
The MINESTRONE Architecture
Combining Static and Dynamic Analysis

Techniques for Software Security
Angelos D. Keromytis

Columbia U.
angelos@cs.columbia.edu

Salvatore J. Stolfo
Columbia U.

sal@cs.columbia.edu

Junfeng Yang
Columbia U.

junfeng@cs.columbia.edu

Angelos Stavrou
George Mason U.
astavrou@gmu.edu

Anup Ghosh
George Mason U.
aghosh@gmu.edu

Dawson Engler
Stanford U.

engler@csl.stanford.edu

Marc Dacier
Symantec Research Labs

marc dacier@symantec.com

Matthew Elder
Symantec Research Labs

matthew elder@symantec.com

Darrell Kienzle
Symantec Research Labs

darrell kienzle@symantec.com

I. PROBLEM STATEMENT

We present MINESTRONE, a novel architecture that inte-
grates static analysis, dynamic confinement, and code diver-
sification techniques to enable the identification, mitigation
and containment of a large class of software vulnerabilities in
third-party software. Our initial focus is on software written
in C and C++; however, many of our techniques are equally
applicable to binary-only environments (but are not always as
efficient or as effective) and for vulnerabilities that are not
specific to these languages. Our system seeks to enable the
immediate deployment of new software (e.g., a new release of
an open-source project) and the protection of already deployed
(legacy) software by transparently inserting extensive security
instrumentation, while leveraging concurrent program analy-
sis, potentially aided by runtime data gleaned from profiling
actual use of the software, to gradually reduce the performance
cost of the instrumentation by allowing selective removal or
refinement. Artificial diversification techniques are used both
as confinement mechanisms and for fault-tolerance purposes.
To minimize the performance impact, we are leveraging multi-
core hardware or (when unavailable) remote servers that
enable quick identification of likely compromise. To cover
the widest possible range of systems, we require no specific
hardware or operating system features, although we intend to
take advantage of such features where available to improve
both runtime performance and vulnerability coverage.

The fundamental problem being addressed in this project
– finding vulnerabilities in software — is being addressed in
the commercial marketplace today by a combination of tools
and expertise. Today, companies such as Coverity, Klocwork,
Ounce Labs, and Fortify have developed sophisticated source
code analyzers that analyze C/C++ and Java code for known
vulnerabilities. Other tools such as ITS4, RATS, and cppcheck
also provide vulnerabilities with varying degrees of effective-
ness. Most of these products are state-of-the-art releases of
software research and represent the best software vulnerability

analysis has to offer today. One common attribute of these
tools is that they produce a large number of false positives—
warnings of potential vulnerabilities that often are not true.
As such, they require software security expertise—a need that
is met by commercial consulting offerings, some by the tool
vendors themselves. Our ultimate goal is to take advantage of
these and other analysis techniques without having to expose
users, programmers or administrators to their output.

To address shortcomings in software vulnerability analysis,
software fault isolation [1] or confinement techniques [2] can
be used to limit the effects of residual software vulnerabilities.
Software fault isolation techniques can be used to confine the
bounds of program execution. Failure oblivious computing [3]
is a set of software techniques to continue executing even in
the presence of faults. Similarly, error virtualization uses a
program’s native error handling routines to mask faults while
returning the program to a known safe state after an error [4].
Almost all confinement approaches require program instru-
mentation that imposes additional instruction execution time,
which means increased (potentially substantial) overhead. The
finer-grained the instrumentation, the finer the containment and
the more overhead is required. The coarser the instrumentation,
on the other hand, the lower the overhead, but the higher
the likelihood for missed or unhandled faults. We will use
code instrumentation to implement software fault isolation
and process-level confinement to limit malicious software
behavior. We will leverage our analysis to remove or refine this
instrumentation so as to minimize or eliminate its performance
impact when possible.

II. RESEARCH DIRECTION

The overall MINESTRONE architecture and system work-
flow is shown in Figure 1. The intellectual core and novelty
of our approach revolves around establishing and leveraging a
feedback loop among a hardened production system, program
analysis, and diversification. The key idea is that static analysis
will allow us to target the instrumentation, while runtime data



Unknown

Software

Lightweight Containers

Lightweight Containers

ISR + defensive 

instrumentation

ISR + defensive 

instrumentation

Unknown
Software

KLEE

continuous

symbolic

execution

Runtime

O
fflin

e/p
arallel

Re
pl
ic
at

ed
 r
un

tim
e

Remove/optimize

unneeded defenses
Path exploration

preference & control flow

information

MINESTRONE

System Composer

Symbiotes

Anomaly
Detection

Race
Avoidance

Race
Detection

Information

flow tracking

optimization

Attack
detection

I/O & state

replication

Symbiotes Anomaly
Detection

Deployed
application

(N instances)

Backend
analysis

(M << N instances)

Instrumented
replicas

(P < N instances)

Resource

Exhaustion

Detection

Resource

Exhaustion

Detection

KLEE

prophylactic

analysis

Fig. 1. The MINESTRONE architecture and workflow. New software is processed by the MINESTRONE meta-compiler which, depending on
configuration and environment capabilities, deploys several components. The production software (PS) is embedded within a lightweight OS-
virtualization container which manages resource consumption and uses behavior anomaly detection. Inline reference monitors, in the form of binary-
or source-rewriting are also embedded within the PS. A separate environment used for symbolic analysis is also created, with communication between
PS and analysis. Diversified replicas (DRs) with similar instrumentation may also be set up, with I/O and state sharing performed with the PS. A
given analysis instance may be used by one or more PS; likewise, each PS may be using one or more DRs.

will allow us to focus further concurrent program analysis
(through symbolic execution) to portions of the code that are
more heavily exercised or are otherwise considered security-
critical. We are using symbolic execution combined with
static analysis to determine the safety properties of parts
of software that is being deployed. Our symbolic execution
framework [5], [6], [7] will explore possible execution paths of
a program by analyzing it on unconstrained symbolic input and
systematically following branches when the outcome depends
on the symbolic input. Further, we will selectively integrate
our previous static analysis and model checking frameworks
[8], [9], [10], [11], [12], [13], [14], [15] into MINESTRONE to
detect vulnerabilities such as number handling, error handling,
concurrency handling, memory safety errors (e.g., buffer over-
flows/underflows), null pointer errors, and tainted data/input
validation errors. On top of these program analysis frame-
works, we plan to build several novel analysis techniques to
improve the coverage of error detection, the soundness of
confinement and diversification, and the speed of the entire
system. While the initial static analysis may be done either at a
centralized repository from which the software is downloaded
or at the end-user machine, the symbolic execution component
is likely to be centralized (e.g., at the department or enterprise
level) to avoid unnecessary duplication of significant effort.

Since symbolic execution of non-trivial software is a time-
consuming endeavor, we proactively and comprehensively
(except as otherwise indicated by static analysis) instrument
software with code that detects and confines vulnerabilities.
The nature of the instrumentation depends on the type of
vulnerability. When source code is available, we will insert

the instrumentation through source-code transformations [16],
[17]. Otherwise, we will inject our instrumentation in program
binaries using the PIN binary rewriting tool (which is neither
as efficient nor as effective, due to the various challenges in
working with binaries) [18], [4]. The specific vulnerability
types we are protecting against include number handling,
error handling, concurrency handling, memory safety errors
(e.g., buffer overflows/underflows), null pointer and tainted
data/input validation errors.

Multithreaded code is difficult to write because developers
must reason about all possible ways the threads may interact
with each other. Due to the same complexity, multithreaded
code is also difficult to debug and fix. For example, a study
has shown that a significant number of concurrency error fixes
did not fix the corresponding errors and, worse, introduced
new errors [19]. This situation may worsen as developers
are writing more multithreaded programs driven by the high
performance demand and the current multicore trend. We
propose to automatically avoid races1 using a number of novel
techniques. Mechanically, our approach will work as follows:
(1) analyze applications to detect likely data races, (2) merge
adjacent data races into atomic regions that match developer
atomicity or ordering intents of code, and (3) defensively
insert synchronization operations to prevent these likely races.
The key advantage of this approach is to relieve developers
from fixing many races, thus improving the reliability of
multithreaded software.

1We use the term race to denote all non-deadlock concurrency errors,
including low-level data races (i.e., concurrent accesses to a shared variable
with at least one write access), atomicity errors, and order errors [19].



One important and novel element of our approach involves
protecting the inline reference monitor itself from silent (unob-
served) compromise. We will achieve this using what we call
“In-Code Execution” (ICE). ICE is inserted into the program
code either using existing “memory gaps” between code and
string structures or specially crafted padding generated during
the analysis phase. ICE creates an independent execution
context from the native program context at runtime making
sure that all the necessary state information is preserved. The
reference monitor executes as an encrypted payload spread out
throughout the code. The ICE insertion and payload encryption
engines can be modified at each run of the binary offering a
diversification of the protection mechanism that elevates the
protection of the reference monitor. It is important to note
that ICE does not use traditional virtualization techniques only
standard CPU instructions. We will also use lightweight OS-
level virtualization to provide an additional layer of process
confinement, including anomaly detection. This will let us
interact with the OS and enforce resource usage limits, protect
the inline reference monitor, and capture/inspect/duplicate I/O
(especially in conjunction with diversified replicas).

Artificial code diversification (ACD), in the form of ASLR
and Instruction Set Randomization (ISR) [20], [21], will act as
one form of containment. We have extended our previous work
on ISR to minimize its performance impact by reducing the
portion of the program that must be run in the ISR runtime.
This is done by concentrating ISR to the parts of the code
that static analysis indicates is more likely to contain bugs
and by randomizing selective portions of the program that
cannot be avoided by a successful compromise (thus causing
a program fault) [22]. We are developing a framework that
allows the integration of any type of localized ACD toward
detecting attacks. When local resources are available (e.g., fast
system with multicore CPU), our system executes multiple
versions of the diversified code and compare results. If local
resources are insufficient, our instrumentation will transmit all
process I/O to a remote system that runs diversified replicas
of the application. While this will only allow ex post facto
intrusion detection, its relatively low performance impact on
the protected system allows its use on low-power devices
such as smartphones and netbooks. Remote execution of
instrumented programs replicas also enables investigation and
implementation of additional diversification and fault detection
approaches that would not otherwise be possible with deployed
program instances.

The feedback loop will enable our system to gradually
and selectively remove instrumentation checks as symbolic
execution indicates that specific parts of the code are not
susceptible to certain vulnerabilities. Thus, over time the
performance of a deployed piece of software will improve.
Furthermore, the injected instrumentation will gather usage
data that will allow us to concentrate the symbolic execution
to the actively used portions of the program. Specific input
vectors may also be supplied to the symbolic execution engine
to facilitate its exploration of the code paths and state space.

As a specific example of such interaction, we briefly discuss

how analysis can improve the performance of our dynamic
confinement and self-healing components. As part of handling
a security violation, these components may roll back a faulty
execution to a series of recent checkpoints for recovery. Since
taking a checkpoint is expensive, we will avoid doing so when
possible by developing a purity analysis that analyzes the side
effects of functions [23]. There are three cases we can skip
checkpointing a function: (1) when the function is pure: it does
not modify any memory location outside the stacks, allocate
or deallocate any resource, or perform any I/O; (2) when the
function is on-error pure: it does not have any side-effect when
it returns an error; and (3) when the function is partially pure:
it has side effects only on some of its execution paths, so we
only need to checkpoint for those paths.

While general purity analysis has been previously stud-
ied [23], [24], we are the first to propose on-error purity and
partial purity. Further, a key novel feature of our analysis is
return-code-sensitive, i.e., it will use the results from our error-
code analysis to compute different side-effect summaries for
success returns and error returns. Such return-code-sensitivity
strikes a good balance between precision and scalability and is
valuable for other kinds of static analysis as well, as functions
tend to do very different things on success and error. We
plan to extend return-code sensitivity to other types of static
analysis as well.

In addition to designing, prototyping and evaluating the
overall MINESTRONE architecture, we seek to advance the
state of the art in each of the component areas, by expanding
the scope of program analysis techniques to new vulnerability
classes, developing self-protecting confinement mechanisms,
and creating diversification schemes that offer highly tunable
performance-security tradeoffs.

III. CURRENT STATUS

Our primary task in realizing this research vision is the
development of an integrated architecture that combines static
and program analysis, confinement, and diversification in
a feedback system that allows for continuous improvement
of the security and performance of the protected software.
Therefore, our subtasks relate to the development of individual
mechanisms within each of these areas, and the integration
into a single system. We have been working on this project
vision since August 2010. In that time, we have refined
the architecture and have been working toward building the
individual components:
• We have developed a binary IRM that implements selective
ISR, Write Integrity, self-healing, and taint tracking with
advanced performance optimizations to remove unnecessary
instrumentation. For example, in some applications the over-
head of ISR is less than 1%, while we have reduced the
overhead of taint analysis by 40% to 60% over the best
reported implementation [25], [26].
• We have developed techniques for analyzing programs to
identify and mitigate concurrency bugs [27], [28]. Using static
analysis and schedule memoization, we can force safe thread



scheduling with modest performance impact.
• We have developed versions of ICE that can be embedded
in binaries for different architectures (ARM, MIPS, x86). We
have demonstrated ICE for such diverse environments as Cisco
routers and Android handsets. The ICE implementation is very
efficiently executed utilizing the raw computational resource of
the hardware platform, bypassing layers of overhead produced
by operating systems or VMs that host an OS. One advantage
of an ICE security payload over a reference monitor is better
performance.
• We have augmented our initial lightweight container scheme
with full-process logging/replay and system call monitoring.
This capability, combined with the self-healing component in
our IRM, will allow us to do fast rollback.
• We have scaled up the symbolic execution component, with
respect to the state space explored. Our new techniques allow
us to identify equivalent states (and thus avoid them), yielding
a 9-fold performance speedup on average.
• We are developing a I/O redirection prototype that covers
interactive applications. We are integrating this with our di-
versification IRM and the lightweight containers, allowing us
to place and move replicas in any number of systems and to
deploy the detection and mitigation techniques we develop.

The main challenge with our work will be managing the
integration complexity, conducting realistic experiments, and
developing a management framework that makes it easy to use
MINESTRONE. This will be the focus of our future efforts.

Acknowledgements: This work was supported by the US
Air Force through Contract AFRL-FA8650-10-C-7024. Any
opinions, findings, conclusions or recommendations expressed
herein are those of the authors, and do not necessarily reflect
those of the US Government or the Air Force.

REFERENCES

[1] Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-
based fault isolation. In: In Proceedings of the 14th ACM Symposium
on Operating Systems Principles. (1993) 203–216

[2] Seward, J., Nethercote, N.: Valgrind, an open-source memory debugger
for x86-linux. (http://developer.kde.org/∼sewardj/)

[3] Rinard, M.C., Cadar, C., Dumitran, D., Roy, D.M., Leu, T., Beebee,
W.S.: Enhancing server availability and security through failure-
oblivious computing. In: OSDI. (2004) 303–316

[4] Sidiroglou, S., Laadan, O., Viennot, N., Perez, C.R., Keromytis, A.D.,
Nieh, J.: ASSURE: Automatic Software Self-healing Using REscue
points. In: Proceedings of the 14th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS). (2009) 37–48

[5] Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In:
Proceedings of the 8th Symposium on Operating Systems Design and
Implementation (OSDI). (2008) 209–224

[6] Yang, J., Sar, C., Twohey, P., Cadar, C., Engler, D.: Automatically
generating malicious disks using symbolic execution. In: Proceedings
of the 2006 IEEE Symposium on Security and Privacy (SP ’06). (2006)
243–257

[7] Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE:
automatically generating inputs of death. In: Proceedings of the 13th
ACM Conference on Computer and Communications Security (CCS
’06). (2006) 322–335

[8] Engler, D., Chelf, B., Chou, A., Hallem, S.: Checking system rules
using system-specific, programmer-written compiler extensions. In:
Proceedings of Operating Systems Design and Implementation (OSDI).
(2000)

[9] Engler, D., Yu Chen, D., Hallem, S., Chou, A., Chelf, B.: Bugs as
deviant behavior: A general approach to inferring errors in systems code.
In: Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01). (2001)

[10] Engler, D., Ashcraft, K.: RacerX: Effective, Static Detection of Race
Conditions and Deadlocks. In: Proceedings of ACM SOSP. (2003)

[11] Yang, J., Kremenek, T., Xie, Y., Engler, D.: MECA: an extensible,
expressive system and language for statically checking security proper-
ties. In: Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS). (2003)

[12] Ashcraft, K., Engler, D.: Using programmer-written compiler extensions
to catch security holes. In: Proceedings of the 2002 IEEE Symposium
on Security and Privacy (SP ’02), Oakland, California (2002)

[13] Yang, J., Chen, T., Wu, M., Xu, Z., Liu, X., Lin, H., Yang, M., Long,
F., Zhang, L., Zhou, L.: MODIST: Transparent model checking of
unmodified distributed systems. In: Proceedings of the 6th Symposium
on Networked Systems Design and Implementation (NSDI). (2009)

[14] Yang, J., Sar, C., Engler, D.: Explode: a lightweight, general system for
finding serious storage system errors. In: Proceedings of the Seventh
Symposium on Operating Systems Design and Implementation (OSDI
’06). (2006) 131–146

[15] Yang, J., Twohey, P., Engler, D., Musuvathi, M.: Using model checking
to find serious file system errors. In: Proceedings of the 6th Symposium
on Operating Systems Design and Implementation (OSDI ’04). (2004)
273–288

[16] Sidiroglou, S., Keromytis, A.D.: Execution Transactions for Defending
Against Software Failures. International Journal of Information Security
(IJIS) 5 (2006) 77–91

[17] Sidiroglou, S., Locasto, M.E., Boyd, S.W., Keromytis, A.D.: Building
A Reactive Immune System for Software Services. In: Proceedings of
the 11th USENIX Annual Technical Conference. (2005) 149–161

[18] Kim, H.C., Keromytis, A.D.: On the Deployment of Dynamic Taint
Analysis for Application Communities. IEICE Transactions E92-D
(2009) 548–551

[19] Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics.
In: ASPLOS XIII: Proceedings of the 13th international conference on
Architectural support for programming languages and operating systems,
New York, NY, USA, ACM (2008) 329–339

[20] Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering Code-Injection
Attacks With Instruction-Set Randomization. In: Proceedings of the
10th ACM Conference on Computer and Communications Security
(CCS). (2003) 272–280

[21] Boyd, S.W., Keromytis, A.D.: SQLrand: Preventing SQL Injection
Attacks. In: Proceedings of the 2nd Applied Cryptography and Network
Security Conference (ACNS). (2004) 292–302

[22] Locasto, M., Wang, K., Keromytis, A., Stolfo, S.: FLIPS: Hybrid
Adaptive Intrusion Prevention. In: Proceedings of the 8th Symposium
on Recent Advances in Intrusion Detection (RAID). (2005) 82–101

[23] Landi, W., Ryder, B.G., Zhang, S.: Interprocedural side effect analysis
with pointer aliasing. In: PLDI ’93: Proceedings of the 1993 ACM
SIGPLAN conference on Programming language design and implemen-
tation. (1993)

[24] Xu, H., Pickett, C.J.F., Verbrugge, C.: Dynamic purity analysis for java
programs. In: PASTE ’07: Proceedings of the 7th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engi-
neering. (2007)

[25] Portokalidis, G., Keromytis, A.D.: Fast and Practical Instruction-Set
Randomization for Commodity Systems. In: Proceedings of ACSAC.
(2010)

[26] O’Sullivan, P., Anand, K., Kothan, A., Smithon, M., Barua, R.,
Keromytis, A.D.: Retrofitting Security in COTS Software with Binary
Rewriting. In: Proceedings of the 26th IFIP International Information
Security Conference (SEC). (2011)

[27] Cui, H., Wu, J., che Tsai, C., Yang, J.: Stable Deterministic Multi-
threading through Schedule Memoization. In: Proceedings of the 9th

Symposium on Operating Systems Design and Implementation (OSDI).
(2010)

[28] Wu, J., Cui, H., Yang, J.: Bypassing Races in Live Applications with
Execution Filters. In: Proceedings of the 9th Symposium on Operating
Systems Design and Implementation (OSDI). (2010)


