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Abstract. Dynamic taint analysis (DTA) has been heavily used by secu-
rity researchers for various tasks, including detecting unknown exploits,
analyzing malware, preventing information leaks, and many more. Re-
cently, it has been also utilized to track data across processes and hosts
to shed light on the interaction of distributed components, but also for
security purposes. This paper presents Taint-Exchange, a generic cross-
process and cross-host taint tracking framework. Our goal is to provide
researchers with a valuable tool for rapidly developing prototypes that
utilize cross-host taint tracking. Taint-Exchange builds on the libdft open
source data flow tracking framework for processes, so unlike previous
work it does not require extensive maintenance and setup. It intercepts
I/O related system calls to transparently multiplex fine-grained taint in-
formation into existing communication channels, like sockets and pipes.
We evaluate Taint-Exchange using the popular lmbench suite, and show
that it incurs only moderate overhead.

1 Introduction

Dynamic taint analysis (DTA) has been a prominent technique in the computer
security domain, used independently or frequently complementing other sys-
tems [9,23,21,19,20,27,26,7], while researchers seem to continuously find new ap-
plications for it, many times extending to other domains [12,29]. Originally, taint
tracking systems enabled the tracking of marked or “tainted” data throughout
the execution of a single process [21], or an entire host in the case of virtual ma-
chine (VM)- and emulator-based systems [13,20]. The latter enabled researchers
to track the interactions between processes running within a virtual machine.

However, as taint tracking is applied on more domains, like the visualiza-
tion of information flow among the components of a system [17,28] and the au-
tomatic troubleshooting of application misconfigurations [1], systems that can
also propagate taint between different hosts over the network have been also
developed. Existing cross-application and cross-host taint propagation systems
frequently make use of VMs and emulators [17,28], incurring unnecessary over-
head and requiring extensive maintenance and setup. Other implementations are
very problem-specific, requiring extensive modifications for reuse by the research
community to solve new problems.



This paper presents a generic cross-process and cross-host taint tracking
framework, called Taint-Exchange. Our system, builds on the libdft open-source
data flow tracking (DFT) framework [14], which performs taint tracking on
unmodified binary processes using Intel’s Pin dynamic binary instrumentation
framework [15]. We have extended libdft to enable transfer of taint informa-
tion for data exchanged between hosts through network sockets, and between
processes using pipes and unix sockets. Taint information is transparently mul-
tiplexed with user data through the same channel (i.e., socket or pipe), allowing
us to mark individual bytes of the communicating data as tainted. Additionally,
users have the flexibility to specify which communication channels will propagate
or receive taint information. For instance, a socket from HOST A can contain
fine-grained taint information, while a socket from HOST B may not contain
detailed taint transfer information, and all data arriving can be considered as
tainted. Similarly, users can also configure Taint-Exchange to treat certain files
as tainted. Currently, entire files can be identified as a source of tainted data.

Most real-world services consist of multiple applications exchanging data,
that in many cases run on different hosts, e.g., Web services. Taint-Exchange can
be a valuable asset in such a setting, providing transparent propagation of taint
information, along with the actual data, and establishing accurate cross-system
information flow monitoring of interesting data. Taint-Exchange could find many
applications in the system security field. For example, in tracking and protecting
privacy-sensitive information as it flows throughout a multi-application environ-
ment (e.g., from a database to a web server, and even to a browser). In such a
scenario, the data marked with a “sensitive” tag, will maintain their taint-tag
throughout their lifetime, and depending on the policies of the system, Taint-
Exchange can be configured to raise an alert or even restrict their use on a
security-sensitive operation, e.g., their transfer to another host. In a different
scenario, a Taint-Exchange-enabled system could also help improve the secu-
rity of Web applications by tracking unsafe user data, and limiting their use in
JavaScript and SQL scripts to protect buggy applications from XSS and SQL-
injection attacks.

Taint-Exchange, along with libdft, provides a stable and reusable cross-host
taint tracking platform that can promote new research and expedite the develop-
ment of research prototypes. The main contributions of this paper are summa-
rized in the following:

– We designed and implemented a reusable cross-process and cross-host taint
tracking framework. Taint-Exchange is based on libdft [14], a customizable
DFT framework that offers an extensive API for creating tools

– Taint-Exchange operates transparently on unmodified x86 Linux binaries,
allowing real-world legacy applications to take advantage of our framework
transparently

– We offer flexible configuration of taint sources, as well as allowing mixing
our own fine-grained taint transferring sockets with ordinary sockets. For
example, many security-oriented DTA implementations [19] do not support
configurable taint sources, and mark all incoming network as tainted



– We improved on inter-process taint tracking over previous system-wide track-
ing systems (e.g. Minos [9], TaintBochs [7], Rakscha [10], RIFLE [24]), which
are based on slow full-system emulators (e.g. Xen [2], QEMU [3], Bochs [4]),
by enabling cross-host and cross-process tracking on the communication
channels that matter to the target applications, rather than overloading
every operation in the entire system with unnecessary heavyweight taint
tracking operations

– We evaluate the overhead imposed by Taint-Exchange, and show that it
incurs minimal overhead over the baseline tool libdft

The rest of the paper is organized as follows. Section 2 introduces the concept
of dynamic taint tracking and presents the most important implementations in
this research area. In Sect. 3 we present our protocol and our system. In Sect. 4,
we highlight the implementation choices made when we built our system. In
Sect. 5, we evaluate our system. We discuss future work in Sect. 6, and finally,
our conclusions follow in Sect. 7.

2 Background and Related Work

2.1 Dynamic Taint Tracking

Dynamic taint tracking is the mechanism of monitoring the flow of tainted data,
at runtime, within an instance of a software application (process) or a system,
after “recognizing” the data of interest according to a predefined taint configura-
tion, and associating it with metadata, usually referred to as taint tags. There-
fore, most dynamic taint analysis implementations can be described by three
elements the taint sources, the propagation policy and the taint sinks. Regarding
taint-tags, in most cases one bit of taint is sufficient, but there are situations
where multiple bits are useful. For instance, to distinguish between multiple
input sources or to distinguish between trust levels.

Dynamic taint tracking is not a new concept. One of its first practical instan-
tiations was employed in detecting and defending against software attacks [19],
while it has found many more applications since then. Currently, dynamic track-
ing approaches range from per-process taint tracking [6,8,14,19,21,25,29], to whole-
system tracking [9,10,20,27] using emulation environments and hardware exten-
sions.

2.2 Single-process Taint Tracking

Most application-level taint tracking tools, like TaintCheck [19], TaintTrace [6],
libdft [14], Dytan [8], and LIFT [21] use dynamic binary instrumentation (DBI)
frameworks, like PIN [15], StarDBT [5] and Valgrind [18]. While quite effective
and useful, as they do not require any modifications to source code or customized
hardware, they impose significant impact on the performance, as every instruc-
tion needs to be instrumented, and additional storage, usually called shadow



memory, is required for storing the tags. As a result, there has been great inter-
est in optimization techniques in order to improve their performance. TaintTrace
achieved significantly faster taint-tracking by using more efficient instrumenta-
tion based on DynamoRIO, combined with simple static analysis to speed up the
taint-tag access. LIFT also achieved significant additional performance benefits
by using better static analysis and faster instrumentation techniques.

2.3 Cross-process and Cross-host Taint Tracking

A large body of research has also focused on cross-process or system-wide taint
tracking, leading to the creation of many tools [9,10,27,28], mostly based on em-
ulators and hardware extensions to efficiently handle data tracking for an entire
operating system (OS). For instance, the whole system emulator QEMU [3] is em-
ployed by various solutions that implement DTA [13,20,27], while TaintBochs [7]
builds on the Bochs IA-32 emulator. The architecture community attempted to
integrate or assist dynamic taint tracking with hardware extensions [9,10,23,24],
to alleviate the significant performance impact due to extra tag processing from
DBI frameworks and emulators.

While there is much research aiming at intra-process and system-wide DTA
implementations, it was not until very recently that interest has risen for efficient
cross-host taint propagation systems [1,11,28]. Most of these techniques are more
problem-specific, and therefore it would be difficult to adapt the techniques and
tools developed for use in other contexts. For instance, DBTaint [11] is targeting
taint information flow tracking specifically for databases, whereas ConfAid [1],
which is the closest to our design, tackles the problem of discovering a set of
possible root causes in configuration files that may be responsible for software
misconfigurations. System tomography [17], which also looks into the concept
of propagating taint information remotely, builds on the QEMU emulator so
it cannot be applied on already deployed software and incurs large slowdowns.
Finally, Neon [28] also requires modifications in the underlying system to per-
form dynamic taint tracking. It uses a modified NFS server for handling the
initial tainting, and utilizes a network-filter for monitoring the tainted packets
arriving/leaving the server.

In contrast to previous approaches, that use slow-emulators or VMs to per-
form system-wide taint tracking, in Taint-Exchange we use an already available
and fast single-process taint-tracking framework [14], and extend it to perform
fine-grained, cross-process, and cross-host transfer of taint information. Although
our design was inspired by prior works, it addresses different challenges, is more
general, and completely transparent to applications.

3 Taint-Exchange

We designed and implemented Taint-Exchange based on the libdft data flow
tracking framework [14], to produce a generic system for efficiently performing
cross-process and cross-host taint tracking. Nevertheless, Taint-Exchange could
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Fig. 1. Taint-Exchange overview. Taint information can be exchanged using network
sockets and pipes. Sockets and files can also be configured as taint sources.

be easily retargeted to numerous other taint tracking systems similar to libdft,
e.g., TaintCheck [19], TaintTrace [6], LIFT [21], or Dytan [8], as Taint-Exchange
is a broadly applicable design. libdft was chosen because it is one of the fastest
process-wide taint-tracking frameworks, which performs at least as fast, if not
faster than similar systems such as LIFT and Dytan.

3.1 Design Overview

We will present the main aspects of Taint-Exchange, following the three-dimensions
described in Sect. 2. Figure 1 shows an overview of Taint-Exchange, the various
sources of tainted data that can be configured, and the mechanisms for exchang-
ing taint information between processes and hosts.

Taint sources The taint sources are the “starting points” of the system, where
taint is assigned to data of interest. Our current framework supports configurable
taint sources from the two most common input channels, the file-system and the
network. In the current implementation, the user of Taint-Exchange directly
interacts with the underlying framework (i.e., both Taint-Exchange and libdft)
to define the taint sources, as they each time depend on the problem being
tackled. Although configuration is straightforward, we stress that a better user
interface for the configuration of the taint sources would improve usability, but
this is beyond the scope of this paper.

Configuring the filesystem taint sources is straightforward. A shadow file
taint config is maintained for listing all tainted files in the system. The de-
signer has to update it with the taint files, using full-path format, and all data
originating from files listed in taint config will be marked as tainted.



In addition, network sockets and pipes can also be among the taint sources,
so data arriving from them can be also tagged as tainted. Sockets and pipes can
be also configured to receive and transmit detailed taint information regarding
the data being exchanged (described later in this section).

A global array (state sfd) is used to keep track of the important “channels”
that comprise Taint-Exchange’s taint sources. The open(), socket(), accept(),
dup(), and close() system calls are intercepted to update the state sfd array
accordingly. The marked “channels” will be the ones monitored for tainted data.
Briefly, for read-like calls, such as read(), readv(), recv() etc., this includes
the extraction of a taint-header from the received data stream, the reception of
the taint information, and the appropriate marking of the received data.

Data tags Currently our system only supports binary tags (tainted or clean
data), but this is only a limitation because of the chosen underlying taint tracking
system libdft [14]. In fact, according to the authors of libdft, future versions will
include support for multiple labels/colors for tracked data. In the future, we
plan to port our tool to using the lated libdft version to take advantage of the
richer data tags. Of course, we expect larger tags to have a larger impact on the
performance of data transfers, but it is something that needs to investigated.

Taint propagation There are three cases that we examined for the propagation
of taint tags. Firstly, the intra-propagation of taint values during the execution
of a single process. As we discussed in Sect. 2, this has been thoroughly explored
by past work, and there exist many tools [6,8,14,19] for efficiently handling this
issue. Generally, all these tools allocate a “shadow storage” for every process to
store which data is tainted (i.e., data tags). We will refer to this shadow memory
as a tagmap. The second case of taint propagation we consider is the cross-process
propagation of taint tags for the data exchanged between processes. Previous re-
search has mostly addressed this topic by performing system-wide taint tracking
using modified VMs and specialized hardware [9,10,20,27], mostly based on em-
ulators and hardware extensions for efficiently handling system-wide tracking
of tainted information. The last case we examine is the cross-host transfer of
tainted tags. Relatively little research has explored this path [1,11,17,28].

For Taint-Exchange, taint transfer refers to the propagation of taint infor-
mation along with the data, when processes on the same host or on different
hosts communicate. Our mechanism supports processes that communicate using
sockets and pipes. Briefly, the main idea is to monitor the information flow be-
tween the taint sources, and intercept the system calls from the read/receive

and write/send families that are used to read from and write to the tainted
channels. In the case of data leaving the current process (or host), a taint-
header is composed and attached to the data, indicating which bytes, if any,
are tainted. We will describe the taint-header in detail in Sect. 3.2. On the receiv-
ing side, as “extended” data enters the process (or host), and assuming that the
source descriptor is among the taint sources described earlier, the taint header



Fig. 2. Taint-Exchange encapsulates data using a header to transparently inject taint
information in data transfers.

will be extracted from the received data, and the taint-tag storage structure of
the process will be updated accordingly.

Cross-process taint transfer is handled the same way as cross-host taint trans-
fer. The only difference is the source descriptor, which in the case of pipes is the
pid or name of the application we are communicating with. IPC through UNIX
sockets is very similar to TCP sockets, so the mechanism remains almost entirely
the same.

Taint sinks Taint sinks refer to the “locations” in the system, where the user
needs to perform some assertions on the data. For example, tainted data may
not be allowed to be transmitted overa certain socket, or used as program control
data (e.g., a function return address). or it should just be logged. Taint sinks
are problem-specific, and can be configured by the user. libdft offers an extensive
API for the users to check for the presence of tainted data on instructions and
on system or function calls.

3.2 Taint Headers

Taint Header Structure To multiplex data and taint information, Taint-
Exchange prefixes each data transfer with a taint header, which essentially en-
capsulates the transferred data into new “packet” protocol, following the format
shown in Fig. 2. It consists of the following fields:

fmt the format version of that taint information
hdr len the length of the header including that taint information
data len the length of the data payload (i.e., the data the application is actually

transferring)
taint information fine-grained taint information regarding the payload, and

following the format specified by fmt

data the data payload

Composing the Taint Header A taint header is created when write-like

system calls, such as write(), writev(), send() etc., are executed and the des-
tination descriptor of the system call is among the ones configured to transfer
taint. The process’ tagmap is referenced to determine which parts of the out-
going data message is tainted. Depending on the number of tainted bytes and
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their distribution, Taint-Exchange determines which format to use to encode
the taint information for the data. We support two formats for encoding taint
information. The first, is a bitmap which contains one bit for every byte of data
being transferred, and the second using a vector for each segment of data that
is tainted. For example, if bytes 5 through 15 are tainted, the vector describing
this segment is [5, 10]. That is, there is a segment of tainted data starting at
offset 5 of the data and lasting for 10 bytes. The space overhead of these two
formats is drawn in Fig. 3. We see that depending on the number of tainted
segments a different format is preferable. Usually, for large continuous areas of
tainted bytes, a vector proves to be a more efficient choice, whereas for sparsely
tainted bytes the bitmap is preferable.

4 Implementation

4.1 The libdft Data Flow Tracking Framework

Taint-Exchange operates by intercepting and instrumenting the system calls
used for inter-process as well as for cross-host communication, while it relies on
an already available tool, libdft [14], to perform the taint tracking within each
process. For this purpose, we instrumented the socketcall family of system calls
(i.e., socket(), and accept()), the dup() system call, and the read/receive-
like and write/send-like system calls. We also intercept the open(), close()
and mmap() system calls for handling files.



For the intra-process dynamic taint tracking we chose libdft [14], a dynamic
Data Flow Tracking (DFT) framework, designed to transparently perform DFT
on binaries. Although our design is independent of the underlying IFT system,
for our implementation we chose libdft because of its availability, well-defined
API, and efficient instrumentation, which makes it one of the fastest process-
wide taint-tracking frameworks. libdft is used as a shared library offering a user-
friendly API for customizing intra-process taint propagation, and can be used on
unmodified multi-threaded and multiprocess applications. It relies on PIN [15],
a dynamic binary instrumentation framework (DBI) from Intel, widely used in
the implementation of other DTA tools [8,29].

Similarly to PIN’s, the libdft API allows both instrumentation and anal-
ysis of the target process. In particular, libdft’s I/O interface component, of-
fers an extensive system call level API, enabling instrumentation hooks before
(pre syscall) and after (post syscall) every system call, while making use
of the underlying DFT services. We have registered analysis callbacks for the
“interesting” system calls, which get invoked when these system calls are en-
countered, to observe the process’ communication “channels”, and to inject taint
information along with the native data (i.e., the data the application is commu-
nicating). For the system calls that are not explicitly handled by Taint-Exchange,
the default behavior is to clear the tags of the data being read (i.e., the data
written in the process’ memory). This way, over-tainting is avoided since “un-
interesting” system calls, that overwrite program memory with new inputs read
from the kernel, are not ignored. It is worth to mention that libdft does not
suffer from taint-explosion (i.e., over-tainting data that should not be tagged),
because it does not consider control-flow dependencies and it operates in user-
space. Control-flow dependencies, kernel data structures, and pointer tainting
have been identified as the prominent causes of taint-explosion [22].

4.2 Taint-Exchange Data Structures

The tagmap is the taint-tag storage maintained by libdft, reflecting the taint-
status of the running process’ memory and CPU registers for each running
thread. Its implementation plays a crucial role in performance and memory over-
head. libdft supports byte-level memory tagging, which is mapped to a single-bit
tag in the process’ tagmap, and four 1-bit tags for every 32-bit GPR. libdft offers
an extensive API for the update of the taint-tags in tagmap (e.g., tagmap setb,
tagmap getb, tagmap clrb are handling the taint-tag per byte of addressable
memory).

The state sfd is the global array of tainted descriptors, that designates the
important “channels”, being monitored for tainted data. It is updated by the
system call subset used for handling files and creating/closing sockets, and is
indexed by the file (or socket) descriptor. Initially, all elements of the array are
empty. The array is updated by the instrumented versions of open(), socket(),
accept(), dup() and close() system calls, and variations of them.

Finally, taint config is the configuration file for filesystem taint sources. The
files listed in it should be written in full-path format.



4.3 Filesystem Taint Sources

Currently, our framework supports configurable taint sources from the file-system
and the network. The taint config file, lists the files that contain data of in-
terest, which should be tainted and tracked throughout the monitored system.
This is implemented, by the instrumented open() system call, which marks as
“tainted” the state sfd elements, that correspond to the files listed in taint config.
The descriptors of these files are considered “channels” of incoming tainted data.
Therefore, whenever a system call, like read(), tries to read data from them the
corresponding taint-tags in the tagmap structure are updated accordingly.

4.4 Taint Propagation Over the Network

The main purpose of Taint-Exchange is the delivery of taint-tags along with the
transferred data in all the tainted “channels”. To establish information about
the TCP channels the socket() and accept() system calls are instrumented.
For simplicity, in the current implementation, every network connection is con-
sidered capable of propagating tainted data, but this could be easily limited to
work only on specific IPs. When a TCP connection is established, state sfd struc-
ture is updated accordingly to add the new socket descriptor to the monitored
“channels”.

The cross-host taint propagation mechanism is handled by the instrumented
versions of write/send-like system calls on the sending side, and read/receive-
like system call on the receiving side. When the sender transmits data by invoking
a write() (or an equivalent) system call, Taint-Exchange constructs the corre-
sponding taint-header according to the relevant taint-tags as reflected in the
tagmap of the sending process and attaches it to the original data. The receiv-
ing side, will invoke an instrumented read() call (or an equivalent) to process
the “extended data”, and update the process’ tagmap with the taint-tags corre-
sponding to the received data.

4.5 Cross-process Taint Propagation

Interprocess communication can happen through unix sockets, TCP/UDP sock-
ets, pipes, and shared memory. If the processes are communicating via sockets
or pipes, taint tags can propagate between communicating processes in the same
manner we described in the previous section. The main difference is the source
descriptor, which in the case of pipes is linked to the pid or name of the appli-
cation the process is communicating with. IPC through UNIX sockets is very
similar to TCP sockets, so the mechanism remains almost entirely the same. We
are currently not handling data exchanged through shared memory segments.

5 Evaluation

The aim of this section is to demonstrate the communication overhead of Taint-
Exchange, when transparently passing taint information, along with real data,



across the network. To assess the impact imposed by Taint-Exchange, we per-
formed several micro benchmarks using utilities from the lmbench [16] Linux
performance analysis suite. During the tests we only used the bitmap format
to represent taint information as the overhead of the vector format can vary
significantly depending on the application scenario.

Our testbed consisted of two identical hosts, equipped with two 2.66GHz
quad core Intel Xeon X5500 CPUs and 24GB of RAM each, running Linux
(Debian “squeeze” with kernel version 2.6.32). The version of Pin used during
the evaluation was 2.9 (build 39599). When conducting our experiments, the
hosts were idle with no other user processes running under taint-tracking apart
from the evaluation suites.

Since Taint-Exchange intercepts socket connection calls to inject the addi-
tional taint information, we used lmbench’s bandwidth benchmark bw tcp to
measuring the impact of our approach when moving the “extended” data over
the network. bw tcp measures TCP bandwidth by creating two processes, a
server and a client, that are moving data over a TCP/IP connection. We re-
peated our tests with data of different sizes (i.e., 64, 128, 256, 512, 1024 and
1047 bytes), and against three different scenarios: (a) using a simple pintool,
null tool, which uses minimum PIN instrumentation to add callbacks to system
calls without further employing any form of analysis. We developed this as the
base case, to establish the lower bound of our instrumentation and analysis over-
head as imposed by PIN’s runtime environment alone. (b) libdft-dta, a tool based
on libdft to employ basic dynamic taint analysis. We used this tool to achieve an
estimation of the overhead imposed by libdft. (c) Taint-Exchange.

We repeated the measurements 10 times and calculated the mean and stan-
dard deviation of the output. The results are presented in Figure 4. We see that
there is an obvious impact on the throughput of TCP sockets, which becomes
more severe as the size of the sent data increases. As expected, Taint-Exchange
has the largest impact of the three scenarios as the number of data sent every
time is more than the other applications. For example, in the case of the 64 bytes
buffer sent, the space overhead will be 17 bytes (as described in Section 3.2).

When running our tests we noticed that there was an instability in the mea-
surements, as size of the buffer increased, and especially with the libdft-dta tool.
We assume that maybe the measurements are affected also by the instruction
instrumentation that libdft-dta employs. Unfortunately, we have not yet deter-
mined the exact reasons for this instability as we are not fully aware of lmbench’s
internal workings. The 1437B buffer in our experiments is a default of the lm-
bench benchmark, and has to do with the maximum number of (payload) bytes
that can be transmitted within a single Ethernet frame. This also explains the
oscillation in performance, as the taint information can no longer fit within the
same Ethernet frame as the data. We should note that Pin itself introduces sig-
nificant overhead with small buffer sizes like the ones used by the lmbench suite
(Fig. 4), reducing throughput by 10x-20x compared with native execution. On
the other hand, when using large, 10MB buffers (i.e., the largest buffer measured
by lmbench), Pin does incur any observable overhead on throughput.
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Since the implementation of Taint-Exchange is mostly based on the instru-
mentation of system calls, we also employed the lat syscall benchmark to measure
the latency impact of the three implementations . We used lat syscall with the
open, read and write system calls, in order to show how these operations are
affected. We chose these three system calls as they represent the calls that were
affected the most by Taint-Exchange. More specifically, open() is handling the
initial configuration of tainted “channels” from the file-system, while the read

and write system calls are the ones handling the movement of the tainted in-
formation along. In the performed tests, lat syscall read measures how long it
takes to read one byte from /dev/zero, whereas lat syscall write measures how
long it takes to write one byte to /dev/null. lat syscall open measures how long
it takes to open and then close a file. The results are presented in Figure 5. The
conditions during these measurements were the same as with bw tcp, regarding
repetitions and the calculation of the mean and standard deviation from the
original measurements.

The observed overhead is attributed to the overhead of PIN for the dynamic
instrumentation analysis of the process, as well as the overhead inserted by
libdft performing the taint-tracking. The additional overhead imposed by Taint-
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Exchange, apart from the obvious reasons such as the instrumentation of these
system calls for handling the taint-headers and the continuous update the taint
data structures, is also implementation-specific. For instance, in our current im-
plementation every write() system call performed by the application results
in an additional write being performed to inject the taint-header. Similarly, the
instrumented version of the read() system call is reading the “extended” data
in three pieces, inevitably imposing the overhead seen in Figure 5. Note that
Pin, as probably most DBI frameworks, greatly affects system call latency (ap-
proximately 20x slower than native) because it receives control before and after
every call. We attribute Pin’s overhead on throughput with small buffer sizes,
to the general increase in system call overhead.

6 Future Work

In this paper, we presented a preliminary implementation of Taint-Exchange,
our approach for handling cross-application and cross-host transfer of tainted
information. There are some obvious extensions to the work presented in this
paper, which we plan to address in a next version of Taint-Exchange. In the
current implementation, every TCP socket is by default considered among the
important “channels”, that participate in the taint-propagation process. We are
planning to build a more fine-grained configuration procedure, so that certain
IPs can be included (or excluded) from participating into the propagation of the
taint-tags over the network.

In addition, we plan to support persistent taint information storage for files,
to be able to handle both tainted and untainted data stored in a file. An auxiliary



file per original file could be used to maintain the information on the tainted
bytes of the original file. A similar scheme with the one used for passing taint
information over the network will be probably used (e.g., bitmap for files with
interleaved tainted and clean data, and vectors for files that store tainted data in
large blocks). Compression may also be utilized to reduce storage requirements.
Coarser-grained tracking can already be performed. For instance, when tainted
data are written to a file, taint-exchange can consider the entire file as tainted.

Finally, in order to reduce the overhead of the inserted taint header we think
that it is a promising direction to explore the use of TCP optional headers to pass
the taint information. This option would not only help us trivially implement
communication between a native and a taint-exchange application, but it could
also potentially improve the overall performance of our proposed mechanism.

7 Conclusion

We presented Taint-Exchange, a generic cross-host and cross-process taint track-
ing framework. Taint-Exchange enables the transfer of fine-grained taint infor-
mation across processes and the network. It does so by intercepting I/O system
calls to transparently inject and extract information regarding the taintness of
every byte transferred between processes running under Taint-Exchange. It also
provides a flexible mechanism for easily customizing the sources of tainted data,
be it a network socket, a file, or an IPC mechanism like a pipe or UNIX socket.
Our evaluation of Taint-Exchange shows, as expected, that I/O is affected be-
cause of the additional data being sent, and the utilization of the same channel
to do so. Nonetheless, we believe that the overhead is small, specially when com-
pared with the high overheads imposed by the various dynamic taint tracking
systems.
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