
The SPARCHS Project
Hardware Support for Software Security

Simha Sethumadhavan, Salvatore J. Stolfo,
Angelos Keromytis, Junfeng Yang

Department of Computer Science
Columbia University

New York, NY
(simha,sal,angelos,junfeng)@cs.columbia.edu

David August
Department of Computer Science

Princeton University
Princeton, NJ

august@cs.princeton.edu

I. PROBLEM STATEMENT

Current security research is largely top-down, where the
most exposed layers --- the network/ application layers ---
are first secured, and the lower layers are secured as and
when threats appear. Security, thus, has become an arms race
to bottom. For every software mitigation strategy today,
vulnerabilities in the software layer below it can be used to
attack and weaken the mitigation strategy. There are many
examples of such attacks in the literature including those that
attack anti-virus, libraries, operating systems, hypervisors,
and BIOS routines.

A solution to the above problem is to push the security
mechanisms down to hardware, which is typically
immutable. Growing on-chip transistor budgets provide the
opportunity to explore this possibility. In addition to
offering immutable security, there are two further advantages
to implementing security mechanisms in hardware. First,
hardware supported security mechanisms can be much more
energy-efficient compared to software only mechanisms.
Given that energy- and power-efficiency significantly
influence computing today, hardware support could very
well be necessary for security mechanisms to gain traction in
many real world settings. Second, implementing security
mechanisms can provide unmatched visibility into execution.
This provides an opportunity for new security techniques.

The SPARCHS project is considering a new computer

systems design methodology that considers security as a
first-order design requirement at all levels, starting from
hardware, in addition to the usual design requirements such
as programmability, usability, speed, and power/energy-
efficiency. The rest of the paper describes the proposed
hardware security mechanisms and the current status of the
project.

II. RESEARCH DIRECTIONS

Directly implementing security mechanisms in hardware
poses a significant problem. First, since hardware is finite
not all known security mechanisms can be implemented in
hardware. Second, hardware is less flexible than software,
so it cannot be easily updated when new attacks are
discovered1. Thus, ideally, hardware mechanisms should
also be able to cover attacks that are not yet discovered.
This begs the question what hardware mechanisms can
cover a wide variety of known and unknown attacks?

Instead of trying to discover unknown attacks, which is
hard, and develop specific defenses, which is also hard, our
strategy is to mimic the defenses from the biological world
where a fantastic number of defenses have evolved over
many thousands of years to survive constantly attacking
predators. Our goal is to find counterparts to successful
biological protection mechanisms and implement them in
hardware.

The benefits of bio-inspired approaches to security have
been mentioned as a promising direction in several
reports[1,2]. The idea of applying bio inspired security
principles to the hardware level is the key novel contribution
of the SPARCHS project. Next we touch upon some
biological protection mechanisms and then describe their
hardware/software formulations that can mimic these
mechanisms.

A. Biological defenses

Defensive strategy is pervasive at all levels in the animal
and plant kingdom where existence is constantly threatened
due to predators and environmental vagaries. At the
molecular level, our genetic code is suspected to contain

1 FPGAs offer an opportunity to update software in the field but
currently have limited utility in general purpose computing.

high-level of redundancy, at the cellular level lymphocytes
offer innate protection against viruses and microbes, at the
organ level, redundancy (e.g., two kidneys) and regeneration
(e.g., skin cuts, lizards dropping tails under attacks) allow
continuous function and recovery under attack, and
organisms have amazing ability to learn from past attacks
(e.g., vaccination.) In many cases, multiple organisms co-
operate (e.g., microbiomes) from symbiotic relationship to
provide immunity over and above innate and adaptive
immunity. Innate immunity mechanisms is typically a first,
generic response to attacks from foreign organisms. Typical
functions of innate immunity include capturing cellular
debris, foreign particles and invading microorganisms. The
adaptive immune response provides facilities to recognize
and remember specific attack vectors, and provide stronger
protection as more attacks are encountered in future.

In the biological world, the attackers have also evolved
many sophisticated techniques to thwart existing defenses.
The most notorious of the attackers attack the immune
system itself (e.g., HIV) and is difficult to destroy because it
constantly changes its tertiary structure (polymorphism),
which guarantees the virus a safe harbor in the host. To
provide these amazing security features organisms spend
nearly 30% of their energy in defense. Given the success of
flora and fauna, the defensive strategies used in biological
systems are certainly worth emulating.

To summarize, the biological techniques, we aim to provide
hardware support to mimic the following biological
primitives: (1) Innate Immunity for detection and isolation,
(2) Diversity and polymorphism for prevention, (3)
Symbiotic Immunity for implementing protection and
detection techniques, (4) Adaptive Immunity for prevention,
(5) Optimized redundant execution for continued execution,
(6) Autotomy to contain damage when all else fails.

B. Hardware Analogues

Innate Immunity One basic function of innate immunity is
to identify and contain foreign particles. Translated to the
computer systems, this translates to ensuring untrusted data
does not reach confidential code, and trusted data is not sent
to untrusted code. Information flow tracking (IFT)
essentially provides the above functionality. While IFT is no
means a new technique, it has been difficult to implement
correctly without hardware support. Verifying the data flow
of program is insufficient to verify that no illegal
information flows occur in the program. Current solution is
to allow implicit flows by converting all data dependences
to control dependences. In the SPARCHS project we are
considering how the implicit flows, or the flow of
information through control dependences, must be
determined with static analysis as information can flow
through segments of code that do not execute. This

information will be conveyed to the hardware to track these
flows.

Diversity and Polymorphism The key idea in digital
defensive polymorphism is to change the execution of a
program dynamically to thwart attackers. One of the
simplest ways to change execution is to change the
hardware each time a program executes. We call this type of
shape-shifting hardware as polymorphic hardware.
Polymorphic hardware succeeds against attackers by
purposely injecting randomness into program execution.
This method could have three very useful impacts for
security at different levels of execution:

1) At the hardware level this architecture would make
would make side-channel attacks very difficult, because
it is always harder to attack a moving or unpredictable
target. Conceptually each execution of a program
happens on a different hardware, and with this type of
uncertainty the attacker cannot reliably interpret of the
side-channel data. This resilience to side-channels is
leveraged by symbiotes to avoid detection.

2) Polymorphism can provide resilience against
semantic attacks: Consider a code-injection attack. The
attacker takes advantage of knowledge of the programs
ABI and the instruction’s semantics in the program to
carry out the attack. With polymorphism at the
instruction-set level — Instruction-Set Randomization
(ISR) — this attack can be thwarted because the attacker
can no longer know the semantics of each instruction.

3) Polymorphism can provide resilience against program
logic bugs. While most security attacks to date exploit
bugs in serial programs, more parallel programs are
being produced because of adoption of multicore
programs. It is well known that reliable parallel
programming is harder than sequential programming,
and it is likely that attackers will take advantage of
concurrency bugs in the near future.

The polymorphic architecture can decrease the chance of
security attacks on emerging parallel programs by reducing
the chance of race conditions because of the diversified,
random execution substrate. Additionally, polymorphism
may have a side benefit of improving program performance
by reducing unintentional contention on shared resources,
and also enable better testing of programs through automatic
fuzzing of program execution. The SPARCHS project is
investigating how these shape-shifting features can be
implemented in the simplest way into existing processors
without undue performance impact.

Symbiotic Immunity The idea of how symbiotes can be
adapted to computer systems was first proposed in the
Minestrone project at Columbia. At a high-level, the

symbiote is a small program that is embedded in a host
program. The symbiote can reside within any arbitrary body
of software, regardless of its place within the system stack.
While symbiotes share some commonalities to reference
monitors in terms of benefits they offer, a key difference is
that symbiote cannot survive without the host program and
the host program cannot survive without the symbiote. This
interdependency is not required for reference monitors. The
SPARCHS project aims to provide hardware support that
will allow symbiotes to have this property.

Symbiotes can be supported in hardware through three
distinct ways that have different easy of implementation vs.
benefits trade-offs. First, one or few cores in a multicore
processor may be hidden from all system software by
modifying the BIOS, and having the symbiotes run on a
hidden core. Since system software cannot see the disabled
core, the symbiotes functions cannot be monitored. This
solution assumes that the hidden core has access to all of the
on-chip memory, which can be easily architected. The
second solution is not to disable the cores (thus not reduce
throughput) but use the shape-shifting polymorphic
architecture such that no side-channels are possible. Finally,
the most efficient option is to build a special hardware unit
that guarantees physical and execution isolation for the
symbiotes.

Adaptive Immunity Adaptive immunity requires methods
to learn about normal and abnormal program behaviors. We
are developing better hardware support to identify
anomalous execution points by using fine grained
measurements from on-chip performance counters. We are
also working on newer performance counter architectures as
on-chip performance monitors today are tuned for collecting
information on the common case; in security (and software
engineering) we are interested more in the uncommon case.
Other methods for program characterization include
learning about control and data flow execution graphs. The
SPARCHS project is investigating hardware primitives that
can be securely used to learn about program behavior.

Optimized Redundant Execution Mimicking biological
redundancy in digital systems is fairly obvious. N-
versioning is already a very common approach but it is also
terribly impractical approach for many modern execution
environments such as mobile and server environments. We
are planning to make N-versioning better with compiler and
hardware optimizations. We plan to use values produced
from one redundant copy in another to improve the speed of
the diversified replica or use special purpose
microarchitectures to quickly communicate values between
the N-versions.

Autotomy/Apotasis SPARCHS will bring autotomy to
computing systems by detecting attacks and faults in a
software subcomponent and responding to it by removing

the component from the critical system. The goal is to heal
the programs, and make them available as much as possible.
SPARCHS Autotomy will employ Rescue Points which are
locations in the application code in which error handling is
performed with respect to a given set of foreseen. Rescue
points basically create a mapping between the set of errors
that could occur during a program’s execution and the
limited set of errors that have been explicitly handled in the
program code. Thus, a failure that would cause the program
to crash is translated into a return with an error.

C. Integrated System

While the project’s main focus is on discovering efficient
hardware primitives for security another important goal is to
demonstrate how the proposed primitives can be used in
software. Towards this goal we are developing hardware
and software for the SPARCHS system. Figure 1 illustrates
the different facets of the SPARCHS system and how it
interfaces with existing and proposed research techniques.
At the hardware level, SPARCHS includes support for
microarchitecture-level polymorphism, support for memory
versioning and checkpointing to support roll back and
recovery, and specially fortified hardware to support
symbiote execution. These techniques are orthogonal to and
can be integrated with information flow tracking and strong
instruction set randomization. SPARCHS guarantees that an
outside attacker cannot simply turn off the protection
mechanism. SPARCHS includes a simple management
layer that provides safe storage of keys and feeds program
profile information to the SPARCHS compiler. The
management layer can also provide simple recovery
services.

SPARCHS is full-system effort and includes many software
aspects. The SPARCHS compilation suite serves three main

purposes: first, it combines the application, the symbiote,
and the symbiote policy into a single binary, and applies
instruction-set randomization to the binary; second, it
provides static analysis techniques for managing recovery
and repair. Finally, it provides analysis to enforce correct
dynamic information flow in hardware. The SPARCHS
environment includes toolkits for mining static, dynamic
and program information to help programmers specify
policies, symbiote payload libraries, and also standalone
injection of symbiotes in binaries if necessary.

III. CURRENT STATUS

We have been working on this project for three quarters
now. We have made significant progress on several fronts.
First, we have created software symbiote infrastructures to
understand how they should be protected in hardware[3].
We are planning to create symbiotes in x86 and ARM to
demonstrate feasibility in a wide variety of architectures.
The software port is likely to be completed in the next
quarter and detailed hardware analysis is going to begin in
the following years. We have made significant progress on
hardware support for learning/adaptivity[4]. Existing
methods for accessing performance counters on x86
machines seem terribly out-of-date. In fact, popular tools
like Vtune, PAPI and Oprofile use heavyweight kernel calls
which perturb hardware measurements. We have created
new tools that will allow to precisely read the performance
counters and have about 70x lower overhead compared to
PAPI. The tool is available for download from:
http://castl.cs.columbia.edu/limit. This tool is currently
being used to learn normative execution characteristics of
programs. As a stepping stone to ISR, we have developed a
full-system ISR mechanism[5], not just covering single
program program binaries but including support for DLLs,
shared libraries, key management etc. Hardware
modifications and full system prototypes are underway. To
test our systems we are working on creating new attacks
(concurrency based[6]) and also demonstration of defense
mechanisms against such attacks. There is much exciting
work to be done in this area. One major open question is
what further primitives can be added to hardware. Our
experience with SPARCHS could help answer this question.

[1] A. Somayaji, S.Hofmeyr, S. Forrest, “Principles of a Computer

Immune System,” NSPW '97 Proceedings of the 1997 workshop on
New security Paradigms, 1997.

[2] S. E. Goodman, H. S. Lin, “Toward a Safer and More Secure
CyberSpace,” Committee on Improving Cybersecurity Research in
the United States, The National Academies Press, Washington D.C.,
2007

[3] A. Cui, S.J. Stolfo, “Defending Legacy Embedded Systems with
Software Symbiotes,” Proceedings of the 14th International
Symposium on Recent Advances in Intrusion Detection. RAID 2011.

[4] J. Demme, S. Sethumadhavan, “Rapid Characterization of
Architectural Bottlenecks via Precise Event Counting,” Proceedings

of the 39th ACM/IEEE International Symposium on Computer
Architecture, June 2011.

[5] G. Portokalidis, A.D. Keromytis: Fast and practical instruction-set
randomization for commodity systems. ACSAC 2010: 41-48

[6] J. Yang, A. Cui, J. Gallagher, S. Stolfo, S.Sethumadhavan,
“Concurrency Attacks,”, Department of Computer Science Technical
Report, CUCS-028-11, 2011.

