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Abstract. We introduce BotSwindler, a bait injection system designed to de-

lude and detect crimeware by forcing it to reveal during the exploitation of moni-

tored information. The implementation of BotSwindler relies upon an out-of-host

software agent that drives user-like interactions in a virtual machine, seeking to

convince malware residing within the guest OS that it has captured legitimate

credentials. To aid in the accuracy and realism of the simulations, we propose a

low overhead approach, called virtual machine verification, for verifying whether

the guest OS is in one of a predefined set of states. We present results from exper-

iments with real credential-collecting malware that demonstrate the injection of

monitored financial bait for detecting compromises. Additionally, using a compu-

tational analysis and a user study, we illustrate the believability of the simulations

and we demonstrate that they are sufficiently human-like. Finally, we provide re-

sults from performance measurements to show our approach does not impose a

performance burden.

1 Introduction

The creation and rapid growth of an underground economy that trades in stolen digital

credentials has spurred the growth of crime-driven bots that harvest sensitive data from

unsuspecting users. This form of malevolent software employs a variety of techniques

ranging from web-based form grabbing and key stroke logging, to screenshots and video

capture for the purposes of pilfering data on remote hosts to automate financial crime

[1,2]. The targets of such malware range from individual users and small companies to

the most wealthiest organizations [3]—recent studies indicate that bot infections are on

the rise and up to 9% of the machines in an enterprise are now bot-infected [4].

Traditional crimeware detection techniques rely on comparing signatures of known

malicious instances to identify unknown samples, or on anomaly-based detection tech-

niques in which host behaviors are monitored for large deviations from a baseline. Un-

fortunately, these approaches suffer a large number of known weaknesses. Signature-

based methods can be useful when a signature is known, but due to the large number
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of possible variants, learning and searching all possible signatures to identify unknown

binaries is intractable [5]. On the other hand, anomaly-based methods are susceptible

to false positives and negatives, limiting their potential utility. Consequently, a large

amount of existing crimeware now operate undetected by antivirus software. A recent

study focused of Zeus3 (the largest botnet with over 3.6 million PC infections in the US

alone [7]), revealed that the malware bypassed up-to-date antivirus software 55% of the

time [8].

Another drawback of conventional host-based antivirus software is that it typically

monitors from within the host it is trying to protect, making it vulnerable to evasion or

subversion by malware; we see an increasing number of malware attacks that disable

defenses such as antivirus software prior to undertaking some malicious activity [9].

In this work, we introduce BotSwindler, a novel system designed for the proactive

detection of credential stealing malware on VM-based hosts. BotSwindler relies upon

an out-of-host software agent to drive user simulations that are meant to convince mal-

ware residing within the guest OS that it has captured legitimate credentials. By the

nature of its out-of-host operating position, the simulator is tamper resistant and diffi-

cult to detect by malware residing within the host environment. We posit that malware

that detects BotSwindler would need to analyze the behavior of its host and decide

whether it is observing a human or not. In other words, the crimeware would need to

solve a Turing Test [10]. We assert that if attackers are forced to spend their time look-

ing at the actions on each infected host one by one to determine if they are real or not

in order to steal information, BotSwindler would be a success; the attackers’ task does

not scale. To generate simulations, BotSwindler relies on a formal language that is used

to specify a simulation of human user’s sequence of actions. The language provides a

flexible way to generate variable simulation behaviors that appear realistic. Simulations

can be tuned to mimic particular users by using various models for keystroke speed,

mouse speed and the frequency of errors made during typing.

One of the challenges in designing an out-of-host simulator lies in the ability to

detect the underlying state of the OS. That is, to verify the success or failure of mouse

and keyboard events that are passed to the guest OS. For example, if the command is

given to open a browser and navigate to a particular URL, the simulator must validate

that the URL was successfully opened before proceeding with the next command. To aid

in the accuracy and realism of the simulations, we developed a low overhead approach,

called virtual machine verification (VMV), for verifying whether the state of the guest

OS is in one of a predefined set of states.

BotSwindler aims to detect crimeware by deceptively inducing it into an observable

action during the exploitation of monitored information injected into the guest OS. To

entice attackers with information of value, the system supports a variety of different

types of bait credentials including decoy Gmail and PayPal authentication credentials,

as well as those from a large financial institution 4. Our system automatically monitors

3 Zeus uses key-logging techniques to steal sensitive data such as user names, passwords, ac-

count numbers. It can be purchased on the black market for $600, complete with support and

maintenance [6].
4 By agreement, the institution requested that its name be withheld.
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the decoy accounts for misuse to signal exploitation and thus detect the host infection

by credential stealing malware.

BotSwindler presents an instance of a system and approach that can be used to deal

with information-level attacks, regardless of their origin. In our prototype, we rely on

credentials for financial institutions because they are good examples that we can easily

evaluate, but the approach is aimed at any kind of large-scale automated harvesting of

“interesting” data — where “interesting” depends on both the environment and the mal-

ware. Although we demonstrate our system with three types of credentials, the system

can be extended to support any type of credential that can be monitored for misuse. As

one of the contributions of this work, we consider different applications of BotSwindler

including how it could be applied practically in an enterprise environment with simu-

lations and decoys adapted to the specific deployment setting. In part of doing so, we

discuss how BotSwindler can be deployed to service hosts that include those which are

not VM-based, making this approach broadly applicable.

We have implemented a prototype version of BotSwindler using a modified version

of QEMU [11] running on a Linux host. User simulation is implemented using X11

libraries and interaction with the graphical frame buffer. We demonstrate our prototype

through experiments with crimeware on a Windows guest, but BotSwindler can oper-

ate on any guest operating system supported by the underlying hypervisor or virtual

machine monitor (VMM).

1.1 Overview of Results

To demonstrate the effectiveness of BotSwindler, we tested our prototype against real

crimeware samples obtained from the wild. Our results from two separate experiments

with different types of decoy credentials show that BotSwindler succeeds in detecting

malware through attackers’ exploitation of the monitored bait. In our first experiment

with 116 Zeus samples, we received 14 distinct alerts using PayPal and Gmail decoys.

In a second experiment with 59 different Zeus samples, we received 3 alerts from our

banking decoys.

The long-term viability of BotSwindler defense largely depends on the believabil-

ity of the bait-injecting simulations by the attackers. We performed a computational

analysis to see if attackers could employ machine learning algorithms on keystrokes to

distinguish simulations. We present results from experiments running Naive Bayes and

Support Vector Machine (SVM) classifiers on real and generated timing data to show

that they produce nearly identical classification results making this kind of analysis in-

effectual for an adversary. To show that adversaries resorting to manual inspection of

the user activities would be sufficiently challenged, we evaluated the believability of

user simulations via a decoy Turing Test in which human judges were tasked with try-

ing to distinguish BotSwindler’s actions from those of a real human. The failure of the

judges to distinguish suggests BotSwindler’s simulations are convincingly human-like.

In our study with 25 human judges evaluating 10 videos of BotSwindler actions and of

a human, the judges’ average success rate was 46%, indicating the simulations provide

a good approximation of human actions.

Finally, recognizing that attackers may try to distinguish simulated behavior via

performance metrics, we evaluated the overhead of our approach by measuring the cost
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imposed by the virtual machine verification (VMV) technique. Our results indicate that

VMV imposes no measurable overhead, making the technique difficult to detect by

malware using performance analysis [12].

1.2 Summary of Contributions

This paper makes the following contributions:

– BotSwindler architecture: It introduces BotSwindler, a novel, accurate, efficient,

and tamper-resistant zero-day crimeware detection system. BotSwindler relies on

the use of decoy injection whereby bogus information is used to bait and delude

crimeware, causing it to reveal itself during the exploitation of the monitored infor-

mation.

– VMSim language: It introduces VMSim, a new language for expressing simulated

user behavior. VMSim facilitates the construction and reproduction of complex user

activity, including specifying aggregate statistical behavior.

– Virtual Machine Verification (VMV): It introduces virtual machine verification,

a low overhead approach for verifying simulation state. VMV enables robust out-

of-host user action simulation through graphical state verification.

– Real malware detection results: It presents results to show the effectiveness of

BotSwindler in detecting real malware when decoy PayPal, Gmail, and banking

credentials are injected, stolen, and exploited by the attackers.

– Statistical and information theoretic analysis: It presents the results of a compu-

tational analysis on generated keystroke timing data to show it would be difficult

to detect simulations through analysis with machine learning algorithms or entropy

measurements.

– Believability user study results: It presents user study results that show the be-

lievability of simulations created with BotSwindler’s VMSim language.

– Performance overhead results: It shows that BotSwindler imposes no measurable

overhead, hence making itself undetectable via timing measurement methods.

2 Related Work

Deception-based information resources that have no production value other than to at-

tract and detect adversaries are commonly known as honeypots. Honeypots serve as ef-

fective tools for profiling attacker behavior and to gather intelligence to understand how

attackers operate. They are considered to have low false positive rates since they are de-

signed to capture only malicious attackers, except for perhaps an occasional mistake by

innocent users. Spitzner discusses the use of honeytokens [13], which he defines as “a

honeypot that is not a computer,” citing examples that include bogus medical records,

credit card numbers, and credentials. Our work harnesses the honeytoken concept to

detect crimeware that may otherwise go undetected.

Injecting human input to detect malware has been shown to be useful by Borders

et al. [14] with their Siren system. The aim of Siren is to thwart malware that attempts

to blend in with normal user activity to avoid anomaly detection systems. However,
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detection is performed by manually injecting human input to generate a sequence of

network requests and observing the resulting network traffic to identify differences

from the known sequences of requests; deviations are flagged as malicious. Expand-

ing upon Siren, Chandrasekaran et al. [15], developed a system to randomize generated

human input to foil potential analysis techniques that may be employed by malware.

The work by Holz et al. [1] to investigate keyloggers and dropzones, relied on execut-

ing maleware in CWSandbox [16] and automating user input with AutoIt 5. However,

it was limited to ad hoc scenarios designed for the sole purpose of detecting harvesting

channels. Their approach depends on miss-configured and insecure dropzone servers to

learn about what sort of information is being stolen. While this effort did reveal lots of

interesting details about stolen information, it is limited by law and skill of the attack-

ers (i.e., they can just secure their dropzone servers). In addition, relying on simulator

software that resides within the host, such as AutoIt, provides attackers with a simple

means to detect and avoid it. In contrast to these systems, BotSwindler is difficult to

detect, automatically injects input that is designed to be believable, relies on monitored

decoy credentials for detection, and provides a platform to convince malware that it has

captured legitimate credentials.

Taint analysis is another technique that has been used to detect credential stealing

malware. Egele et al. [17] used taint analysis to track information as it is processed by

the web browser and loaded in to browser helper objects (BHOs). Their approach allows

for a human analyst to observe where information is being sent in offline analysis.

Similarly, Yin et al. [18] built Panorama, a taint tracking system that extends beyond

BHOs to handle tracking throughout multiple processes, memory swapping, and disks.

These systems may work well to track information in a system, but they do so with large

overhead (factor of 10-20 slowdown in the systems described) or contain components

that reside on the guest [18]; both these features that can be detected by malware and

used for evasion purposes.

BotSwindler injects monitored bait into VM-based hosts by simulating user activity

that is of interest to crimeware. The simulation is performed on the native OS outside of

the VM to minimize artifacts that could be used to tip-off resident malicious software.

To keep track of the simulation state within the virtual environment, our approach re-

lies on a form of virtual machine introspection (VMI), a concept proposed by Garfinkel

and Rosenblum [19] to describe the act of inspecting a virtual machine’s software from

outside the virtual environment. The challenge of VMI lies in overcoming the semantic

gap [20] between the two levels of abstraction represented by the VM and the underly-

ing service or OS. Garfinkel and Rosenblum focused on inspecting memory, registers,

device state, and other process related information to implement an attack resistant

host-based IDS for VMs whereby the IDS is located outside of the guest in the virtual

machine monitor (VMM). Other VMI implementations include [21,22,23], but unlike

most of these approaches, we circumvent the semantic gap and rely on artifacts found in

the VMM graphical framebuffer. To the best of our knowledge, we are the first to focus

on the verification of state for user simulations, a challenge with unique requirements.

5 http://www.autoitscript.com

http://www.autoitscript.com
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3 BotSwindler Components

The BotSwindler architecture, as shown in Fig. 1, consists of two primary components

including a simulator engine, VMSim, and a virtual machine verification component.

Another aspect of BotSwindler (although not shown in the figure) are the monitored

decoys that we employ for detecting malware. These components are described in the

next three sections.

3.1 VMSim

Guest Operating 

System

Virtualization Layer

VMV

Host Operating System

VMSim

User Actions

Decoys

Verification

Fig. 1. BotSwindler architecture.

BotSwindler’s user simulator component, VMSim, performs simulations that are

designed to convince malware residing inside the VM that command sequences are

genuine. We posit that successfully creating a sequence of actions that tricks the mal-

ware into stealing and uploading a decoy credential can be achieved only if two essential

requirements are met:

1. the simulator process remains undetected by the malware

2. the actions of the simulator appear to be generated by a human

We approach the first requirement by decoupling the location of where the simula-

tion process is executed and where its actions are received. To do this, we run the sim-

ulator outside of a virtual machine and pass its actions to the guest host by utilizing the

X-Window subsystem on the native host. The second requirement is addressed through

a simulation creation process that entails recording, modifying, and replaying mouse

and keyboard events captured from real users. To support this process, we leverage

the Xorg Record and XTest extension libraries for recording and replaying X-Window

events. The product is a simulator that runs on the native host producing human-like

events without introducing technical artifacts that could be used to alert malware of the

BotSwindler facade.

VMSim relies on formal language to specify the sequence of actions in the sim-

ulations. Representative details of the formal language are provided in Fig. 2 (many

details are omitted due to space limitations). The language provides a flexible way to
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generate variable simulation behaviors and workflows, but more importantly it sup-

ports the use of cover and carry actions; carry actions result in the injection of decoys

(described in Sect. 3.3), whereas cover actions include everything else to support the

believability of carry traffic. For example, cover actions may include the opening and

editing of a text document (WordActions) or the opening and closing of particu-

lar windows (SysActions). The VerifyAction allows VMSim to interact with

VMV (described in Sect. 3.2) and provides support for conditional operations, synchro-

nization, and error checking. Interaction with the VMV is crucial for the accuracy of

simulations because a particular action may cause random delays for which the simula-

tion must block on before proceeding to the next action.

�
<ActionType> : : = <WinLogin> <ActionType>

| <CoverAct ion> <ActionType> | <CarryAc t ion> <ActionType>
| <WinLogout> | <V e r i f y A c t i o n> <ActionType> | e

<CoverAct ion> : : = <Brows e rAc t ion> <CoverAct ion>
| <WordAction> <CoverAct ion> | <Sys Ac t ion> <CoverAct ion>

<Brows e rAc t ion> : : = <URLRequest> <Brows e rAc t ion>
| <OpenLink> <Brows e rAc t ion> | <Close>

<WordAction> : : = <NewDoc> <WordAction>
| <EditDoc> <WordAction> | <Close>

<Sys Ac t ion> : : = <OpenWindow> | <MaxWindow>
| <MinWindow> | <CloseWindow>

<V e r i f y A c t i o n> : : = Img1 | Img2 | . . . | ImgN | Unknown
<CarryAc t ion> : : = <P a y P a l I n j e c t> | <G m a i l I n j e c t>

| <CCIn jec t> | <U n i v I n j e c t> | <B a n k I n j e c t>


� �

Fig. 2. VMSim language.

The simulation creation process involves the capturing of mouse and keyboard

events of a real user as distinct actions. The actions that are recorded map to the con-

structs of the VMSim language. Once the actions are implemented, the simulator is

tuned to mimic a particular user by using various biometric models for keystroke speed,

mouse speed, mouse distance, and the frequency of errors made during typing. These

parameters function as controls over the language shown in Fig. 2 and aid in creating

variability in the simulations. Depending on the particular simulation, other parameters

such as URLs or other text that must be typed are then entered to adapt each action.

VMSim translates the language’s actions into lower level constructs consisting of key-

board and mouse functions, which are then outputted as X protocol level data that can

be replayed via the XTest extensions.

To construct biometric models for individuals, we have extended QEMU’s VMM

to support the recording of several features including keycodes (the ASCII code rep-

resenting a key), the duration for which they are pressed, keystroke error rates, mouse

movement speed, and mouse movement distance. Generative models for keystroke tim-

ing are created by first dividing the recorded data for each keycode pair into separate

classes where each class is determined by the distance in standard deviations from the

mean. We then calculate the distribution for each keycode sequence as the number of

instances of each class. We adapt simulation keystroke timing to profiles of individ-

ual users by generating random times that are bounded by the class distribution. Simi-

larly, for mouse movements we calculate user specific profiles for speed and distance.

Recorded mouse movements are broken down into variable length vectors that represent
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periods of mouse activity. We then calculate distributions for each user using these vec-

tors. The mouse movement distributions are used as parameters for tuning the simulator

actions. We note that identifying the complete set of features to model an individual is

an open problem. Our selection of these features is to illustrate a feasible approach to

generating statistically similar actions. In addition, these features have been useful for

verifying the identify of individuals in keystroke and mouse dynamics studies [24,25].

In Sect. 4.1 we provide a statistical and information theoretic analysis of the simulated

times.

One of the advantages of using a language for the generation of simulation work-

flows is that it produces a specification that can be ported across different platforms.

This allows the cost of producing various simulation workflows to be amortized over

time. In the prototype version of BotSwindler, the task of mapping mouse and keyboard

events to language actions is performed manually. The mappings of actions to lower

level mouse and keyboard events are tied to particular host configurations. Although

we have not implemented this for the prototype version of BotSwindler, the process

of porting these mappings across hosts can be automated using techniques that rely on

graphical artifacts like those used in the VMV implementation and applying geometric

transformations to them.

Once the simulations are created, playing them back requires VMSim to have access

to the display of the guest OS. During playback, VMSim automatically detects the po-

sition of the virtual machine window and adjusts the coordinates to reflect the changes.

Although the prototype version of BotSwindler relies on the display to be open, it is

possible to mitigate this requirement by using the X virtual frame buffer (Xvfb) [26].

By doing so, there would be no requirement to have a screen or input device.

3.2 Virtual Machine Verification

The primary challenge in creating an of out-of-host user simulator is to generate human-

like events in the face of variable host responses. This task is essential for being able

to tolerate and recover from unpredictable events caused by things like the fluctua-

tions in network latency, OS performance issues, and changes to web content. Conven-

tional in-host simulators have access to OS APIs that allow them to easily to determine

such things. For example, simulations created with the popular tool AutoIt can call its

WinWait function, which can use the Win32 API to obtain information on whether a

window was successfully opened. In contrast, an out-of-host simulator has no such API

readily available. Although the Xorg Record extensions do support synchronization to

solve this sort of problem, they are not sufficient for this particular case. The Record

extensions require synchronization on an X11 window as opposed to a window of the

guest OS inside of an X11 window, which is the case for guest OS windows of a VM6.

We address this requirement by casting it as a verification problem to decide whether

the current VM state is in one of a predefined set of states. In this case, the states

are defined from select regions of the VM graphical output, allowing states to consist

of any visual artifact present in a simulation workflow. To support non-deterministic

6 This was also a challenge when we tested under VMware Unity, which exports guest OS

windows as what appear to be ordinary windows on the native host.
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simulations, we note that each transition may end in one of several possible next states.

We formalize the VMV process over the set of transitions T , and set of states S, where

each t0, t1, ..., tn ∈ T can result in the the set of states st1, st2, ..., stn ⊆ S. The VMV

decides a state verified for a current state c, when c ∈ sti.

The choice for relying on the graphical output allows the simulator to depend on the

same graphical features a user would see and respond to, enabling more accurate sim-

ulations. In addition, information specific to a VM’s graphical output can be obtained

from outside of the guest without having to solve the semantic gap problem [20], which

requires detailed knowledge of the underlying architecture. A benefit of our approach

is that it can be ported across multiple VM platforms and guest OS’s. In addition, we

do not have to be concerned with side effects of hostile code exploiting a system and

interfering with the Win32 API like traditional in-host simulators do, because we do not

rely on it. In experiments with AutoIt scripts and in-host simulations, we encountered

cases where scripts would fail as a result of the host being infected with malware.

The VMV was implemented by extending the Simple DirectMedia Layer (SDL)

component of QEMU’s [11] VMM. Specifically, we added a hook to the sdl update

function to call a VMV monitor function. This results in the VMV being invoked

every time the VM’s screen is refreshed. The choice of invoking the VMV only during

sdl update was both to reduce the performance costs and because it is precisely

when there are updates to the screen that we seek to verify states (it is a good indicator

of user activity).

States are defined during a simulation creation process using a pixel selection tool

(activated by hotkeys) that we built into the VMM. The pixel selection tool allows the

simulation creator to select any portion of a guest OS’s screen for use as a state. In

practice, the states should be defined for any event that may cause a simulation to delay

(e.g., network login, opening an application, navigating to a web page). The size of the

screen selection is left up to the discretion of the simulation creator, but typically should

be minimized as it may impact performance. In Sect. 4.3 we provide a performance

analysis to aid in this consideration.

3.3 Trap-Based Decoys

Our trap-based decoys are detectable outside of a host by external monitors, so they do

not require host monitoring nor do they suffer the performance burden characteristic of

decoys that require constant internal monitoring (such as those used for taint analysis).

They are made up of bait information including online banking logins provided by

a collaborating financial institution, login accounts for online servers, and web based

email accounts. For the experiments in this paper, we focused on the use of decoy

Gmail, PayPal credentials, and banking credentials. These were chosen because they

are widely used and known to have underground economy value [1,27], making them

alluring targets for crimeware, yet inexpensive for us to create. The banking logins are

provided to us by a collaborating financial institution. As part of the collaboration, we

receive daily reports showing the IP addresses and timestamps for all accesses to the

accounts at any time.

The decoy PayPal and bank accounts have an added bonus that allows us to ex-

pose the credentials without having to be concerned about an attacker changing their
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password. PayPal requires multi-factor authentication to change the passwords on an

account. Yet, we do not reveal all of the attributes of an account making it difficult for

an attacker to change the authentication credentials. For the banking logins, we have

the ability to manage the usernames and passwords.

Custom monitors for PayPal and Gmail accounts were developed to leverage inter-

nal features of the services that provide the time of last login, and in the case of Gmail

accounts, the IP address of the last login. In the case of PayPal, the monitor logs into the

decoy accounts every hour to check the PayPal recorded last login. If the delta between

the times is greater than 75 seconds, the monitor triggers an alert for the account and

notifies us by email. The 75 second threshold was chosen because PayPal reports the

time to a resolution of minutes rather than seconds. The choice as to what time inter-

val to use and how frequently to poll presents significant tradeoffs that we analyze in

Sect. 4.4.

In the case of the Gmail accounts, custom scripts access mail.google.com to

parse the bait account pages, gathering account activity information. The information

includes the IP addresses for the previous 5 account accesses and the time. If there is

any activity from IP addresses other than the BotSwindler monitor’s host IP, an alert

is triggered with the time and IP of the offending host. Alerts are also triggered when

the monitor cannot login to the bait account. In this case, we conclude that the account

password was stolen (unless monitoring resumes) and maliciously changed unless other

corroborating information (like a network outage) can be used to convince otherwise.

4 Experimental Results

4.1 Statistical and Information Theoretic Analysis

In this section we present results from the statistical analysis of generated keystroke

timing information. The goal of these experiments was to see if a machine learning algo-

rithm (one that would be available to a malware sample to determine whether keystrokes

are real or not) might be able to classify keystrokes accurately into user generated or

machine generated. For these experiments, we relied on Killourhy and Maxion’s bench-

mark data set [28]. The data set was created by having 51 subjects repeatedly type the

same 10 character password, 50 times in 8 separate sessions, to create 400 samples for

each user. Accurate timestamps were recorded by using an external clock. Using this

publicly available real user data ensures that experiments can be repeated.

To evaluate VMSim’s generated timing information, we used Weka [29] for our

classification experiments. We divided the benchmark data set in half and used 200

password timing vectors from each user to train Naive Bayes and Support Vector Ma-

chine (SVM) classifiers. The remaining 200 timing vectors from each user were used

as input to VMSim’s generation process to generate 200 new timing vectors for each

user. The same 200 samples were used for testing against the generated samples in the

classification experiments. Note that we only used fields corresponding to hold times

and inter-key latencies because the rest were not applicable to this work (they can also

contain negative values). The normalized results of running the SVM and Naive Bayes

classifiers on the generated data and real data are presented in Figs. 3 and 4, respec-

mail.google.com
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Fig. 3. SVM classification.
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Fig. 4. Naive Bayes classification.
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Fig. 5. Entropy of generated and actual timing data.

tively. The results are nearly identical for these two classifiers suggesting that this par-

ticular type of analysis would not be useful for an attacker attempting to distinguish

the real from generated actions. In Fig. 5, we present a comparison of entropy values

(the amount of information or bits required to represent the data) [30] for the actual and

generated data for each of the 200 timing vectors of the 51 test subjects. The results

indicate that there is no loss of information in our generation process that would be

useful by an adversary that is attempting distinguish real from generated actions.

4.2 Decoy Turing Test

We now discuss the results of a Turing Test [10] to demonstrate BotSwindler’s per-

formance regarding the humanness, or believability, of the generated simulations. The

point of this experiments is to show that adversaries resorting to manual inspection

of the user activities would be sufficiently challenged. Though the simulations are de-

signed to delude crimware, here we focus on convincing humans, a task we posit to

be a more difficult feat, making the adversaries task of designing malware that dis-

cerns decoys far more difficult. To conduct this study, we formed a pool of 25 human

judges, consisting of security-minded PhDs, graduate-level students, and security pro-

fessionals. Their task was to observe a set of 10 videos that capture typical user actions

performed on a host and make a binary decision about each video: real or simulated

(i.e., whether the video shows the actions of a real user or those of a simulator). Our

goal was to demonstrate the believability of the simulated actions by showing failure of

human judges to reliably distinguish between authentic human actions and those gener-

ated with BotSwindler. Our videos contained typical user actions performed on a host
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such as composing and sending an email message through Gmail, logging into a website

of a financial institution such as Citibank or PayPal, and editing text document using

Wordpad. For each scenario we generated two videos: one that captured the task per-

formed by a human and another one that had the same task performed by BotSwindler.

Each video was designed to be less than a minute long since we assumed that our judges

would have limited patience and would not tolerate long-running simulations.

The human generated video samples were created by an independent user who was

asked to perform sets of actions which were recorded with a desktop recording tool

to obtain the video. Similar actions by another user were used to generate keystroke

timing and error models, which could then be used by VMSim to generate keystroke

sequences. To generate mouse movements, we rely on movements recorded from a

real user. Using these, we experimentally determine upper and lower bounds for mouse

movement speed and replay the movements from the real user, but with a new speed

randomized within the determined limits. The keyboard and mouse sequences were

merged with appropriate simulator parameters such as credentials and URLs to form

the simulated sequence which was used to create the decoy videos.

Figure 6 summarizes the results for each of the 10 videos. The videos are grouped

in per-scenario pairs in which the left bars correspond to simulated tasks, while the right

bars correspond to the tasks of authentic users on which the simulations are based. The

height of the bars reflects the number of judges that correctly identified the given task

as real or simulated. The overall success rate was ∼46%, which indicates that VMSim

achieves a good approximation of human behavior. The ideal success rate is 50%, which

suggests that judges cannot differentiate whether a task is simulated or real.

Figure 7 illustrates the overall performance of each judge separately. The judges’

correctness varies greatly from 0% up to 90%. This variability can be attributed to the

fact that each judge interprets the same observed feature differently. For example, since

VMSim uses real user actions as templates to drive the simulation, it is able to include

advanced “humanized” actions inside simulations, such as errors in typing (e.g., invalid

typing of a URL that is subsequently corrected), TAB usage for navigating among form

fields, auto-complete utilization, and so forth. However, the same action (e.g., TAB us-

age for navigating inside the fields of a web form) is assumed by some judges as a real

human indicator, while some others take it as a simulation artifact. This observation is

clearly a “toss up” as a distinguishing feature. An important observation is that even

highly successful judges could not achieve a 100% accuracy rate. This indicates that

given a diverse and plentiful supply of decoys, our system will be believable at some

time. In other words, given enough decoys, BotSwindler will eventually force the mal-

ware to reveal itself. We note that there is a “bias” towards the successful identification

of bogus videos compared to real videos. This might be due to the fact that most of

the judges guess “simulated” when unsure, due to the nature of the experiment. Despite

this bias, results indicate that simulations are highly believable by humans. In cases

where they may not be, it is important to remember that the task of fooling humans is

far harder than tricking malware, unless the adversary has solved the AI problem and

designed malware to answer the Turing Test. Furthermore, if attackers have to spend

their time looking at the actions one by one to determine if they are real or not, we

consider BotSwindler a success because that approach does not scale for the adversary.
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4.3 Virtual Machine Verification Overhead

The overhead of the VMV in BotSwindler is controlled by several parameters including

the number of pixels in the screen selections, the size of the search area for a selection,

the number of possible states to verify at each point of time, and the number of pixels re-

quired to match for positive verification. A key observation responsible for maintaining

low overhead is that the majority of the time, the VMV process results in a negative ver-

ification, which is typically obtained by inspecting a single pixel for each of the possible

states to verify. The performance cost of this result is simply that of a few instructions

to perform pixel comparisons. The worst case occurs when there is a complete match

in which all pixels are compared (i.e., all pixels up to some predefined threshold). This

may result in thousands of instructions being executed (depending on the particular

screen selection chosen by the simulation creator), but it only happens once during the

verification of a particular state. It is possible to construct a scenario in which worse

performance is obtained by choosing screen selections that are common (e.g., found on

the desktop) and almost completely matches but results in a negative VMV outcome. In

this case, obtaining a negative VMV result may cost hundreds of thousands of CPU cy-

cles. In practice, we have not found this scenario to occur; moreover, it can be avoided

by the simulation creator.

Table 1. Overhead of VMV with idle user.

Min. Max. Avg. STD

Native OS .48 .70 .56 .06

QEMU .55 .95 .62 .07

QEMU w/VMV .52 .77 .64 .07

Table 2. Overhead of VMV with active user.

Min. Max. Avg. STD

Native OS .50 .72 .56 .06

QEMU .57 .96 .71 .07

QEMU w/VMV .53 .89 .71 .06

In Table 1, we present the analysis of the overhead of QEMU7 with the BotSwindler

extensions. The table presents the amount of time, in seconds, to load web pages on our

test machine (2.33GHz Intel Core 2 Duo with 2GB 667MHz DDR2 SDRAM) with

idle user activity. The results include the time for a native OS, an unmodified version

of QEMU (version 0.10.5) running Windows XP, and QEMU running Windows XP

with the VMV processing a verification task (a particular state defined by thousands of

pixels).

7 QEMU does not support graphics acceleration, so all processing is performed by the CPU.
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In Table 2, we present the results from a second set of tests where we introduce rapid

window movements forcing the screen to constantly be refreshed. By doing this, we

ensure that the BotSwindler VMV functions are repeatedly called. The results indicate

that the rapid movements do not impact the performance on the native OS, whereas in

the case of QEMU they result in a ∼15% slowdown. This is likely because QEMU does

not support graphics acceleration, so all processing is performed by the CPU. The time

to load the web pages on QEMU with the VMV is essentially the same as without it.

This is true whether the tests are done with or without user activity. Hence, we conclude

that the performance overhead of the VMV is negligible.

4.4 PayPal Decoy Analysis

The PayPal monitor relies on the time differences recorded by the BotSwindler moni-

toring server and the PayPal service for a user’s last login. The last login time displayed

by the PayPal service is presented with a granularity of minutes. This imposes the con-

straint that we must allow for at least one minute of time between the PayPal monitor,

which operates with a granularity of seconds, and the PayPal service times. In addition,

we have observed that there are slight deviations between the times that can likely be at-

tributed to time synchronization issues and latency in the PayPal login process. Hence,

it is useful to add additional time to the threshold used for triggering alerts (we make it

longer than the minimum resolution of one minute).

Another parameter that influences the detection rate is the frequency at which the

monitor polls the PayPal service. Unfortunately, it is only possible to obtain the last lo-

gin time from the PayPal service, so we are limited to detecting a single attack between

polling intervals. Hence, the more frequent the polling, the greater the number of attacks

on a single account that we can detect and the quicker an alert can be generated after an

account has been exploited. However, the fact that we must allow for a minimum of one

minute between the PayPal last login time and the BotSwindler monitor’s, implies we

must consider a significant tradeoff. The more frequent the polling, the greater the like-

lihood is for false negatives due to the one minute window. In particular, the likelihood

of a false negative is:

PFN =

length of window

polling interval
.

Table 3. PayPal decoy false negative likelihoods.

Polling Frequency False Negative Rate

.5 hour .0417

1 hour .0208

24 hour .0009

Table 3 provides examples of false negative likelihoods for different polling fre-

quencies using a 75 second threshold. These rates assume only a single attack per

polling interval. We rely on this threshold because we experimentally determined that

it exhibits no false positives. For the experiments described in Sect. 4.5, we use the 1

hour polling frequency because we believe it provides an adequate balance (the false

negative rate is relatively low and the alerts are generated quickly enough).



BotSwindler 15

4.5 Detecting Real Malware with Bait Exploitation

To demonstrate the efficacy of our approach, we conducted two experiments using

BotSwindler against crimeware found in the wild. For the first experiment, we injected

Gmail and PayPal decoys, and for second, we used decoy banking logins. The exper-

iments relied on Zeus because it is the largest botnet in operation. Zeus is sold as a

crimeware kit allowing malicious individuals to create and configure their own unique

botnets. Hence, it functions as a payload dissemination framework with a large number

of variants. Despite the abundant supply of Zeus variants, many are no longer functional

because they require active command and control servers to effectively operate. This re-

quirement gives Zeus a relatively short life span because these services become inactive

(e.g., they are on a compromised host that is discovered and sanitized). To obtain active

Zeus variants, we subscribed to an active feed of binaries at the Swiss Security blog,

which has a Zeus Tracker [6] and Offensive Computing 8.

In our first experiment, we used 5 PayPal decoys and 5 Gmail decoys. We deliber-

ately limited the number of accounts to avoid upsetting the providers and having our

access removed. After all, the use of these accounts as decoys requires us to contin-

uously poll the servers for unauthorized logins as described in Sect. 4.4, which could

become problematic with a large number of accounts. To further limit the load on the

services, we limited the BotSwindler monitoring to once every hour.

We constructed a BotSwindler sandbox environment so that any access to www.

paypal.com would be routed to a decoy website that replicates the look-and-feel of

the true PayPal site. This was done for two reasons. First, if BotSwindler accessed the

real PayPal site, it would be more difficult for the monitor to differentiate access by the

simulator from an attacker, which could lead to false positives. More importantly, host-

ing a phony PayPal site enabled us to control attributes of the account (e.g., balance and

verified status) to make them more enticing to crimeware. We leveraged this ability to

give each of our decoy accounts unique balances in the range of $4,000 - $20,000 USD,

whereas in the true PayPal site, they have no balance. In the case of Gmail, the simula-

tor logs directly into the real Gmail site, since it does not interfere with monitoring of

the accounts (we can filter on IP) and there is no need to modify account attributes.

The decoy PayPal environment was setup by copying and slightly modifying the

content from www.paypal.com to a restricted lab machine with internal access only.

The BotSwindler host machine was configured with NAT rules to redirect any access

directed to the real PayPal website to our test machine. The downside of using this setup

is that we lack a certificate to the www.paypal.com domain signed by a trusted

Certificate Authority. To mitigate the issue, we used a self-signed certificate that is

installed as a trusted certificate on the guest. Although this is a potential distinguishing

feature that can be used by malware to detect the environment, existing malware is

unlikely to check for this. Hence, it remains a valid approach for demonstrating the use

of decoys to detect malware in this proof of concept experiment. The banking logins

used in the second experiment do not have this limitation, but they may not have the

same broad appeal to attackers that make PayPal accounts so useful.

The experiments worked by automating the download and installation of individ-

ual malware samples using a remote network transfer. For each sample, BotSwindler

8 http://www.offensivecomputing.net

www.paypal.com
www.paypal.com
www.paypal.com
www.paypal.com
http://www.offensivecomputing.net
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conducted various simulations designed from the VMSim language to contain inject

actions, as well as other cover actions. The simulator was run for approximately 20 min-

utes on each of the 116 binaries that were tested with the goal of determining whether

attackers would take and exploit the bait credentials. Over the course of five days of

monitoring, we received thirteen alerts from the PayPal monitor and one Gmail alert.

We ended the study after five days because the results obtained during this period were

enough to convince us the system worked9. The Gmail alert was for a Gmail decoy ID

that was also associated with a decoy PayPal account; the Gmail username was also a

PayPal username and both credentials were used in the same workflow (we associate

multiple accounts to make a decoy identity more convincing). Given that we received

an alert for the PayPal ID as well, it is likely both sets of credentials were stolen at the

same time. Although the Gmail monitor does provide IP address information, we could

not obtain it in this case. This particular alert was generated because Gmail detected

suspicious activity on the account and locked it, so the intruder never got in.

We attribute the fewer Gmail alerts to the economics of the black market. Although

Gmail accounts may have value for activities such as spamming, they can be purchased

by the thousands for very little cost10 and there are inexpensive tools that can be used

to create them automatically. Hence, attackers have little incentive to build or purchase

a malware mechanism, and to find a way to distribute it to many victims, only to net a

bunch of relatively valueless Gmail accounts. On the other hand, high-balance verified

PayPal accounts represent something of significant value to attackers. The 2008 Syman-

tec Global Internet Security Threat Report [27] lists bank accounts as being worth $10-

$1000 on the underground market, depending on balance.

For the PayPal alerts that were generated, we found that some alerts were triggered

within an hour after the corresponding decoy was injected, where other alerts occurred

days after. We believe this variability to be a consequence of attackers manually testing

the decoys rather than testing through some automatic means. In regards to the quantity

of alerts generated, there are several possible explanations that include:

– as a result of the one-to-many mapping between decoys and binaries, the decoys

are exfiltrated to many different dropzones where they are then tested
– the decoy accounts are being sold and resold in the underground market where first

the dropzone owner checks them, then resell them to others, who then resell them

to others who check them

While the second case is conceivable for credentials of true value, our decoys lack

any balance. Hence, we believe that once this fact is revealed to the attacker during

the initial check, the attackers have no reason to keep the credentials or recheck them

(lending support for the first case). We used only five PayPal accounts with a one-to-

many mapping to binaries, making it impossible to know exactly which binary triggered

the alert and which scenario actually occurred. We also note that the number of actual

attacks may be greater than what was actually detected. The PayPal monitor polls only

once per hour, so we do not know when there are multiple attacks in a single hour.

9 We ended the study after 5 days, but a recent examination of the monitoring logs revealed

alerts still being generated months after.
10 We have found Gmail accounts being sold at $20 per 1000.
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Hence, the number of attacks we detected is a lower bound. In addition, despite our

efforts to get active binaries, many were found to be inactive, some cause the system to

fail, and some have objectives other than stealing credentials.

In the second experiment, we relied on several bank accounts containing balances

over $1,000 USD. In contrast with the PayPal experiments, this experiment relied on an

actual bank website with authentic SSL certificates. The bank account balances were

frozen so that money could not actually be withdrawn. We ran the simulator for approx-

imately 10 minutes on 59 new binaries. Over the course of five days of monitoring, we

received 3 alerts from the collaborating financial institution. The point of these exper-

iments is to show that decoy injection can be useful tool for detecting crimeware that

can be difficult to detect through traditional means. These results validate the use of

financial decoys for detecting crimeware. A BotSwindler system fully developed as a

deployable product would naturally include many more decoys and a management sys-

tem that would store information about which decoy was used and when it was exposed

to the specific tested host.

5 Applications of BotSwindler in an Enterprise

Beyond the detection of malware using general decoys, BotSwindler is well suited for

use in an enterprise environment where the primary goal is to monitor for site-specific

credential misuse and to profile attackers targeting that specific environment. Since the

types of credentials that are used within an enterprise are typically limited to business

applications for specific job functions, rather than general purpose uses, it is feasible

for BotSwindler to provide complete test coverage in this case. For example, typical

corporate users have a single set of credentials for navigating their company intranet.

Corporate decoy credentials could be used by BotSwindler in conducting simulations

modeled after individuals within the corporation. These simulations may emulate sys-

tem administrative account usage (i.e., logging in as root), access to internal databases,

editing of confidential documents, navigating the internal web, and other workflows

that apply internally. Furthermore, software monocultures with similar configurations,

such as those found in an enterprise, may simplify the task of making a single instance

of BotSwindler operable across multiple hosts.

Within the enterprise environment, BotSwindler can run simulations on a user’s sys-

tem when it is idle (e.g., during meetings, at night). Although virtual machines are com-

mon in enterprise environments, in cases where they are not used, they can be created

on demand from a user’s native environment. One possible application of BotSwindler

is in deployment as an enterprise service that runs simulations over exported copies of

multiple users’ disk images. In another approach, a user’s machine state could be syn-

chronized with the state of a BotSwindler enabled virtual machine [31]. In either case,

BotSwindler can tackle the problem of malware performing long-term corporate recon-

naissance. For example, malware might attempt to steal credentials only after they have

been repeatably used in the past. This elevates the utility of BotSwindler from a general

malware detector to one capable of detecting targeted espionage software.

The application of BotSwindler to an enterprise would require adaptation for site-

specific things (e.g, internal URLs), but use of specialized decoys does not preclude
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the use of general decoys like those detailed in Sect. 3.3. General decoys can help the

organization identify compromised internal users that could be, in turn, the target of

blackmail, either with traditional means or through advanced malware [32].

6 Limitations and Future Work

Our approach of detecting malware relies on the use of deception to trick malware

to capture decoy credentials. As part of this work, we evaluated the believability of

the simulations, but we did so in a limited way. In particular, our study measured the

believability of short video clips containing different user workflows. These types of

workflows are adequate for the detection of existing threats using short-term deception,

but for certain use cases (such as the enterprise service) it is necessary to consider long-

term deception, and the believability of simulation command sequences over extended

periods of time. For example, adversaries conducting long-term reconnaissance on a

system may be able to discover some invariant behavior of BotSwindler that can be

used to distinguish real actions from simulated actions, and thus avoid detection. To

counter this threat, more advanced modeling is needed to be able to emulate users over

extended periods of time, as well as a study that considers the variability of actions over

time. For long-term deception, the types of decoys used must also be considered. For

example, some malware may only accept as legitimate those credentials that it has seen

several times in the past. We can have “sticky” decoy credentials of course, but that

negates one of their benefits (determining when a leak happened).

Malware may also be able to distinguish BotSwindler from ordinary users by at-

tempting to generate bogus system events that cause erratic system behavior. These can

potentially negatively impact a simulation and cause the simulator to respond in ways

a real user would not. In this case, the malware may be able to distinguish between

authentic credentials and our monitored decoys. Fortunately, erratic events that result in

workflow deviations or simulation failure are also detectable by BotSwindler because

they result in a state that cannot be verified by the VMV. When BotSwindler detects

such events, it signals the host is possibly infected. The downside of this strategy is

that it may result in false positives. As part our future work we will investigate how to

measure and manage this threat using other approaches that ameliorate this weakness.

7 Conclusion

BotSwindler is a bait injection system designed to delude and detect crimeware by forc-

ing it to reveal itself during the exploitation of monitored decoy information. It relies

on an out-of-host software agent to drive user-like interactions in a virtual machine

aimed at convincing malware residing within the guest OS that it has captured legiti-

mate credentials. As part of this work we have demonstrated BotSwindler’s utility in

detecting malware by means of monitored financial bait that is stolen by real crimeware

found in the wild and exploited by the adversaries that control that crimeware. In an-

ticipation of malware seeking the ability to distinguish simulated actions from human

actions, we designed our system to be difficult to detect by the underlying architecture

and the believable actions it generates. We performed a computational analysis to show
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the statistical similarities of simulations to real actions conducted. To demonstrate the

believability of the simulations by humans, we conducted a Turing Test that showed

we could succeed in convincing humans about 46% of the time. Finally, Botwindler

has been shown to be an effective and efficient automated tool to deceive and detect

crimeware.
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