
Bait and Snitch: Defending Computer Systems with

Decoys

Jonathan Voris, Jill Jermyn, Angelos D. Keromytis, and Salvatore J. Stolfo

Department of Computer Science

Columbia University, New York, NY 10027

{jvoris@cs., jj2600@, angelos@cs., sal@cs.}columbia.edu

Abstract

Threats against computer networks continue to multiply, but existing security so-

lutions are persistently unable to keep pace with these challenges. In this paper we

present a new paradigm for securing computational resources which we call decoy tech-

nology. This technique involves seeding a system with data that appears authentic but

is in fact spurious. Attacks can be detected by monitoring this phony information for

access events. Decoys are capable of detecting malicious activity, such as insider and

masquerade attacks, that are beyond the scope of traditional security measures. They

can be used to address confidentiality breaches either proactively or after they have

taken place.

This work examines the challenges that must be overcome in order to successfully

deploy decoys as part of a comprehensive security solution. It discusses situations

where decoys are particularly useful as well as characteristics that effective decoy ma-

terial should share. Furthermore, we describe the tools that we have developed to

efficiently craft and distribute decoys in order to form a network of sensors that is ca-

pable of detecting adversarial action that occurs anywhere in an organization’s system

1



of computers.

1 Introduction

Organizations across the globe are becoming increasingly aware of the importance of securing

their computer systems. As a consequence, worldwide sales of security software rose by 7.5%

in 2011 [5]. Government agencies are particularly conscious of the need to defend their

computing infrastructure. This is exemplified by the fact that the United States government

increased funding for cybersecurity research by 35% from 2011 to 2012 [15]. Attentiveness

to security practices has also risen at the individual level, as 90% of American adults now

believe that a safe Internet is critical to the U.S. economy [16].

Yet in spite of the heightened scrutiny that security practices have been under, computer

crimes continue to flourish. A recent study by the Ponemon Institute found that the number

of cyberattacks has more than doubled since 2010 [14]. Since these attacks are also becoming

more complex and difficult to anticipate, an average company can currently expect to be the

victim of 1.8 successful offensive efforts per month [14].

The vast majority of existing computer security measures focus on controlling access to

keep malicious actors out. Other approaches attempt to eliminate system vulnerabilities or

at least prevent their exploitation. The aforementioned trends in security statistics leave

little doubt that these techniques are not capable of sufficiently securing today’s computer

networks. Over time such security solutions will invariably fail, allowing adversaries to

illicitly access system credentials, data, and financial resources. Furthermore, traditional

security techniques offer no defense against “insiders” who initially hold legitimate credentials

but later choose to go rogue.

This paper proposes the use of decoys as a new paradigm for addressing computer security

issues that existing defenses are not capable of detecting. Decoys are constructs which contain

data that appears valuable but is in fact spurious. Since authentic users will have a natural

2



familiarity with their working environment, they are capable of remembering which resources

are real and which are fabricated. They will have no need, therefore, to access inauthentic

decoys that contain no truly useful data.

Adversaries without a thorough knowledge of a target system, on the other hand, will

have difficulty differentiating decoys from desirable data. After the number of decoy access

events pass a certain threshold, an organization can respond by enacting more restrictive

security measures and launching an investigation into the account which caused the alerts

to occur. Monitoring access to decoy files and content can thus provide protection against

cyberattacks in a practical and cost effective fashion.

Decoy technology also addresses the asymmetry that currently exists with respect to re-

sponding to different types of security violations after they have already occurred. In the

case of data integrity breaches, recovery mechanisms have been developed that allow ad-

ministrators to “roll back” systems to a checkpointed state that existed prior to when the

malicious event took place. Similarly, attacks against the availability of computer networks

can be thwarted by increasing the amount of redundant resources that are deployed. Previ-

ously, there was no such solution for reacting to attacks against system confidentiality after

the fact, however. Decoys can serve this role by providing a mechanism through which data

can be tracked after an adversary has already absconded with it.

The rest of this paper is organized as follows. Section 2 reviews previous research related

to decoy technology. Next, Section 3 discusses desirable decoy properties in detail. Several

scenarios in which decoys can be deployed as a beneficial security measure are proposed in

Section 4. Section 5 contains information on how decoy material can be created in an auto-

mated fashion, while Section 6 talks about how decoys can be efficiently placed throughout

an organization. Finally, we draw conclusions in Section 7.

3



2 Related Work

The use of deceptive techniques, such as disinformative propaganda, to thwart one’s enemies

has played a part in military conflict since antiquity. No one has summarized the importance

of disinformation in the context of combat more concisely than Sun Tzu, who wrote that “all

warfare is based on deception” in the Art of War [17]. A well known example of deception

in a military context is Operation Bodyguard, which was an Allied plan used during World

War II to distract German forces from the invasion of Normandy [8]. Although deception

is an ancient concept, it has only recently been applied to the process of securing computer

systems. Cliff Stoll was the first person known to utilize misdirection in order to secure

a network of computers. Stoll established a spurious set of computing resources in order

to catch hackers who were attempting to exfiltrate information from Lawrence Berkeley

National Laboratory [6].

Computers whose primary function is to attract the attention of malicious actors are often

called “honeypots.” Entire networks of such spurious machines are known as “honeynets.”

These systems are usually constructed in a way such that they appear as though they are

an unassuming component of a larger network architecture. In reality, however, they fail

to contain any useful data and are cordoned off from network resources which are actually

valued.

Honeypots and honeynets can be quite effective when used to detect external threats.

Their applicability towards defending against attacks originating from within an organization

is limited, though. This is due to the fact that this class of adversaries typically already

have the knowledge that is required to access the portion of a network where legitimate

data resides. Furthermore, honeypots offer no utility after a successful attack has already

occurred.

Spitzner extended the concept of honeypots to the domain of insider threat detection by

inventing the concept of “honeytokens” [12]. Honeytokens are deceptive security constructs

that work at a much finer granularity than honeypots or honeynetworks. They are individual

4



pieces of information that are intended to attract adversarial attention but lack meaningful

data. Illegitimate access credentials or forged personally identifiable information can be

considered examples of honeytokens. Yuill et al. coined the term “honeyfiles” to describe a

document that contains such enticing information [10].

Since the inception of honeyfiles, research has focused on how they can be effectively

designed and efficiently deployed. In [1], Bowen et al. developed the Decoy Document

Distributor (D3) System, a tool for automatically generating and monitoring decoys. D3 is

summarized in Section 5. The authors of [1] also established a set of properties that can be

used to assess the effectiveness of decoys. A detailed description of these properties can be

found in Section 3.

Next, Ben Salem and Stolfo conducted a user study to test the efficacy of decoys that were

deployed with these characteristics in mind [13]. This experiment confirmed the ability of

decoys to detect attacks by masqueraders. It also identified several trade offs between decoy

attributes that can be optimized to defend against specific types of attackers. Furthermore,

these authors suggested techniques that can be used to increase the attractiveness of decoys

to insiders without interfering with the expected workflow of legitimate users [13].

Most recently, the authors of [9] discussed how language manipulation can be used to

craft decoy content that adversaries may find more appealing but normal users would be

capable of immediately recognizing as fake. Researchers have also begun investigating how

the decoy concept can be applied to other domains. For example, in [19], Park and Stolfo

develop a system for protecting software repositories by using decoy Java programs to confuse

potential thieves.

3 Properties of Decoys

It is easy to see that some decoy material is more applicable to certain scenarios than others.

For example, if an adversary is motivated by financial gain, a decoy document containing

5



bank credentials is more likely to capture their malicious activity than one whose content

concerns medical information. Similarly, certain genres of decoys may be more applicable

to specific corporate environments. We have included a detailed discussion of decoy usage

scenarios in Section 4.

In order to design decoys that are as effective as possible, it is also beneficial to analyze

them in a more general sense by considering characteristics that are independent of a par-

ticular context. As initially explored by Bowen et. al in [1], several abstract properties exist

that define how a decoy should operate under ideal circumstances. Some of these attributes

concern the relationship between adversaries and decoy data, while others pertain to the

interactions between legitimate users and deceptive material. A “perfectly believable decoy”

would precisely conform to all of these guidelines, though practical restrictions prevent this

from occurring in most situations. Although there exists some overlap between these traits,

it is also worth noting that they are not completely orthogonal. For example, believability

and differentiability are in contention to some extent.

3.1 Believability

One of a decoy’s primary functions is to be believable. Upon inspection, a decoy should

appear authentic and trustworthy. In the absence of any additional information, it should

be impossible to discern a spurious decoy from authentic data. For example, a decoy tax

document should contain all of the same fields as one that is actually in use, and each of its

fields should be populated with realistic values.

Believability can be formalized via the following thought experiment. Consider a pool of

files, some of which contain real data and some of which are fabricated decoys. Select a decoy

file and real piece of data from this pool, and present it to an adversary. The selected decoy

can be considered perfectly believable if this attacker has an equal probability of selecting

the decoy and the legitimate document.

This characteristic is of critical importance to externally observable features of decoys.

6



For example, in the case of decoy documents, it is imperative that these files have realistic

file names and modification dates lest even casual observation reveal their phony nature. In

comparison, the believability of document content is of a lower priority. This is because an

attacker would have already triggered an alert when opening the document by the time this

information came in to play.

3.2 Enticingness

This property takes our idealized decoy material one step further. Decoys should not only

appear valid, but also attract an adversary’s attention. This, of course, will be heavily

influenced by an adversary’s objectives. Some malicious actors will be motivated by financial

gain, and thus would be interested in documents containing monetary information. Others

may seek more specific data such as medical records or a competitor’s secrets.

A document’s level of enticingness can be thought of as the probability that an adversary

would be interested in its exfiltration. A collection of interesting documents is the subset

of documents for which this probability is above a certain threshold. In these terms, it is

desirable that the probability of accessing any fake document which a decoy distribution

system generates is at least equal to the real documents that are in the adversary’s pool of

interest.

3.3 Conspicuousness

Conspicuousness is closely related to enticingness, as both influence the odds of an attacker

accessing a document. Enticingness models how curious an adversary is about a decoy, while

conspicuousness concerns how easy a decoy is to access. A conspicuous document is one that

is easy to find and access. Conspicuousness can be thought of as the amount of effort an

adversary must put in to discovering a decoy, or more formally, the number of actions that

are required to access it.

This characteristic captures the fact that decoy documents should be placed in obvious

7



locations such as a user’s desktop. It also demonstrates that it is helpful to place documents

in high traffic file system locations, including working folders where files that are accessed

on a day-to-day basis are stored. File system searches are also user actions that may result

in the presence of decoys. Conspicuous decoys should therefore be easily located by search

queries. This relates conspicuousness back to enticingness, however, as the search terms that

an adversary employees will be heavily dependent on their underlying motivation.

3.4 Detectability

The aforementioned decoy properties all concern the relationship between decoy documents

and a potential attacker. Detectability, on the other hand, describes the ability of decoys

to notify their owner when they have been accessed. An ideal decoy system would issue an

alert each and every time a decoy is accessed, but technical challenges, including network

availability and variability between software platforms, mean that this may not always be

possible in practice.

Deploying multiple overlapping decoy monitors that operate at different system levels

can help mitigate the possibility of an attacker accessing a decoy while remaining unde-

tected. Features of the decoy documents themselves can be leveraged to equip them with

embedded alert code. Monitoring software can be placed in the operating system to detect

predetermined tokens placed within decoys when they are opened. Further, operating sys-

tem auditing can be enabled to record decoy interactions. In order to check for document

exfiltration, software can be placed on network equipment to check for such tokens as well.

Finally, the content of decoy documents can also serve as an alert system. For example,

credentials for spurious accounts can be placed within a decoy. Since there is no reason that

a legitimate user would ever access these accounts, any activity they exhibit would send a

strong signal of malicious intent.

It is particularly critical that decoy access events are detectable while an attack is taking

place. Continuing to monitor this information allows for confidentially violations to be

8



handled after adversarial action has been carried out. Decoy material usage should thus

continue to raise alerts after such data has been exfiltrated. Although it may be possible to

evade detection in a particular practical decoy deployment, utilizing an extensive monitoring

network will at the very least increase the time and effort that is required to execute an attack.

This will make exfiltration more difficult and slow down or discourage adversaries as a net

effect.

3.5 Variability

Although a decoy distribution system should strive to make its fake documents seem as

authentic as possible, it would certainly be undesirable if precisely the same well-crafted

decoy file were placed repeatedly throughout a given system or network. This would greatly

simplify the task of distinguishing between legitimate data and the planted decoys that serve

as monitors. In general, there should be as much variability between decoy documents as

there exists in the pool of documents that they are intended to detect. That is, the task of

identifying a decoy should not be reducible to identifying a particular invariant that exists

between all generated decoys.

A different way to conceptualize variability is to consider the task of an adversary who

wishes to extract information from a system while remaining undetected. Assume that

the attacker has been able to discern which documents that have been accessed thus far are

authentic and which are traps. With a collection of “perfectly variable” decoys, this adversary

would still be unable to discern future decoy material from real data with a probability

greater than one half. Previous decoy knowledge, therefore, should not impact the task of

identifying future decoys. Note the relationship that exists between the trait of variability

and the believability characteristic. Variability among decoys essentially means that decoys

should remain believable even after the presence of other decoys has been revealed.

9



3.6 Stealth

While it is clearly desirable that every decoy access event be perceptible to the owners of a

system, care must be taken lest the alarms that accomplish this arouse suspicion. An overt

mechanism for issuing alert beacons would provide adversaries with an obvious signal that

an element contains a trap, which completely violates the property of decoy variability. The

messages that are transmitted by decoys must therefore be as subtle and covert as possible.

Raising an alert that decoy content has been accessed necessarily involves taking some

action, however. Even if precautions are taken, there is always the possibility that this act

will be perceptible to a malicious actor. It is therefore also desirable to trigger beacon events

as early as possible to prevent their interception. For example, alerts for file based decoys

should be raised as soon as they are accessed and prior to any content being displayed, if

feasible. This would eliminate the possibility of a decoy being recognized and discarded

before the decoy system has an opportunity to detect that is has been accessed.

3.7 Non-interference

This property is the first to describe how decoys should coexist with legitimate users who

are not masquerading with assumed credentials. An optimal masquerader detection network

would not affect the habits of typical users in any way. By inserting decoy material into an

operating environment, however, we introduce the possibility that this data will confuse users

or otherwise hinder their ability to complete their everyday tasks. It is therefore desirable

for decoys to demonstrate the property of non-interference by not obstructing the behavior

of normal users.

If a file system is populated with decoy documents that serve as intrusion sensors, for

example, the probability that the file system’s primary owner is able to access a particular

standard document should remain the same as it was prior to the introduction of the decoy

content. Similarly, introducing decoy applications to a mobile device’s operating system

should not impact a user’s ability to access real applications as they normally would.

10



3.8 Differentiability

In effect, the property of decoy non-interference means that true users must be able to easily

differentiate between spurious decoy content and authentic data. This can be thought of

as the opposite of the believability property. Although decoys should seem as realistic as

possible to adversaries, they should appear to be obviously fake for users who should actually

be accessing a system. A decoy can be considered fully differentiable if a real user will always

succeed at this task.

Balancing the differentiability for authentic users against believability for adversaries is

one of the most critical aspects of any practical decoy deployment system. Though this may

seem quite challenging, in practice, there are many properties that may be utilized to assist

decoy designers in this regard. Legitimate users should be very familiar with detailed aspects

of their data. They will also utilize their system in fairly predictable ways. Masqueraders,

on the other hand, will have a limited knowledge of the files they are trying to exfiltrate.

This gap in knowledge can be leveraged to increase decoy differentiability without affecting

believability in the process.

3.9 Shelf Life

The data that is relevant to a normal user’s tasks gradually changes as new events occur.

The timeliness of data is perhaps even more relevant to attackers, who frequently wish to

abscond with the most recent data that they can possibly access. The freshness of material

that a decoy contains therefore plays a large part in determining how it will be perceived

and how closely it will reflect the aforementioned desirable characteristics.

In order to make decoys appear conspicuous as well as enticing, they can be marked with

a very recent date. This creates a very appealing target by leading adversaries to believe that

the decoy content has been added even more recently than the authentic data that a system

contains. Of course, as time moves on and data is updated while new files are created, these

decoys will lose effectiveness. This can be seen as a shelf life during which decoys maintain

11



an optimal level of functionality and after which their efficacy begins to diminish. It is thus

desirable for decoy deployment systems to include a mechanism by which decoys can be

updated, potentially extending their shelf life indefinitely.

4 Decoy Usage Scenarios

This section introduces several broad situations in which security can be bolstered by de-

ploying a decoy defense network. It also attempts to discuss some of the challenges that

must be met in order for decoys to be used effectively in each environment.

4.1 Host Decoys

The most common usage scenario for decoys is to place them on a terminal that is within a

local computer network. This is the operating environment for which decoy documents were

originally designed, and as such they require little modification to be utilized in this manner.

There are still some deployment questions that must be considered, however. For example,

system administrators must determine whether they will push decoy documents out to client

systems or require users to pull decoys from a distribution source themselves. The former

places less of a burden on individual users, but may temporarily lead to an increase in false

positives as users become acquainted with the new decoys that have been placed in their

workspace. Experiments from [13] show how decoy access is affected by a document’s file

system location and the number of deployed decoys.

4.2 Network and Behavioral Decoys

In an effort to detect silent attackers as they eavesdrop on transmissions between computer

systems, we have also developed decoys that operate on a network level. Rather than host

based data files, these decoys consist of bogus data flows that are injected into a network.

This traffic must appear legitimate in terms of protocol specifications but also contains bait

12



information, such as a username and password that can be monitored in order to detect

adversarial activity. A study performed in [4] caught an adversary in the act of accessing a

trap account on a web based email service after such credentials were leaked through decoy

network traffic.

Similar techniques can be used to generate fake but believable user activity on end systems

as well. BotSwindler, which is described in [3], is a system designed to accomplish this in

order to detect crimeware. BotSwindler creates realistic user-like actions within a virtual

machine in order to convince malicious applications that they are monitoring a legitimate

system and are therefore learning valuable information, such as credentials that are used

to access other systems. As with network based decoys, accounts corresponding to phony

injected user tokens can be monitored to catch criminals after their crimeware has been

deceived.

The ability to simulate believable user activity of interest to crimeware is pertinent to the

success of BotSwindler. In anticipation of malware that attempts to distinguish simulated

actions from human behavior, the system is designed to be difficult to detect and uses a

formal language that provides a means for generating variable, realistic simulation actions.

A study in [4] asked users to discern generated decoy traffic from authentic information flows;

participants were not able to do so with an accuracy greater than guessing randomly.

4.3 Cloud-Based Decoys

Insider attacks are a major concern in the cloud, since these systems require that trust be

placed in third party cloud administrators. These individuals have access to all information

that their cloud service stores; therefore they can deceitfully, by stealing data, or unintention-

ally, by making configuration errors, threaten the security of sensitive data. Additionally, in

traditional systems, management functionality is usually available only to a few administra-

tors, but in the cloud everyone with access to the infrastructure typically has access to every

resource. Thus, there is an increased risk of malicious employees stealing or manipulating

13



sensitive corporate or organizational data. Furthermore, gaining access to an organization’s

infrastructure on the cloud is achieved through providing a username and password. Such

a lightweight authentication mechanism presents an increase in the problem of masquerader

insider threats.

According to [18], observing deviations from typical user behavior can be used in tandem

with decoy documents in a cloud environment. If abnormal data access is noticed, the

cloud can return decoy information that looks legitimate to the attacker who triggered the

unusual usage pattern. In the event of a false positive, an authorized user would be able to

recognize any false information returned by the cloud and then correctly respond to a series

of authentication challenges to prove his or her legitimacy. The cloud would prevent any

unauthorized disclosure of information by continuously returning false data to adversaries.

Also useful in a distributed environment such as the cloud is the concept of computational

decoys. Often a single component of a cloud will be responsible for a certain task. If this

component is compromised, the distributed system allows migration of the uncorrupted

components elsewhere. The compromised components can then actually use computational

deception to return false data, thus diverting an attacker’s attention [11].

4.4 Software Decoys

Companies are constantly faced with the challenge of preventing employees from stealing

proprietary software. In May of 2012, for example, a computer programmer was found

guilty of illegally copying software from the Federal Reserve Bank of New York [2]. Software

is perhaps the most valuable asset for an organization and is consequently a highly profitable

target for insiders. To guard against the unauthorized exfiltration of proprietary software,

we have devised software decoys that look like legitimate source code but have beacons that

trigger when the code is compiled or executed [19].

In addition to the properties of decoys described in Section 3, software decoys should

adhere to several additional requirements. The code must be compilable and executable in

14



order to appear believable and authentic. Adversaries should also not be able to distinguish

software decoys from legitimate source code. They must therefore exhibit a similar style to

that of a company’s true source code and not look as if it has been drawn from an outside

source, such as open source software repositories.

4.5 Voicemail Decoys

Typically people who shy away from sending sensitive data via email opt to select voice

as their next method of choice. Yet, there is no guarantee that voicemails are safe from

attackers. Voicemail decoys, messages that sound legitimate to those who are uninformed

but contain false sensitive information, can be used to detect malicious activity. For example,

a voicemail decoy with a human’s voice spelling out authentication credentials to a web site

or credit card information can attract an attacker to steal such information. Usage of the

credentials can then be tracked in order to catch attackers in a similar fashion to that

discussed in Section 3.

4.6 Mobile Decoys

With the increased prevalence of mobile computing, it is becoming crucial to protect cor-

porate use of mobile devices and sensitive data stored on them. In an effort to increase

productivity and instant contact to employees out of the office, companies offer employees

access to company data on mobile devices. In addition, such small and portable machines

are easily lost and stolen. As a result, these devices must be secured against unauthorized

access.

There are two main methods for using decoy technology to serve this purpose. Deceptive

applications can be created that look and feel authentic, but are in fact useless replicas of

a true program. Companies that ban non-corporate software usage on mobile devices can

monitor access to these programs in order to catch employees who violate corporate policy

by installing them.

15



A second use of decoys in a mobile setting, which is similar to their usage in a cloud

environment, is for remote access to sensitive documents. People are increasingly using mo-

bile phones to access private information. We are currently working on a mobile application

that interfaces with a user’s documents remotely and detects unauthorized access. When

uploading documents to the remote server, a user creates a authentication gesture that is

later used to retrieve a document’s content. If a user provides an incorrect gesture when

attempting to access a document, illegitimate data is returned.

5 Decoy Generation

Having established what qualities decoys should possess and where they are intended to be

used, we now turn our attention to how they should be created. Users could certainly craft

decoy material by hand. For instance, upon completing an invoice, a user could create a

secondary fake invoice that mirrors the formatting or the authentic version but contains

bogus information. Such decoys would be high quality in terms of their believability because

they would closely mirror real data. They would also be very differentiable; since users would

have created the documents themselves, they would easily be able to recognize their phony

content.

The process of manually introducing decoy content to a system is very tedious, however,

since each time new information is saved on the system an equal amount of spurious material

would need to be created as well. Users would also be responsible for checking access events

for these files. Needless to say, manual decoy creation would scale very poorly to a large

organization with many computers and users.

Making, managing, and monitoring decoys is thus a nontrivial problem. As an alternative

to performing these steps manually, we suggest using a system that does so with minimal

user involvement. This is precisely the purpose of the Decoy Document Distributor (D3)

System [1]. D3 is a tool for generating and monitoring decoys which can be accessed by

16



registered users in order to generate decoys for download. It can also be used as a source of

data for decoy use in host and network components.

D3, also known as FOG, is a web site that offers several decoy related services to users

[7]. After creating an account, users can request different types of files that contain material

appealing to malicious actors, such as tax documents and banking statements. D3 will then

automatically craft a document of the type specified by populating a corresponding template

with personal and financial information that is taken from a database of fake identities.

These documents can be downloaded and deployed immediately or reserved for future

use. Furthermore, they will also be equipped with code that serves as an alert “beacon.”

Whenever a D3 decoy document is accessed, this code will issue an alert by establishing a

silent connection with the FOG server. The D3 system can then take appropriate action,

such as logging the alert for future analysis and issuing an alert to the document’s owner via

email.

Alternatively, D3 also provides users with the option to upload their own documents to

be “beaconized” so they will issue alerts when opened. Since these decoy variants contain

actual content, documents that are modified in this way have the advantage of not interfering

with the workflow of legitimate users in any way. The FOG site also allows users to manage

their collection of decoys as well as calculate statistics on decoy usage and access events.

6 Decoy Distribution

Another issue that must be overcome in order to make use of decoys is deployment. In

order to meet this need we have developed the Decoy Distributor Tool (DDT) which can

be used to disseminate decoys throughout a file system with minimal manual involvement.

Our solution does not require any prior knowledge of the organization or content of the file

system in which decoys are to be placed.

Consider the task of a system administrator who wishes to deploy decoy documents

17



throughout the computers on his or her network in order to defend them from insider threats.

To manually place decoys in a file system, the system administrator would first have to collect

feedback from users regarding which locations in their file system they would like to place

decoys. After aggregating this data, he or she would then have to request a batch of decoys

and then go through the painstaking process of copying them to their destination directories

one by one.

Such a process does not scale well to an environment with a large number of computers

and users. In contrast, the DDT requires neither knowledge regarding file system specifics

nor individual file placement. It reduces the task of decoy document management to the

simple steps of specifying how many decoys are desired and in which portion of a file system to

place them. Our distribution application is therefore capable of reducing the time required to

establish a system of insider threat sensors by at least an order of magnitude while retaining

all of the security benefits of manual decoy usage.

The DDT has two main objectives. The first is to automatically determine locations in a

computer’s file system that are most likely to be accessed by a malicious insider. The second

is to place decoy documents in these selected locations, either directly along with existing

documents or in a separate folder. The DDT allows a user to select a source directory of

decoy documents that should be distributed on the target machine. The user can choose

an existing folder containing decoys or create a new set by accessing the FOG web site [7]

through the DDT and specifying a number of decoys to be generated. This approach enables

flexibility in the types of documents that are deployed as decoys.

Once the user chooses a source directory of decoy documents, he or she then specifies a

destination directory. This destination directory is used as a root from which target locations

are selected. Enabling the user to specify the root from which target directories are identified

allows more freedom in decoy placement. For example, if a particular owner of a machine

only uses directories within “C:\Sal,” he or she may want to consider placing decoys solely

in directories branching from this root.

18



6.1 Creating Decoy Documents

As mentioned in Section 5, Bowen et al. describe properties of effective decoys in [1]. The

DDT tackles conspicuousness and non-interference via the tool’s scheme for selecting loca-

tions to place decoys, while the FOG system deals with detectability by alerting the FOG

account owner when a decoy document is accessed. When creating decoys, the DDT has two

primary considerations for each document, namely the filename of the document and its mod-

ification and creation dates. The DDT’s naming convention and date assignment techniques

attempt to solve the problems of believability, enticingness, variability, non-interference,

and differentiability. Shelf-life is also handled by the DDT’s date assignment method, with

possible future work described in Section 6.4 as an alternative solution.

6.2 Determining locations to place the decoy documents

A study performed in [13] demonstrated that the placement of decoy documents greatly

affects the probability of a user accessing these files. Locations in which decoys are placed in

a file system should be selected so that the decoys remain conspicuous to malicious insiders

but do not impede a legitimate user’s normal actions. The DDT scans the target machine’s

file system starting at the specified root and identifies ten folders with the most recently

accessed documents as well as ten folders containing the greatest number of files with common

document extensions .pdf, .doc, .docx, .ppt, .xls, .txt, .html, and .htm. Selecting the most

populated and most recently accessed folders increases the conspicuousness of decoys, since

these are directories that would be the most probable targets for malicious insiders.

Once the DDT identifies the directories that are in the top ten on the file system for

both recent activity and volume, it then proceeds to populate the remainder of the ten

most crowded directories, followed by any other of the top ten directories which showed the

most activity. In all three cases, decoys are placed evenly among the resultant destination

directory list by iterating through them in descending rank order. Within these destination

folders, one can select the option to deploy the decoy documents directly so that they blend

19



in with currently existing documents, or in separate folders that contain decoys only.

6.3 Naming of Decoy Documents and Folders

As with location, the names of documents directly influence how enticing they look to ad-

versaries. Folder names can also impact a user’s decision to access a location in the file

system. When creating new directories in which decoys will be placed, the DDT creates four

enticingly-named new folders in the specified destination directory and evenly disperses the

decoys over these folders.

In an effort to increase the variability of decoys, the DDT uses three methods for naming

decoy documents when attempting to blend them with existing documents in a folder, ran-

domly selecting among these approaches. The prime objective of the naming scheme is to

create filenames that blend in with existing legitimate documents so that they do not look

overtly suspicious. At the same time, the decoy names should lure malevolent users into

opening the documents.

The first naming method selects an existing file in the target directory and appends either

“-final” or “-updated” to the end of the filename. The logic behind this scheme is that the

most recently modified versions of files may seem more official than older versions. Note

that if either of the terms “final” or “updated” are already used in the filename, the DDT

selects another naming method for this decoy.

The second naming method employed by the DDT appends a date string to the end

of a randomly selected existing filename in the target directory. Appending a date string

makes a document appear as if it has been marked as a more authentic, official version. The

DDT uses the format mmddyy for the date strings. For example, a decoy document may be

named company employees-010412.pdf and placed in the target folder alongside a legitimate

document named company employees.pdf.

Blending filenames by use of delimiters is the final naming approach. The DDT calcu-

lates the delimiter used most often in the target directory and modifies a decoy’s filename

20



to use this delimiter. For example, if the target directory contains files phone bill 1011.pdf,

shopping list april.doc, tempDirectory.txt, and friends birthdays.docx, the DDT would change

decoy document alice-taxes-33.pdf to alice taxes 33.pdf, since “ ” is the most common de-

limiter in the destination folder. The above directory example demonstrates the importance

of this naming technique. The file tempDirectory.txt clearly stands out as a file that does

not belong; perhaps the file was copied from another machine or automatically generated by

an application. Since this filename doesn’t use the same delimiters as the other filenames in

the same directory, the astute user may assume the file was not created by the regular user

of the computer, who seems to typically name files using the “ ” delimiter.

When inserting decoy documents into a separate folder as described above, the DDT does

not change the filename generated by the FOG system. Since the DDT creates a brand new

folder for the decoy documents, there are no existing documents in this folder and therefore

no need to blend filenames. Placing the decoys documents in a separate directory is therefore

the option that enables the most differentiability of decoys from legitimate documents.

6.4 Modification and Creation Dates of Decoy Documents

Although users do not immediately see file modification and creation dates when first entering

a directory, prudent or suspicious adversaries may check these attributes when carefully

searching for sensitive information. For this reason, it is imperative that the modify and

creation dates blend in with existing documents as well as possible so that they do not

appear statically assigned without regard to their destination directory. Dates can also be

used to increase the allure of certain decoys, such as updated versions of existing documents.

When blending decoy documents into a folder with existing documents, the DDT chooses

a file’s date depending on the naming convention selected. If following a method that appends

either “-final” or “-updated” to a filename, the DDT will set the document’s creation date to

at most 48 hours after the most recently created document in the destination directory. The

document’s last modified date will then be set to up to two days after the resultant creation

21



date. If an adversary decided to sort a folder’s contents by date, the decoy documents would

then appear at the top of the sorted list, making them conspicuous and likely to be more

attractive targets.

A naming convention that appends a date string to the decoy’s filename should intuitively

set the file’s creation date to that used in the selected date string. The DDT first determines

an appropriate date for a decoy document by finding the median creation date of existing

files in the decoy’s target directory. The decoy’s creation date is then set within a 48-hour

window of the median. The date string appended to the filename is obtained from the

proposed creation date.

When placing decoy documents in a separate new folder, the DDT has no existing docu-

ment dates on which to base a file’s target date. Therefore, the modify dates of the decoys

are determined by the date that the decoys are generated by the FOG system. A creation

date is then set to up to two days before the existing modify date. The DDT subsequently

alters the modify and creation dates of the new folder in which the decoys are placed. The

creation date of the folder is set to the creation date of the oldest decoy file placed inside;

the modify date is set to that of the most recently modified document. We considered this

dating approach the most practical for the case in which new decoy folders are created, since

users have direct control over the dates applied to the decoy documents. In our future work,

the DDT will include a feature to “refresh” the dates of decoys so that they remain among

the most recent documents in the file system.

7 Conclusions

To summarize, this paper introduced a novel security paradigm which we refer to as decoy

technology. Decoys represent a drastic departure from existing security solutions in several

important ways. By placing content that is spurious yet believable and enticing in the path

of potential adversaries, decoys can serve as a potent last line of defense against attacks

22



that traditional security mechanisms fail to adequately defend against. Decoy content can

be proactively seeded throughout a system to defend against potential attacks, or fed to

an adversary once malicious activity has been detected. Furthermore, by tracking decoy

material, violations of confidentiality can be addressed after they have occurred. This is a

capability that alternative security measures are not capable of offering.

Although the deceptive techniques that form the basis of decoys have existed for ages,

they have only recently been leveraged to protect computing resources. This paper discussed

several dimensions along which this process can be refined and extended. It included at-

tributes that all high quality decoys should share as well as contexts in which decoys are

particularly applicable. Furthermore, we shared techniques for efficiently generating decoy

material and disseminating it throughout an organization to create an insider detection net-

work. Decoys can be integrated as useful components of any full featured security solution

and will only increase in prominence as threats against computer systems continue to grow.

Acknowledgment

This material is based on work supported by the Defense Advanced Research Projects Agency

(DARPA) under the ADAMS (Anomaly Detection at Multiple Scales) Program with grant

award number W911NF-11-1-0140 and through the Mission-Resilient Clouds (MRC) pro-

gram under Contract FA8650-11-C-7190. The views and conclusions contained in this docu-

ment are those of the authors and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of DARPA. Professors Stolfo and Keromytis are

founders of Allure Security Technology, Inc.

References

[1] B. Bowen and S. Hershkop and A. Keromytis and S. Stolfo. Baiting Inside Attackers

Using Decoy Documents. In Conference on Security and Privacy in Communication

23



Networks, 2009.

[2] B. Katz. Chinese Man Pleads Guilty to NY Fed Cyber Theft. Available at http://www.

reuters.com/article/2012/05/29/usa-crime-fed-idUSL1E8GTBG120120529, 2012.

[3] B. Bowen, P. Prabhu, V. Kemerlis, S. Sidiroglou, A. Keromytis, and S. Stolfo.

Botswindler: Tamper resistant injection of believable decoys in vm-based hosts for

crimeware detection. In Recent Advances in Intrusion Detection, page 118137, 2010.

[4] B. M. Bowen, V. P. Kemerlis, P. Prabhu, A. D. Keromytis, and S. J. Stolfo. Automating

the injection of believable decoys to detect snooping. In Proceedings of the third ACM

conference on Wireless network security, page 8186, 2010.

[5] C. Pettey and R. van der Meulen. Gartner Says Security Software Market Grew 7.5

Percent in 2011. Available at http://www.gartner.com/it/page.jsp?id=1996415,

2012.

[6] C. Stoll. The Cuckoo’s Egg, 1989.

[7] Columbia University Intrusion Detection Systems Lab. FOG Computing. Available at

http://ids.cs.columbia.edu/FOG/, 2012.

[8] J. Rubin. Deception: The other ’D’ in D-Day. Available at http://www.msnbc.msn.

com/id/5139053/ns/msnbc_tv-the_abrams_report/t/deception-other-d-d-day,

2004.

[9] J. Voris and N. Boggs and S. Stolfo. Lost in Translation: Improving Decoy Documents

via Automated Translation. In Workshop on Research for Insider Threat, 2012.

[10] J. Yuill and M. Zappe and D. Denning and F. Feer. Honeyfiles: Deceptive Files for

Intrusion Detection. In Workshop on Information Assurance, 2004.

[11] A. D. Keromytis, R. Geambasu, S. Sethumadhavan, S. J. Stolfo, J. Yang, A. Benameur,

M. Dacier, M. Elder, D. Kienzle, and A. Stavrou. The MEERKATS cloud security

24



architecture. In Distributed Computing Systems Workshops (ICDCSW), 2012 32nd

International Conference on, page 446450, 2012.

[12] L. Spitzner. Honeytokens: The Other Honeypot. Available at http://www.symantec.

com/connect/articles/honeytokens-other-honeypot, 2003.

[13] M. Ben Salem and S. Stolfo. Decoy Document Deployment for Effective Masquerade At-

tack Detection. In Conference on Detection of Intrusions and Malware and Vulnerability

Assessment, 2011.

[14] M. Schwartz. Cybercrime Attacks, Costs Escalating. Avail-

able at http://www.informationweek.com/security/attacks/

cybercrime-attacks-costs-escalating/240008658, 2012.

[15] P. Thibodeau. Obama Seeks Big Boost in CyberSecurity Spending. Available

at http://www.computerworld.com/s/article/9209461/Obama_seeks_big_boost_

in_cybersecurity_spending, 2011.

[16] S. Kilcarr. Cyber Security Concerns Keep Mounting. Available at http://fleetowner.

com/blog/cyber-security-concerns-keep-mounting, 2012.

[17] S. Tzu. The Art of War. Available at http://classics.mit.edu/Tzu/artwar.html,

2009.

[18] S. J. Stolfo, M. B. Salem, and A. D. Keromytis. Fog computing: Mitigating insider

data theft attacks in the cloud. In Security and Privacy Workshops (SPW), 2012 IEEE

Symposium on, page 125128, 2012.

[19] Y. Park and S. Stolfo. Software Decoys for Insider Threat. In ACM Symposium on

Information, Computer and Communications Security, 2012.

25


