be safely applied
even without complete disassembly coverage. This can be achieved through slight,
in-place code modifications to the correctly identified parts of the code, that do not
change the overall structure of basic blocks or functions, but which are enough to
alter the outcome of short instruction sequences that can be used as gadgets.

9.3.2 Code Extraction and Modification

Although completely accurate disassembly of stripped x86 binaries is not possible,
state-of-the-art disassemblers achieve decent coverage for code generated by the
most commonly used compilers, using a combination of different disassembly algo-
rithms [45], the identification of specific code constructs [35], and simple data flow
analysis [36]. For our prototype implementation, we use IDA Pro [38] to extract the
code and identify the functions of PE executables. IDA Pro is effective in the iden-
tification of function boundaries, even for functions with non-contiguous code and
extensive use of basic block sharing [39], and also takes advantage of the relocation
information present in Windows DLLs.

Typically, however, without the symbolic information of PDB files, a fraction
of the functions in a PE executable are not identified, and parts of code remain
undiscovered. Our code transformations are applied conservatively, only on parts
of the code for which we can be confident that have been accurately disassembled.
For instance, IDA Pro speculatively disassembles code blocks that are reached only
through computed jumps, taking advantage of the relocation information contained
in PE files. However, we do not enable such heuristic code extraction methods in
order to avoid any disastrous modifications due to potentially misidentified code.
In practice, for the code generated by most compilers, relocation information also
ensures that the correctly identified basic blocks have no entry point other than their
first instruction. Similarly, some transformations that rely on the proper identifica-
tion of functions are applied only on the code of correctly recognized functions.
Our implementation is separate from the actual code extraction framework used,
which means that IDA Pro can be replaced or assisted by alternative code extraction
approaches [51, 65, 37], providing better disassembly coverage.

After the code extraction phase is complete, disassembled instructions are first
converted to our own internal representation, which holds additional information
such as any implicitly used registers, and the registers and flags read or written
by the instruction. For correctness, we also track the use of general purpose reg-
isters even in floating point, MMX, and SSE instructions. Although these type of
instructions have their own set of registers, they do use general purpose registers for
memory references (e.g., as the fmul instruction in Fig. 9.1). We then proceed and
apply the in-place code transformations discussed in the following section. These
are applied only on the parts of the executable segments that contain (intended or
unintended [61]) instruction sequences that can be used as gadgets. As a result of

176 Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

some of the transformations, instructions may be moved from their original loca-
tions within the same basic block. In these cases, for instructions that contain an ab-
solute address in some of their operands, the corresponding entries in the .reloc
sections of the randomized PE file are updated with the new offsets where these
absolute addresses are now located.

9.3.3 Deployment

Our publicly-available prototype implementation, called orp, can be used to gener-
ate randomized instances of existing applications. Orp processes each PE file indi-
vidually, and generates multiple randomized copies that can then replace the orig-
inal. To relieve users of the burden of installing and running orp, as part of our
future work we also plan to create a web service that will allow the submission of
executables for randomization.

Given the complexity of the analysis required for generating a set of randomized
instances of an input file (in the order of a few minutes on average for the PEs used
in our tests), orp can be used for the off-line generation of a pool of randomized PE
files for a given application. Note that for most of the tested Windows applications,
only some of the DLLs need to be randomized, as the rest are usually ASLR-enabled
(although they can also be randomized for increased protection). In a production de-
ployment, a system service or a modified loader can then pick a different randomized
version of the required DLLs and executables each time the application is launched,
following the same way of operation as tools like EMET [48].

9.4 In-Place Code Transformations

In this section we present in detail the different code transformations used for in-
place code randomization. Although some of the transformations such as instruction
reordering and register reassignment are also used by compilers and polymorphic
code engines for code optimization [12] and obfuscation [68], applying them at
the binary level—without having access to the higher-level structural and semantic
information available in these settings—poses significant challenges.

9.4.1 Atomic Instruction Substitution

One of the basic concepts of code obfuscation and metamorphism [68] is that the
exact same computation can be achieved using a countless number of different in-
struction combinations. When applied for code randomization, substituting the in-
structions of a gadget with a functionally-equivalent—but different—sequence of

9 Practical Software Diversification Using In-Place Code Randomization 177

Fig. 9.1: Example of atomic instruction substitution. The equivalent, but different
form of the cmp instruction does not change the original program code (a), but
renders the non-intended gadget unusable (b).

instructions would not affect any ROP code that uses that gadget, since its outcome
would be the same. However, by modifying the instructions of the original program
code, this transformation in essence modifies certain bytes in the code image of
the program, and consequently, can drastically alter the structure of non-intended
instruction sequences that overlap with the substituted instructions.

Many of the gadgets used for return-oriented programming consist of unaligned
instructions that have not been emitted by the compiler, but which happen to be
present in the code image of the process due to the density and variable-length nature
of the x86 instruction set. In the example of Fig. 9.1(a), the actual code generated
by the compiler consists of the instructions mov; cmp; lea; starting at byte B0.1

However, when disassembling from the next byte, a useful non-intended gadget
ending with ret is found.

Compiled code is highly optimized, and thus the replacement of even a single in-
struction in the original program code usually requires either a longer instruction, or
a combination of more than one instruction, for achieving the same purpose. Given
that our aim is to randomize the code of stripped binaries, even a slight increase
in the size of a basic block is not possible, which makes the most commonly used
instruction substitution techniques unsuitable for our purpose.

In certain cases though, it is possible to replace an instruction with a single,
functionally-equivalent instruction of the same length, thanks to the flexibility of-
fered by the extensive x86 instruction set. Besides obvious candidates based on
replacing addition with negative subtraction and inversely, there are also some in-
structions that come in different forms, with different opcodes, depending on the
supported operand types. For example, add r/m32,r32 stores the result of the ad-
dition in a register or memory operand (r/m32), while add r32,r/m32 stores the
result in a register (r32). Although these two forms have different opcodes, the two
instructions are equivalent when both operands happen to be registers. Many arith-
metic and logical instructions have such dual equivalent forms, while in some cases
there can be up to five equivalent instructions (e.g., test r/m8,r8, or r/m8,r8,
or r8, r/m8, and r/m8,r8, and r8,r/m8, affect the flags of the EFLAGS

1 The code of all examples throughout this chapter comes from icucnv36.dll, included in Adobe
Reader v9.3.4. This DLL was used for the ROP code of a DEP-bypass exploit for CVE-2010-
2883 [1] (see Table 9.2).

178 Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

Fig. 9.2: Example of how intra basic block instruction reordering can affect a non-
intended gadget.

register in the same way when both operands are the same register). In our prototype
implementation we use the sets of equivalent instructions used in Hydan [30], a tool
for hiding information in x86 executables, with the addition of one more set that
includes the equivalent versions of the xchg instruction.

As shown in Fig. 9.1(b), both operands of the cmp instruction are registers, and
thus it can be replaced by its equivalent form, which has different opcode and Mod-
R/M bytes [10]. Although the actual program code does not change, the ret in-
struction that was “included” in the original cmp instruction has now disappeared,
rendering the gadget unusable. In this case, the transformation completely elimi-
nates the gadget, and thus will be applied in all instances of the randomized binary.
In contrast, when a substitution does not affect the gadget’s final indirect jump, then
it is applied probabilistically.

9.4.2 Instruction Reordering

In certain cases, it is possible to reorder the instructions of small self-contained code
fragments without affecting the correct operation of the program. This transforma-
tion can significantly impact the structure of non-intended gadgets, but can also
break the attacker’s assumptions about gadgets that are part of the actual code.

9.4.2.1 Intra Basic Block Reordering

The actual instruction scheduling chosen during the code generation phase of a com-
piler depends on many factors, including the cost of instructions in cycles, and the
applied code optimization techniques [12]. Consequently, the code of a basic block
is often just one among several possible instruction orderings that are all equiva-
lent in terms of correctness. Based on this observation, we can partially modify the
code within a basic block by reordering some of its instructions according to an
alternative instruction scheduling.

9 Practical Software Diversification Using In-Place Code Randomization 179

The basis for deriving an alternative instruction scheduling is to determine the
ordering relationships among the instructions, which must always be satisfied to
maintain code correctness. The dependence graph of a basic block represents the in-
struction interdependencies that constrain the possible instruction schedules [50].
Since a basic block contains straight-line code, its dependence graph is a directed
acyclic graph with machine instructions as vertices, and dependencies between in-
structions as edges. We apply dependence analysis on the code of disassembled
basic blocks to build their dependence graph using an adaptation of a standard de-
pendence DAG construction algorithm [50, Fig. 9.6] for machine code. Applying
dependence analysis directly on machine code requires a careful treatment of the de-
pendencies between x86 instructions. Compared to the analysis of code expressed
in an intermediate representation form, this includes the identification of data de-
pendencies not only between register and memory operands, but also between CPU
flags and implicitly used registers and memory locations.

For each instruction i, we derive the sets use[i] and de f [i] with the registers used
and defined by the instruction. Besides register operands and registers used as part
of effective address computations, this includes any implicitly used registers. For
example, the use and de f sets for pop eax are {esp} and {eax, esp}, while for rep
stosb2 are {ecx,eax,edi} and {ecx, edi}, respectively. We initially assume that all
instructions in the basic block depend on each other, and then check each pair for
read-after-write (RAW), write-after-read (WAR), and write-after-write (WAW) de-
pendencies. For example, i1 and i2 have a RAW dependency if any of the following
is true: i) de f [i1]∩use[i2] 6= /0, ii) the destination operand of i1 and the source operand
of i2 are both a memory location, iii) i1 writes at least one flag read by i2.

Note that condition ii) is quite conservative, given that i2 will actually depend
on i1 only if i2 reads the same memory location written by i1. However, unless both
memory operands use absolute addresses, it is hard to determine statically if the two
effective addresses point to the same memory location. In our future work, we plan
to use simple data flow analysis to relax this condition. Besides instructions with
memory operands, this condition should also be checked for instructions with im-
plicitly accessed memory locations, e.g., push and pop. The conditions for WAR
and WAW dependencies are analogous. If no conflict is found between two instruc-
tions, then there is no constraint in their execution order.

Figure 9.2(a) shows the code of a basic block that contains a non-intended gadget,
and Fig. 9.3 its corresponding dependence DAG. Instructions not connected via a
direct edge are independent, and have no constraint in their relative execution order.
Given the dependence DAG of a basic block, the possible orderings of its instruc-
tions correspond to the different topological sorting arrangements of the graph [69].
Fig. 9.2(b) shows one of the possible alternative orderings of the original code. The
locations of all but one of the instructions and the values of all but one of the bytes
have changed, eliminating the non-intended gadget contained in the original code.
Although a new gadget has appeared a few bytes further into the block, (ending

2 stosb (Store Byte to String) copies the least significant byte from the eax register to the
memory location pointed by the edi register and increments edi’s value by one. The rep prefix
repeats this instruction until ecx’s value reaches zero, while decreasing it after each repetition.

180 Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

Fig. 9.3: Dependence graph of the basic block shown in Fig. 9.2.

again with a ret instruction at byte C3), an attacker cannot depend on it since alter-
native orderings will shift it to other locations, and some of its internal instructions
will always change (e.g., in this example, the useful pop ecx is gone). In fact, the
ret instruction can be eliminated altogether using atomic instruction substitution.

An underlying assumption we make here is that basic block boundaries will not
change at runtime. If a computed control transfer instruction targets a basic block in-
struction other than its first, then reordering may break the semantics of the code. Al-
though this may seem restrictive, we note that throughout our evaluation we did not
encounter any such case. For compiler-generated code, IDA Pro is able to compute
all jump targets even for computed jumps based on the PE relocation information. In
the most conservative case, users may choose to disable instruction reordering and
still benefit from the randomization of the other techniques—Section 9.5 includes
results for each technique individually.

9.4.2.2 Reordering of Register Preservation Code

The calling convention followed by the majority of compilers for Windows on x86
architectures, similarly to Linux, specifies that the ebx, esi, edi, and ebp registers
are callee-saved [32]. The remaining general purpose registers, known as scratch or
volatile registers, are free for use by the callee without restrictions. Typically, a
function that needs to use more than the available scratch registers, preserves any
non-volatile registers before modifying them by storing their values on the stack.
This is usually done at the function prologue through a series of push instructions,
as in the example of Fig. 9.4(a), which shows the very first and last instructions
of a function. At the function epilogue, a corresponding series of pop instructions
restores the saved values from the stack, right before returning to the caller.

Sequences that contain pop instructions followed by ret are among the most
widely used gadgets found in ROP exploits, since they allow the attacker to load
registers with values that are supplied as part of the injected payload [64]. The order
of the pop instructions is crucial for initializing each register with the appropri-
ate value. For example, loading 01020304 to esi and DEADC0DE to ebx using
the gadget pop esi; pop ebx; ret; found in the epilogue of the function in
Fig. 9.4, would require the following arrangement in the ROP payload:

9 Practical Software Diversification Using In-Place Code Randomization 181

Fig. 9.4: Example of instruction reordering in the register preservation code at the
preamble and epilogue of a function.

.. |7D 6B 83 4A|04 03 02 01|DE C0 AD DE|B3 02 83 4A| ..
| gdgt addr | esi | ebx | next gdgt |

As seen in the function prologue, the compiler stores the values of the callee-
saved registers in arbitrary order, and sometimes the relevant push instructions are
interleaved with instructions that use previously-preserved registers. At the func-
tion epilogue, the saved values are pop’ed from the stack in reverse order, so that
they end up to the proper register. Consequently, as long as the saved values are
restored in the right order, their actual order on the stack is irrelevant. Based on
this observation, we can randomize the order of the push and pop instructions of
register preservation code by maintaining the first-in-last-out order of the stored
values, as shown in Fig. 9.4(b). In this example, there are six possible orderings of
the three pop instructions, which means that any assumption that the attacker may
make about which registers will hold the two supplied values, will be correct with a
probability of one in six (or one in three, if only one register needs to be initialized).
In case only two registers are preserved, there are two possible orderings, allowing
the gadget to operate correctly half of the time.

This transformation is applied conservatively, only to functions with accurately
disassembled prologue and epilogue code. To make sure that we properly match
the push and pop instructions that preserve a given register, we monitor the stack
pointer delta throughout the whole function, as shown in the second column of
Fig. 9.4(a). If the deltas at the prologue and epilogue do not match, e.g., due to call
sites with unknown calling conventions throughout the function, or indirect manipu-
lation of the stack pointer, then no randomization is applied. As shown in Fig. 9.4(b),
any non-preservation instructions in the function prologue are reordered along with
the push instructions by maintaining any interdependencies, as discussed in the
previous section. For functions with multiple exit points, the preservation code at
all epilogues should match the function’s prologue. Note that there can be multi-
ple push and pop pairs for the same register, in case the register is preserved only
throughout some of the execution paths of a function.

182 Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

9.4.3 Register Reassignment

During the register allocation phase, the compiler assigns the arbitrarily many vari-
ables of the higher-level program into the much smaller set of registers that are
available in the target processor architecture. Although the program points at which
a certain variable should be stored in a register or spilled into memory are chosen by
sophisticated allocation algorithms, the actual name of the general purpose register
that will hold a particular variable is mostly an arbitrary choice. That is, whenever
a new variable needs to be mapped to a register, the compiler can pick any of the
available registers at that point to hold it. As a result, the actual register assignment
throughout the code of a given compiled binary is just one among many possible reg-
ister assignments. Based on this observation, we can reassign the names of the regis-
ter operands in the existing code according to a different—but equivalent—register
assignment, without affecting the semantics of the original code. When considering
each gadget as an autonomous code sequence, this transformation can alter the out-
come of many gadgets, which will now read or modify different registers than those
assumed by the attacker.

Due to the much higher cost of memory accesses compared to register accesses,
compilers strive to map as many variables as possible to the available registers.
Consequently, at any point in a large program, multiple registers are usually in use,
or live at the same time. Given the control flow graph (CFG) of a compiled program,
a register r is live at a program point p iff there is a path from p to a use of r that does
not go through a definition of r. The live range of r is defined as the set of program
points where r is live, and can be represented as a subgraph of the CFG [18]. Since
the same register can hold different variables at different points in the program, a
register can have multiple disjoint live regions in the same CFG.

For each correctly identified function, we compute the live ranges of all registers
used in its body by performing liveness analysis [12] directly on the machine code.
Given the CFG of the function and the sets use[i] and de f [i] for each instruction i,
we derive the sets in[i] and out[i] with the registers that are live-in and live-out at
each instruction. For this purpose, we use a modified version of a standard live-
variable analysis algorithm [12, Fig. 9.16] that computes the in and out sets at the
instruction level, instead of the basic block level. The algorithm computes the two
sets by iteratively reaching a fixed point for the following data-flow equations: in[i] =
use[i]∪ (out[i]−de f [i]) and out[i] =

⋃
{in[s] : s ∈ succ[i]}, were succ[i] is the set of all

possible successors of instruction i.
Figure 9.5 shows part of the CFG of a function and the corresponding live ranges

for eax and edi. Initially, we assume that all registers are live, since some of them
may hold values that have been set by the caller. In this example, edi is live when
entering the function, and the push instruction at line 2 stores (uses) its current
value on the stack. The following mov instruction initializes (defines) edi, ending
its previous live range (d0). Note that although a live range is a sub-graph of the
CFG, we illustrate and refer to the different live ranges as linear regions for the sake
of convenience.

9 Practical Software Diversification Using In-Place Code Randomization 183

Fig. 9.5: The live ranges of eax and edi in part of a function. The two registers
can be swapped in all instructions throughout their parallel, self-contained regions
a0 and d1 (lines 3–12).

The next definition of edi is at line 15, which means that the last use of its
previous value at line 11 also ends its previous live region d1. Region d1 is a self-
contained region, within which we can be confident that edi holds the same variable.
The eax register also has a self-contained live region (a0) that runs in parallel with
d1. Conceptually, the two live ranges can be extended to share the same boundaries.
Therefore, the two registers can be swapped across all the instructions located within
the boundaries of the two regions, without altering the semantics of the code.

The call eax instruction at line 12 can be conveniently used by an attacker
for calling a library function or another gadget. By reassigning eax and edi across
their parallel live regions, any ROP code that would depend on eax for transferring
control to the next piece of code, will now jump to an incorrect memory location,
and probably crash. For code fragments with just two parallel live regions, an at-
tacker can guess the right register half of the times. In many cases though, there are
three or more general purpose registers with parallel live regions, or other available
registers that are live before or after another register’s live region, allowing for a
higher number of possible register assignments.

The registers used in the original code can be reassigned by modifying the Mod-
R/M and sometimes the SIB byte of the relevant instructions. As in previous code
transformations, besides altering the operands of instructions in the existing code,
these modifications can also affect overlapping instructions that may be part of non-
intended gadgets. Note that implicitly used registers in certain instructions cannot
be replaced. For example, the one-byte “move data from string to string” instruction

184 Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

(movs) always uses esi and edi as its source and destination operands, and there
is no other one-byte instruction for achieving the same operation using a different
set of registers [10]. Consequently, if such an instruction is part of the live region of
one of its implicitly used registers, then this register cannot be reassigned throughout
that region. For the same reason, we exclude esp from liveness analysis.

Finally, although calling conventions are followed for most of the functions, this
is not always the case, as compilers are free to use any custom calling convention for
private or static functions. Most of these cases are conservatively covered through
a bottom-up call analysis that discovers custom register arguments and return value
registers. First, all the external function definitions found in the import table of the
DLL are marked as level-0 functions. IDA Pro can effectively distinguish between
different calling conventions that these external functions may follow, and reports
their declaration in the C language. Thus, in most cases, the register arguments and
the return value register (if any) for each of the level-0 functions are known. For any
call instruction to a level-0 function, its register arguments are added to call’s
set of implicitly read registers, and its return value registers are added to call’s set
of implicitly written registers.

In the next phase, level-1 functions are identified as the set of functions that
call only level-0 functions or no other function. Any registers read by a level-1
function, without prior writing them, are marked as its register arguments. Similarly,
any registers written and not read before a return instruction are marked as return
value registers. Again, the sets of implicitly read and written register of all the call
instructions to level-1 functions are updated accordingly. Similarly, level-2 functions
are the ones that call level-1 or level-0 functions, or no other function, and so on.
The same process is repeated until no more function levels can be computed. The
intuition behind this approach is that private functions, which may use non-standard
calling conventions, are called by other functions in the same DLL and, in most
cases, not through computed call instructions.

9.5 Randomization Analysis

A crucial aspect for the effectiveness of in-place code randomization is the random-
ization coverage in terms of what percentage of the gadgets found in an executable
can be safely randomized. A gadget may remain intact for one of the following rea-
sons: i) it is part of data embedded in a code segment, ii) it is part of code that could
not be disassembled, or iii) it is not affected by any of our transformations. In this
section, we explore the randomization coverage of our prototype implementation
using a large data set of 5,235 PE files (both DLL and EXE), detailed in Table 9.1.

For each PE file, we first pinpoint all gadgets contained in its executable sections.
We consider as a gadget [61] any intended or unintended instruction sequence that
ends with an indirect control transfer instruction, and which does not contain i) a
privileged or invalid instruction (can occur in non-intended instruction sequences),
and ii) a control transfer instruction other than its final one, with the exception of

9 Practical Software Diversification Using In-Place Code Randomization 185

Modifiable gadgets (%)
0 10 20 30 40 50 60 70 80 90 100

C
um

ul
at

iv
e

fr
ac

tio
n

of
 P

E
 fi

le
s

0

0.2

0.4

0.6

0.8

1

Out of all gadgets
Out of the gadgets found only
 in the extracted code

Fig. 9.6: Percentage of modifiable gadgets for a set of 5,235 PE files (detailed in
Table 9.1). Indicatively, for the upper 85% of the files, more than 70% of all gadgets
in the executable segments of each PE file can be modified (shaded area).

Modifiable gadgets (%)
0 20 40 60 80 100

Instruction
Substitution

Intra Basic Block
Reordering

Reg. Preservation
Code Reordering

Register
Reassignment

All
Transformations

Out of all gadgets
Out of the gadgets found only
 in the extracted code

Fig. 9.7: Percentage of modifiable gadgets according to the different code transfor-
mations.

Table 9.1: Modifiable (eliminated vs. broken) gadgets for a collection of various PE
files.

Software PE Files Total Modifiable % Eliminated % Broken %

Adobe Reader 9 43 1,250,959 75.4 8.7 66.7
Firefox 4 28 458,760 83.0 12.4 70.6
iTunes 10 75 396,478 74.0 8.0 66.0
Windows XP SP3 1,698 8,305,177 77.7 9.3 68.4
Windows 7 SP1 3,391 16,951,300 76.5 9.7 66.8

Total 5,235 27,362,674 76.9 9.5 67.4

indirect call (can be used in the middle of a gadget for calling a library function).
We assume a maximum gadget length of five instructions, which is typical for ex-
isting ROP code implementations [61, 20]. The larger the length of the gadget, the
higher the probability that at least one of its instructions will be affected. However,
for larger gadgets, it is possible that the modified part of the gadget may be irrelevant

186 Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

for the purpose of the attacker. For example, if only the first instruction of the gad-
get inc eax; pop ebx; ret; is randomized, this will not affect any ROP code
that either does not rely on the value of eax at that point, or uses the shorter gadget
pop ebx; ret; directly. For this reason, we consider all different subsequences
with length between two to five instructions as separate gadgets.

Figure 9.6 shows the percentage of modifiable gadgets out of all gadgets found
in the executable sections of each PE file (solid line), as a cumulative fraction of all
PE files in the data set. In about 85% of the PE files, more that 70% of the gadgets
can be randomized by our code transformations. Many of the unmodified gadgets
are located in parts of code that have not been extracted by IDA Pro, and which
consequently will never be affected by our transformations. When considering only
the gadgets that are contained within the disassembled code regions on which code
randomization can be applied, the percentage of affected gadgets slightly increases
(dashed line). Given that we do not take into account code blocks that have been
identified by IDA Pro using speculative methods, this shows that the use of a more
sophisticated code extraction mechanism will increase the number of gadgets that
can be modified. Figure 9.7 shows the total percentage of gadgets modified by each
code transformation technique for the same data set. Note that a gadget can be modi-
fied by more than one technique. Overall, the total percentage of modifiable gadgets
across all PE files is about 76.9%, as shown in Table 9.1.

We identify two qualitatively different ways in which a code transformation can
impact a gadget. As discussed in Sec. 9.4.1, a gadget can be eliminated, if any of the
applied transformations removes completely its final control transfer instruction. If
the final control transfer instruction remains intact, a gadget can then be broken, if
at least one of its internal instructions is altered, and the CPU and memory state
after its execution is different than the original, i.e., the outcome of its computation
is not the same. As shown in Table 9.1, in the average case, about 9.5% of all gad-
gets contained in a PE file can be rendered completely unusable. For a vulnerable
application, this already removes about one in ten of the available gadgets for the
construction of ROP code. Although the rest of the modifiable gadgets (67.4%) is
not eliminated, they can be “broken” by probabilistically modifying one or more of
their instructions.

9.6 Correctness and Performance

One of the basic principles of our approach is that the different in-place code ran-
domization techniques should be applied cautiously, without breaking the semantics
of the program. A straightforward way to verify the correctness of our code trans-
formations is to apply them on existing code and compare the outcome before and
after modification. Simply running a randomized version of a third-party applica-
tion and verifying that it behaves in the expected way can provide a first indication.
However, using this approach, it is hard to exercise a significant part of the code,
and potentially incorrect modifications may go unnoticed.

9 Practical Software Diversification Using In-Place Code Randomization 187

Table 9.2: ROP exploits [1, 3, 4] and generic ROP payloads [8, 24] tested on Win-
dows 7 SP1.

Gadgets in Unique Gadgets

ROP non-ASLR Modifiable (total %: Used: Modifiable Combina-

exploit/payload DLLS Broken % Eliminated %) (Broken, Elim.) tions

Adobe Reader [1] 36,760 28,637 (77.9: 70.1 7.8) 11: 6 (5, 1) 287

Integard Pro [3] 5,137 4,027 (78.4: 70.5 7.9) 16: 10 (9, 1) 322,559

Mplayer Lite [4] 117,822 104,671 (88.8: 70.0 18.8) 18: 7 (6, 1) 1,128,959

msvcr71.dll [8] 10,301 7,129 (69.2: 59.6 9.6) 14: 9 (8, 1) 3,317,760

msvcr71.dll [24] 10,301 7,129 (69.2: 59.6 9.6) 16: 8 (8, 0) 1,728,000

mscorie.dll [8] 1,616 1,304 (80.6: 73.5 7.1) 10: 4 (4, 0) 25,200

mfc71u.dll [24] 86,803 64,053 (73.8: 68.7 5.1) 11: 6 (6, 0) 170,496

For this purpose, we used the test suite of Wine [9], a compatibility layer that
allows Windows applications to run on Unix-like operating systems. Wine pro-
vides alternative implementations of the DLLs that comprise the Windows API, and
comes with an extensive test suite that covers the implementations of most of the
functions exported by the core Windows DLLs. Each function is executed multiple
times using various inputs that test different conditions, and the outcome of each
execution is compared against a known, expected result. We ported the test code
for about one third of the 109 DLLs included in the test suite of Wine v1.2.2, and
used it directly on the actual DLLs gathered from a Windows 7 installation. Using
multiple randomized versions of each tested DLL, we verified that in all runs, all
tests completed successfully.

We took advantage of the extensive and diverse code execution coverage of this
experiment to also evaluate the impact of in-place code randomization to the run-
time performance of the modified code. Among the different code transformations,
instruction reordering is the only one that could potentially introduce some non-
negligible overhead, given that sometimes the chosen ordering may be sub-optimal.
We measured the overall CPU user time for the completion of all tests by taking
the average time across multiple runs, using both the original and the randomized
versions of the DLLs. In all cases, there was no observable difference in the two
times, within measurement error.

9.7 Effectiveness Against Real-World ROP Exploits

9.7.1 ROP Exploits and Generic ROP Payloads

We evaluated the effectiveness of in-place code randomization using publicly
available ROP exploits against vulnerable Windows applications [1, 3, 4], as well as
generic ROP payloads based on commonly used DLLs [8, 24]. These seven different
ROP code implementations, listed in Table 9.2, bypass Windows DEP and execute a

188 Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

second-stage shellcode, as described in Sec. 9.2, and work even in the latest version
of Windows, with DEP and ASLR enabled. We first verified that all exploits and
payloads succeed by testing them against installations of the vulnerable applications
on a Windows 7 SP1 virtual machine, using a shellcode that just spawns calc.exe.
The ROP code used in the three exploits is implemented with gadgets from one or a
few DLLs that do not support ASLR, as shown in the second column of Table 9.2.
The number of unique gadgets used in each case varies between 10–18, and typically
a large part of the gadgets is repeatedly executed at many points throughout the
ROP code. When replacing the original non-ASLR DLLs of each application with
randomized versions, in all cases the exploits were rendered unsuccessful. Similarly,
we used a custom application to test the generic ROP payloads and verified that the
ROP code did not succeed when the corresponding DLL was randomized.

The ROP code of the exploit against Acrobat Reader uses just 11 unique gad-
gets, all coming from a single non-ASLR DLL (icucnv36.dll). From these gadgets,
in-place code randomization can alter six of them: one gadget is completely elim-
inated, while the other five broken gadgets have 2, 2, 3, 4, and 6 possible states,
respectively, resulting to a total of 287 randomized states (in addition to the always
eliminated gadget, which also alone breaks the ROP code). Even if we assume that
no elimination were possible, the exploit would still succeed only in one out of
the 288 (0.35%) possible instances (including the original) of the given gadget set.
Considering that this is a client-side exploit, in which the attacker will probably
have only one or a few opportunities for tricking the user to open the malicious PDF
file, the achieved randomization entropy is quite high—always assuming that none
of the gadgets could have been eliminated. As shown in Table 9.2, the number of
possible randomized states in the rest of the cases is several orders of magnitude
higher. This is mostly due to the larger number of broken gadgets, as well as due to
a few broken gadgets with tens of possible modified states, which both increase the
number of states exponentially.

Next, we explored whether the affected gadgets could be directly replaced with
unmodifiable gadgets in order to reliably circumvent our technique. Out of the six
affected gadgets in the Adobe Reader exploit, only four can be directly replaced,
meaning that the exploit cannot be trivially modified to bypass randomization. Fur-
thermore, two of the gadgets have only one replacement each, and both replace-
ments are found in code regions that are not discovered by IDA Pro—both could be
randomized using a more precise code extraction method. For the rest of the ROP
payloads, there are at least three irreplaceable gadgets in each case.

We should note that the relatively small number of gadgets used in most of these
ROP payloads is a worst-case scenario for our technique, which however not only is
able to prevent these exploits, but also does not allow the attacker to directly replace
all the affected gadgets. Indeed, besides the more complex ROP payloads used in the
Integard and Mplayer exploits, the rest of the payloads use API functions that are
already imported by a non-ASLR DLL, and simply call them directly using hard-
coded addresses. This type of API invocation is much simpler and requires fewer
gadgets [59] compared to ROP code like the one used in the Integard and Mplayer
exploits (16 and 18 unique gadgets, respectively), which first dynamically locates a

9 Practical Software Diversification Using In-Place Code Randomization 189

pointer to kernel32.dll (always ASLR-enabled in Windows 7) and then gets a handle
to VirtualProtect.

9.7.2 Hindering Automated ROP Payload Generation

The fact that some of the randomized gadgets are not directly replaceable does not
necessarily mean that the same outcome cannot be achieved using solely unmod-
ifiable gadgets. For example, a gadget that performs an arithmetic operation and
then copies the result to a memory location could be trivially replaced with two
gadgets: one that does the arithmetic operation and one that copies the result. To
assess whether an attacker could construct a ROP payload resistant to in-place code
randomization based on gadgets that cannot be randomized, we used Q [59] and
Mona [25], two automated ROP code construction tools.

Q is a general-purpose ROP compiler that uses semantic program verification
techniques to identify the functionality of gadgets, and provides a custom language,
named QooL, for writing input programs. Its current implementation only supports
simple QooL programs that call a single function or system call, while passing a
single custom argument. In case the function to be called belongs to an ASLR-
enabled DLL, Q can compute a handle to it through the import table of a non-ASLR
DLL [34], when applicable. We should note that although Q currently compiles
only basic QooL programs that call a single API function, this does not limit our
evaluation, but on the contrary, stresses even more our technique. The simpler the
programs, the fewer the gadgets used, which makes it easier for Q to generate ROP
code even when our technique limits the number of available gadgets.

Mona is a plug-in for Immunity Debugger [2] that automates the process of build-
ing Windows ROP payloads for bypassing DEP. Given a set of non-ASLR DLLs,
Mona searches for available gadgets, categorizes them according to their function-
ality, and then attempts to automatically generate four alternative ROP payloads for
giving execute permission to the embedded shellcode and then invoking it, based
on the VirtualProtect, VirtualAlloc, NtSetInformationProcess, and
SetProcessDEPPolicy API functions (the latter two are not supported in Win-
dows 7).

Considering the functionality of the ROP payloads generated by the two tools,
Mona generates slightly more complex payloads, but its gadget composition engine
is less sophisticated compared to Q’s. Q generates payloads that compute a func-
tion address, construct its single argument, and call it. Payloads generated by Mona
also call a single memory allocation API function (which though requires the con-
struction of several arguments), copy the shellcode to the newly allocated area, and
transfer control to it. Note that the complexity of the ROP code used in the tested
exploits is even higher, since they rely on up to four different API functions [1],
or “walk up” the stack to discover pointers to non-imported functions from ASLR-
enabled DLLs [3, 4].

190 Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

Table 9.3: Results of running Q [59] and Mona [25] on the original non-ASLR
DLLs listed in Table 9.2, and the unmodified parts of their randomized versions. In
all cases, both tools failed to generate a ROP payload using solely non-randomized
gadgets.

Q success Mona success
Application/DLL Orig. Rand. Orig. Rand.

Adobe Reader 4 8 4 (VA) 8
Integard Pro 4 8 8 8
Mplayer 4 8 4 (VA) 8
msvcr71.dll 4 8 8 8
mscorie.dll 8 8 8 8
mfc71u.dll 4 8 4 (VA,VP) 8

Table 9.3 shows the results of running Q and Mona on the same set of applica-
tions and DLLs used in the previous section (for applications, all non-ASLR DLLs
are analyzed collectively), for two different cases: when all gadgets are available to
the ROP compiler, and when only the non-randomized gadgets are available. The
second case aims to build a payload that will be functional even when code random-
ization is applied. Although both Q and Mona were able to create payloads when
applied on the original DLLs in almost all cases, they failed to construct any payload
using only non-randomized gadgets in all cases.

Although our technique was able to prevent two different tools from automati-
cally constructing reliable ROP code, this favorable outcome does not exclude the
possibility that a functional payload could still be constructed based solely on non-
randomized gadgets, e.g., in a manual way or using an even more sophisticated ROP
compiler. However, it clearly demonstrates that in-place code randomization signif-
icantly raises the bar for attackers, and makes the construction of reliable ROP code
much harder, even in an automated way.

9.8 Discussion

Randomization Coverage. In-place code randomization may not always randomize
a significant part of the executable address space, and it is hard to give a defini-
tive answer on whether the remaining unmodifiable gadgets, or even some of the
partially affected gadgets, would be sufficient for constructing useful ROP code.
This depends on the code in the non-ASLR address space of the particular vulnera-
ble process, as well as on the actual operations that need to be achieved using ROP
code. Note that Turing-completeness is irrelevant for practical exploitation [59], and
none of the gadget sets used in the tested ROP payloads is Turing-complete. For this
reason, we emphasize that in-place code randomization should be used as a mitiga-
tion technique, in the same fashion as application armoring tools like EMET [48],
and not as a complete prevention solution.

9 Practical Software Diversification Using In-Place Code Randomization 191

As previous studies [59, 61, 29] have shown, though, the feasibility of building a
ROP payload is proportional to the size of the non-ASLR code base, and reversely
proportional to the complexity of the desired functionality. Our experimental evalu-
ation shows that in all cases, the space of the remaining useful gadgets after random-
ization is sufficiently small to prevent the automated generation of ROP payloads.
At the same time, the tested ROP payloads are far from the complexity of a fully
blown ROP-based implementation of the operations required for carrying out an at-
tack, such as dumping a malicious executable on disk and executing it. Currently,
this functionality is handled by the embedded shellcode, which in essence allows us
to view these ROP payloads as sophisticated versions of return-to-libc. More com-
plex ROP code will probably require a larger number of unique gadgets, some of
them containing instructions that are currently not necessary, e.g., for directly in-
voking system calls. Given that even a singe broken gadget is enough to render ROP
code ineffective, this would increase the potential of in-place code randomization.

In any case, in-place code randomization raises the bar for the attacker, and sig-
nificantly complicates the construction of robust ROP code. We should stress that
the randomization coverage of our prototype implementation is a lower bound for
what would be possible using a more sophisticated code extraction method [51, 65].
In our future work, we also plan to relax some of the conservative assumptions that
we have made in instruction reordering and register reassignment, using data flow
analysis based on constant propagation.

Combining In-Place Code Randomization with Existing Techniques. Given its prac-
tically zero overhead and direct applicability on third-party executables, in-place
code randomization can be readily combined with existing techniques to improve di-
versity and reduce overheads. For instance, compiler-level techniques against ROP
attacks [47, 54] increase significantly the size of the generated code, and also af-
fect the runtime overhead. Incorporating code randomization for eliminating some
of the gadgets could offer savings in code expansion and runtime overheads. Our
technique is also applicable in conjunction with randomization methods based on
code block reordering [33, 16, 43], to further increase randomization entropy.

In contrast to the above techniques, which modify the structure of the code
image of a program by rearranging blocks of code, instruction set randomization
(ISR) [42, 13] alters the instruction set that is “understood” by the underlying sys-
tem. Legitimate programs are translated to a randomly chosen instruction set, and
run normally on top of a randomized execution environment that supports the cho-
sen instruction set. Any foreign code injected within a running process as a result of
an attack would fail to execute correctly, because the actual instruction set used is
unknown to any external observer.

Although ISR can be applied for protecting against any form of code injection,
it is not effective against attacks such as return-to-libc and return-oriented program-
ming, which are based on the reuse of code that already exists in the address space of
a vulnerable process—irrespectively of the underlying instruction set. Conversely,
in-place code randomization does not offer any protection against code injection
attacks. Instruction set randomization breaks any assumptions about the instruction

192 Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

set used by a running process, while in-place code randomization breaks any as-
sumptions about the location (and potentially the outcome, in case of non-intended
code fragments) of certain instruction sequences that already exist in the address
space of a process. The two techniques are thus complementary, and can be used in
tandem to protect against both code injection and ROP attacks.

In-place code randomization at the binary level is not applicable for software
that performs self-checksumming or other runtime code integrity checks. Although
not encountered in the tested applications, some third-party programs may use such
checks for hindering reverse engineering. Similarly, packed executables cannot be
modified directly. However, in most third-party applications, only the setup exe-
cutable used for software distribution is packed, and after installation all extracted
PE files are available for randomization.

9.9 Conclusion

The increasing number of exploits against Windows applications that rely on return-
oriented programming to bypass exploit mitigations such as DEP and ASLR, neces-
sitates the deployment of additional protection mechanisms that can harden immi-
nently vulnerable third-party applications against these threats. Towards this goal,
we have presented in-place code randomization, a technique that offers probabilistic
protection against ROP attacks, by randomizing the code of third-party applications
using various narrow-scope code transformations.

Our approach is practical: it can be applied directly on third-party executables
without relying on debugging information, and does not introduce any runtime over-
head. At the same time, it is effective: our experimental evaluation using in-the-wild
ROP exploits and two automated ROP code construction toolkits shows that in-
place code randomization can thwart ROP attacks against widely used applications,
including Adobe Reader on Windows 7, and can prevent the automated generation
of ROP code resistant to randomization. Our prototype implementation is publicly
available, and as part of our future work, we plan to improve its randomization cov-
erage using more advanced data flow analysis methods, and extend it to support ELF
and 64-bit executables.

Availability

Our prototype implementation is publicly available at http://nsl.cs.columbia.
edu/projects/orp

http://nsl.cs.columbia.edu/projects/orp
http://nsl.cs.columbia.edu/projects/orp

9 Practical Software Diversification Using In-Place Code Randomization 193

Acknowledgements

We are grateful to the authors of Q for making it available to us, and especially to Edward Schwartz
for his assistance. We also thank Úlfar Erlingsson and Periklis Akritidis for their valuable feedback.
This work was supported by DARPA and the US Air Force through Contracts DARPA-FA8750-10-
2-0253 and AFRL-FA8650-10-C-7024, respectively, and by the FP7-PEOPLE-2009-IOF project
MALCODE, funded by the European Commission under Grant Agreement No. 254116. Any opin-
ions, findings, conclusions, or recommendations expressed herein are those of the authors, and do
not necessarily reflect those of the US Government, DARPA, or the Air Force.

References

1. Adobe CoolType SING Table “uniqueName” Stack Buffer Overflow. http://www.
exploit-db.com/exploits/16619/.

2. Immunity Debugger. http://www.immunityinc.com/products-immdbg.
shtml.

3. Integard Pro 2.2.0.9026 (Win7 ROP-Code Metasploit Module). http://www.
exploit-db.com/exploits/15016/.

4. MPlayer (r33064 Lite) Buffer Overflow + ROP exploit. http://www.exploit-db.
com/exploits/17124/.

5. /ORDER (put functions in order). http://msdn.microsoft.com/en-us/
library/00kh39zz.aspx.

6. Profile-guided optimizations. http://msdn.microsoft.com/en-us/library/
e7k32f4k.aspx.

7. Syzygy - profile guided, post-link executable reordering. http://code.google.com/
p/sawbuck/wiki/SyzygyDesign.

8. White Phosphorus Exploit Pack. http://www.whitephosphorus.org/.
9. Wine. http://www.winehq.org.

10. Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 2 (2A & 2B): Instruc-
tion Set Reference, A-Z. 2011. http://www.intel.com/Assets/PDF/manual/
325383.pdf.

11. M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity. In Proceedings of
the 12th ACM conference on Computer and Communications Security (CCS), 2005.

12. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2006.

13. E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D. Zovi. Randomized
instruction set emulation to disrupt binary code injection attacks. In Proceedings of the 10th
ACM conference on Computer and Communications Security (CCS), 2003.

14. K. Baumgartner. The ROP pack. In Proceedings of the 20th Virus Bulletin International
Conference (VB), 2010.

15. E. Bhatkar, D. C. Duvarney, and R. Sekar. Address obfuscation: an efficient approach to
combat a broad range of memory error exploits. In In Proceedings of the 12th USENIX
Security Symposium, 2003.

16. S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques for comprehensive protec-
tion from memory error exploits. In Proceedings of the 14th USENIX Security Symposium,
August 2005.

17. T. Bletsch, X. Jiang, V. Freeh, and Z. Liang. Jump-oriented programming: A new class of
code-reuse attack. In Proceedings of the 6th Symposium on Information, Computer and Com-
munications Security (ASIACCS), 2011.

http://www.exploit-db.com/exploits/16619/
http://www.exploit-db.com/exploits/16619/
http://www.immunityinc.com/products-immdbg.shtml
http://www.immunityinc.com/products-immdbg.shtml
http://www.exploit-db.com/exploits/15016/
http://www.exploit-db.com/exploits/15016/
http://www.exploit-db.com/exploits/17124/
http://www.exploit-db.com/exploits/17124/
http://msdn.microsoft.com/en-us/library/00kh39zz.aspx
http://msdn.microsoft.com/en-us/library/00kh39zz.aspx
http://msdn.microsoft.com/en-us/library/e7k32f4k.aspx
http://msdn.microsoft.com/en-us/library/e7k32f4k.aspx
http://code.google.com/p/sawbuck/wiki/SyzygyDesign
http://code.google.com/p/sawbuck/wiki/SyzygyDesign
http://www.whitephosphorus.org/
http://www.winehq.org
http://www.intel.com/Assets/PDF/manual/325383.pdf
http://www.intel.com/Assets/PDF/manual/325383.pdf

194 Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

18. F. Bouchez. A Study of Spilling and Coalescing in Register Allocation as Two Separate
Phases. PhD thesis, École normale supérieure de Lyon, April 2009.

19. E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instructions go bad: gen-
eralizing return-oriented programming to RISC. In Proceedings of the 15th ACM conference
on Computer and Communications Security (CCS), 2008.

20. S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy. Return-
oriented programming without returns. In Proceedings of the 17th ACM conference on Com-
puter and Communications Security (CCS), 2010.

21. S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman, E. W. Felten, and H. Shacham. Can
DREs provide long-lasting security? the case of return-oriented programming and the AVC
advantage. In Proceedings of the 2009 conference on Electronic Voting Technology/Workshop
on Trustworthy Elections (EVT/WOTE), 2009.

22. P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. DROP: Detecting return-oriented pro-
gramming malicious code. In Proceedings of the 5th International Conference on Information
Systems Security (ICISS), 2009.

23. F. B. Cohen. Operating system protection through program evolution. Computers and Secu-
rity, 12:565–584, Oct. 1993.

24. Corelan Team. Corelan ROPdb. https://www.corelan.be/index.php/
security/corelan-ropdb/.

25. Corelan Team. Mona. http://redmine.corelan.be/projects/mona.
26. L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic integrity measurement and attestation:

towards defense against return-oriented programming attacks. In Proceedings of the 2009
ACM workshop on Scalable Trusted Computing (STC), 2009.

27. L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A practical protection tool to protect
against return-oriented programming. In Proceedings of the 6th Symposium on Information,
Computer and Communications Security (ASIACCS), 2011.

28. S. Designer. Getting around non-executable stack (and fix). http://seclists.org/
bugtraq/1997/Aug/63.

29. T. Dullien, T. Kornau, and R.-P. Weinmann. A framework for automated architecture-
independent gadget search. In Proceedings of the 4th USENIX Workshop on Offensive Tech-
nologies (WOOT), 2010.

30. R. El-Khalil and A. D. Keromytis. Hydan: Hiding information in program binaries. In
Proceedings of the International Conference on Information and Communications Security,
(ICICS), 2004.

31. Ú. Erlingsson. Low-level software security: Attack and defenses. Technical Report MSR-
TR-07-153, Microsoft Research, 2007. http://research.microsoft.com/pubs/
64363/tr-2007-153.pdf.

32. A. Fog. Calling conventions for different C++ compilers and operating systems. http:
//agner.org/optimize/calling_conventions.pdf.

33. S. Forrest, A. Somayaji, and D. Ackley. Building diverse computer systems. In Proceedings
of the 6th Workshop on Hot Topics in Operating Systems (HotOS-VI), 1997.

34. G. Fresi Roglia, L. Martignoni, R. Paleari, and D. Bruschi. Surgically returning to random-
ized lib(c). In Proceedings of the 25th Annual Computer Security Applications Conference
(ACSAC), 2009.

35. I. Guilfanov. Jump tables. http://www.hexblog.com/?p=68.
36. I. Guilfanov. Decompilers and beyond. Black Hat USA, 2008.
37. L. C. Harris and B. P. Miller. Practical analysis of stripped binary code. SIGARCH Comput.

Archit. News, 33:63–68, December 2005.
38. Hex-Rays. IDA Pro Disassembler. http://www.hex-rays.com/idapro/.
39. X. Hu, T.-c. Chiueh, and K. G. Shin. Large-scale malware indexing using function-call graphs.

In Proceedings of the 16th ACM conference on Computer and Communications Security
(CCS), 2009.

40. R. Hund, T. Holz, and F. C. Freiling. Return-oriented rootkits: bypassing kernel code integrity
protection mechanisms. In Proceedings of the 18th USENIX Security Symposium, 2009.

https://www.corelan.be/index.php/security/corelan-ropdb/
https://www.corelan.be/index.php/security/corelan-ropdb/
http://redmine.corelan.be/projects/mona
http://seclists.org/bugtraq/1997/Aug/63
http://seclists.org/bugtraq/1997/Aug/63
http://research.microsoft.com/pubs/64363/tr-2007-153.pdf
http://research.microsoft.com/pubs/64363/tr-2007-153.pdf
http://agner.org/optimize/calling_conventions.pdf
http://agner.org/optimize/calling_conventions.pdf
http://www.hexblog.com/?p=68
http://www.hex-rays.com/idapro/

9 Practical Software Diversification Using In-Place Code Randomization 195

41. R. Johnson. A castle made of sand: Adobe Reader X sandbox. CanSecWest, 2011.
42. G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection attacks with

instruction-set randomization. In Proceedings of the 10th ACM conference on Computer and
Communications Security (CCS), 2003.

43. C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address space layout permutation (ASLP): To-
wards fine-grained randomization of commodity software. In Proceedings of the 22nd Annual
Computer Security Applications Conference (ACSAC), 2006.

44. S. Krahmer. x86-64 buffer overflow exploits and the borrowed code chunks exploitation tech-
nique. http://www.suse.de/˜krahmer/no-nx.pdf.

45. C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of obfuscated binaries.
In Proceedings of the 13th USENIX Security Symposium, 2004.

46. H. Li. Understanding and exploiting Flash ActionScript vulnerabilities. CanSecWest, 2011.
47. J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-oriented rootkits with

“return-less” kernels. In Proceedings of the 5th European conference on Computer Systems
(EuroSys), 2010.

48. Microsoft. Enhanced Mitigation Experience Toolkit v2.1. http://www.microsoft.
com/download/en/details.aspx?id=1677.

49. M. Miller, T. Burrell, and M. Howard. Mitigating software vulnerabilities, July 2011.
http://www.microsoft.com/download/en/details.aspx?displaylang=
en&id=26788.

50. S. S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1997.

51. S. Nanda, W. Li, L.-C. Lam, and T.-c. Chiueh. Bird: Binary interpretation using runtime disas-
sembly. In Proceedings of the International Symposium on Code Generation and Optimization
(CGO), 2006.

52. Nergal. The advanced return-into-lib(c) exploits: PaX case study. Phrack, 11(58), Dec. 2001.
53. T. Newsham. Non-exec stack, 2000. http://seclists.org/bugtraq/2000/May/

90.
54. K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-Free: defeating return-

oriented programming through gadget-less binaries. In Proceedings of the 26th Annual Com-
puter Security Applications Conference (ACSAC), 2010.

55. V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hindering return-
oriented programming using in-place code randomization. In Proceedings of the 33rd IEEE
Symposium on Security & Privacy (S&P), May 2012.

56. M. Parkour. An overview of exploit packs (update 9) April 5 2011. http://
contagiodump.blogspot.com/2010/06/overview-of-exploit-packs-
update.html.

57. M. Pietrek. An in-depth look into the Win32 portable executable file format, part 2. http:
//msdn.microsoft.com/en-us/magazine/cc301808.aspx.

58. P. Saxena, R. Sekar, and V. Puranik. Efficient fine-grained binary instrumentation with applica-
tions to taint-tracking. In Proceedings of the 6th annual IEEE/ACM international symposium
on Code Generation and Optimization (CGO), 2008.

59. E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hardening made easy. In Proceedings
of the 20th USENIX Security Symposium, 2011.

60. F. J. Serna. CVE-2012-0769: the case of the perfect info leak, Apr. 2012. http://
zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf.

61. H. Shacham. The geometry of innocent flesh on the bone: return-into-libc without function
calls (on the x86). In Proceedings of the 14th ACM conference on Computer and Communi-
cations Security (CCS), 2007.

62. H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the effectiveness
of address-space randomization. In Proceedings of the 11th ACM conference on Computer
and Communications Security (CCS), 2004.

63. Skape. Locreate: An anagram for relocate. Uninformed, 6, 2007.
64. Skape and Skywing. Bypassing Windows hardware-enforced DEP. Uninformed, 2, Sept.

2005.

http://www.suse.de/~krahmer/no-nx.pdf
http://www.microsoft.com/download/en/details.aspx?id=1677
http://www.microsoft.com/download/en/details.aspx?id=1677
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=26788
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=26788
http://seclists.org/bugtraq/2000/May/90
http://seclists.org/bugtraq/2000/May/90
http://contagiodump.blogspot.com/2010/06/overview-of-exploit-packs-
http://contagiodump.blogspot.com/2010/06/overview-of-exploit-packs-
update.html
http://msdn.microsoft.com/en-us/magazine/cc301808.aspx
http://msdn.microsoft.com/en-us/magazine/cc301808.aspx
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf

196 Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis

65. M. Smithson, K. Anand, A. Kotha, K. Elwazeer, N. Giles, and R. Barua. Binary rewriting with-
out relocation information. Technical report, University of Maryland, 2010. http://www.
ece.umd.edu/˜barua/without- relocation-technical-report10.pdf.

66. P. Solé. Defeating DEP, the Immunitiy Debugger way. http://www.immunitysec.
com/downloads/DEPLIB.pdf.

67. P. Solé. Hanging on a ROPe. http://www.immunitysec.com/downloads/
DEPLIB20_ekoparty.pdf.

68. P. Ször. The Art of Computer Virus Research and Defense. Addison-Wesley Professional,
February 2005.

69. Y. L. Varol and D. Rotem. An algorithm to generate all topological sorting arrangements.
Comput. J., 24(1):83–84, 1981.

70. P. Vreugdenhil. Pwn2Own 2010 Windows 7 Internet Explorer 8 exploit.
http://vreugdenhilresearch.nl/Pwn2Ownl2010-Windows7-
InternetExplorer8.pdf.

71. D. A. D. Zovi. Mac OS X return-oriented exploitation. RECON, 2010.
72. D. A. D. Zovi. Practical return-oriented programming. SOURCE Boston, 2010.

http://www.ece.umd.edu/~barua/without-
http://www.ece.umd.edu/~barua/without-
relocation-technical-report10.pdf
http://www.immunitysec.com/downloads/DEPLIB.pdf
http://www.immunitysec.com/downloads/DEPLIB.pdf
http://www.immunitysec.com/downloads/DEPLIB20_ekoparty.pdf
http://www.immunitysec.com/downloads/DEPLIB20_ekoparty.pdf
http://vreugdenhilresearch.nl/Pwn2Ownl2010-Windows7-
InternetExplorer8.pdf

