
F3ildCrypt: End-to-End Protection of Sensitive

Information in Web Services

Matthew Burnside and Angelos D. Keromytis

Department of Computer Science
Columbia University in the City of New York

{mb, angelos}@cs.columbia.edu

Abstract. The frequency and severity of a number of recent intrusions
involving data theft and leakages has shown that online users’ trust,
voluntary or not, in the ability of third parties to protect their sensitive
data is often unfounded. Data may be exposed anywhere along a corpora-
tion’s web pipeline, from the outward-facing web servers to the back-end
databases. The problem is exacerbated in service-oriented architectures
(SOAs) where data may also be exposed as they transit between SOAs.
For example, credit card numbers may be leaked during transmission to
or handling by transaction-clearing intermediaries.
We present F3ildCrypt, a system that provides end-to-end protection
of data across a web pipeline and between SOAs. Sensitive data are
protected from their origin (the user’s browser) to their legitimate final
destination. To that end, F3ildCrypt exploits browser scripting to enable
application- and merchant-aware handling of sensitive data. Such tech-
niques have traditionally been considered a security risk; to our knowl-
edge, this is one of the first uses of web scripting that enhances overall
security.Our approach scales well in the number of public key operations
required for web clients and does not reveal proprietary details of the log-
ical enterprise network. We evaluate F3ildCrypt and show an additional
cost of 40 to 150 ms when making sensitive transactions from the web
browser, and a processing rate of 100 to 140 protected fields/second on
the server. We believe such costs to be a reasonable tradeoff for increased
sensitive-data confidentiality.

1 Introduction

Recent intrusions resulting in data leakages [20, 3] have shown that online users
simply cannot trust merchants to protect sensitive data. Security incidents and
theft of private data are frequent, often in spite of the best intentions of corporate
policy, faithful compliance to standards and best practices, and the quality of
security/IT personnel involved. Data may be exposed anywhere along a web-
driven pipeline, from the outward-facing web servers to the back-end databases,
so security personnel must protect a wide front. Furthermore, in service-oriented
architectures (SOAs), data may also be exposed as they transit between SOAs,
and, of course, the remote SOAs must also be configured and administered safely.

Data leakage can be very expensive to the parties involved. It was recently
reported that an attacker compromised the networks of clothing retailer TJ



Maxx and stole credit card information for 45.6 million customers, dating back
to December 2002 [20]. It is estimated that this breach will cost TJ Maxx ap-
proximately $197 million. Another attacker stole 4.2 million credit card numbers
from grocery store chain Hannaford [3] with an unknown cost to the company,
though a recent study [17] estimated an average cost of $197 per compromised
customer record.

For a corporation to safeguard sensitive user information, it must be pro-
tected in an end-to-end fashion [25], in transit from the web browser to the
back-end databases, and during storage at the database. Protecting the back-
end databases may come in the form of legal [1] or technical [11, 8] protection.
F3ildCrypt focuses on the technical protection of data in transit. While a pro-
tocol like SSL provides adequate protection for data on the wire, it provides no
protection for transitions. Even with SSL protection between a web browser and
web server, and between the web server and back-end database, sensitive data
may still be revealed during the transition across the web server.
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Credit card 
processor
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Web browser
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Fig. 1. A simple e-commerce server pipeline.

Consider a simple e-commerce website for a widget store, as in Figure 1.
The website uses an Asynchronous Javascript and XML (Ajax)-based shopping
cart [16] and XML-formatted content, served from PHP-based business logic. All
customer communication with the website takes place over SSL. Customer data,
including name, address, and order history are processed by the business logic
and stored in a back-end MySQL database. As new orders for widgets arrive, the
business logic transmits order information to the website’s credit card processor.

An order consists of an XML document1 containing the customer’s name,
address, email address, a list of each type of widget to be purchased, and the
customer’s credit card details. Note that each field is useful to only a subset of

1 The choice of XML is not integral to our scheme; we can just as easily use JSON
or any other data encoding/representation. XML was selected for convenience in
prototyping, and because of its wide use in SOA environments.



applications in the website pipeline. That is, multiple machines have access to
data for which they have no need – a violation of the principle of least privilege
[26]. For example, there is no reason to expose the credit card data to the web
server – in fact, it should only be revealed to the credit card processor – and there
is no reason to reveal the customer’s email address to the purchasing database.

To use this website safely, a customer must trust that both the widget store
and the credit card processor are taking appropriate steps to protect his credit
card information. Additionally, as far as the user is concerned, any protection
derived from the SSL session is lost in the pipeline downstream from the web
server, since the SSL tunnel ends at the web host. There is no guarantee to the
customer or to the corporation that the downstream machines are not currently
compromised and that they are suitably protected against future compromise
(since downstream machines may be located in SOAs operated by third-party
corporations).

The goal of F3ildCrypt is to guarantee that data are encrypted end-to-end,
as they traverse an SOA and its children SOAs. F3ildCrypt is based around
three components: an XML gateway, an in-line proxy re-encryption engine [7],
and a Javascript policy and Java applet cryptographic engine.

We use an Ajax-based approach where fields are encrypted at the customer’s
web browser. In the straightforward approach, this would require that the Ajax
application be bundled with certificates containing public keys for the inter-
nal web-pipeline components, so it can encrypt the information appropriately.
However, this approach may not be appealing to a corporate entity, since it re-
quires, for example, revealing the name and public key of the corporation’s credit
card processor. In general, it exposes the internal logic of the enterprise (includ-
ing external business relationships, processing intermediaries, and the internal
pipelines, which may change at any time) to the customer. A key contribution of
this work is to use proxy re-encryption at the gateway to map fields encrypted by
the user to the individual internal components or partner SOAs, without expos-
ing clear-text at the gateway, and without revealing those partner relationships
to the end-user.

Ajax-like techniques (and, more generally, web browser scripting) have long
been considered a security risk, for good reasons. To our knowledge, our approach
is one of few that enhances overall security through use of such techniques.
Although the use of public key cryptography inevitably increases the overall
latency and processing cost of any given web transaction, we experimentally
demonstrate that the costs in this case are reasonable. Furthermore, these costs
need only be incurred when sensitive information is being transmitted; in our
widget-store testbed, the costs are only incurred when the user makes a purchase.
The preceding portion of the session, while the user is browsing in the store, does
not incur any additional performance impact.



2 Related work

Proxy re-encryption [9, 7] allows a third-party to transform a ciphertext for Alice
into a ciphertext for Bob, without revealing the plaintext to the third party.

Consider Alice, with key pair (pkA, skA), and Bob with key pair (pkB, skB).
A re-encryption key from Alice to Bob rkA→B has the following property for all
plaintext P :

pkB(P ) = rkA→B(pkA(P )) (1)

If, for example, Alice wishes to temporarily re-direct her encrypted email to Bob,
but she does not wish to reveal her secret key, she can generate a re-encryption
key rkA→B and deliver that key to a proxy. (See [7] for the details on generating
this key; it is a function of Alice’s private key and Bob’s public key.) The proxy
can then re-encrypt messages destined for Alice so that Bob may read them.
The plaintext is never revealed to the proxy.

The authors in [7] demonstrate a unidirectional, single-hop scheme, while the
scheme proposed in [9] is bidirectional and multi-hop. Meaning, essentially, that
rkA→B = rkB→A, and a ciphertext can be re-encrypted from Alice to Bob to
Carol. The algorithm from [7] is partially implemented in the JHU-MIT Proxy
Re-cryptography Library (PRL) [5], which we use in our prototype.

XML is fast becoming a standard for document transfer on the web, and
there is a body of work on securing those documents. Element-level encryption
of XML fields was first proposed by Maruyama and Imamura [24]. There are now
several XML-based firewalls on the market including the Cisco ACE XML Gate-
way [4] and the IBM XS40 Security Gateway [6]. These devices allow field-level
transforms, including cryptographic primitives, of XML content as it traverses
the firewall. Appliances like these provide high performance, but do not provide
end-to-end protection of the individual fields.

There have been a number of proposals for XML-based access control systems
[14, 22, 15]. One of the most popular is the eXtensible Access Control Markup
Language (XACML) [2]. It provides XML-based standards for defining policies,
requests, and corresponding responses. An XACML policy consists of a list of
subjects, actions and resources, followed by a list of rules for which subjects may
apply which actions to which resources.

W3bCrypt [28] first introduced the notion of end-to-end encryption of data
in a web pipeline. The W3bCrypt system consists of a Mozilla Firefox exten-
sion that enables application-level cryptographic protection of web content. Web
content is encrypted or signed in the browser before being delivered to the web
application. This provides field-level end-to-end protection for user data, but
does not protect the corporate network from information revealed by the key
distribution. That is, in order to use W3bCrypt across an entire web pipeline,
including multiple possible calls to external SOAs, the logical architecture of
the server network must be revealed to the client in the form of pairwise key
sharing. By providing this protection, F3ildCrypt may be viewed as a successor
to W3bCrypt.

Li et al. use automaton segmentation [21] to explore privacy notions in dis-
tributed information brokering systems. The authors model global access control



policies as a non-deterministic finite automata, and divide those automata into
segments for evaluating network components. The automaton segmentation sys-
tem considers privacy for users, data, and meta-data, but does not consider
privacy notions with respect to the logical network layout and corporate inter-
actions between service providers.

Sun Microsystems has implemented the Java WSDP 1.5 XWS-Security Frame-
work [23] to assist programmers in securing web services. However, this scheme
does not extend to the client (browser). Singaravelu and Pu [27] demonstrate a
secure web services system based on the WS-Security framework. The key dis-
tribution mechanism used by this system requires pairwise shared keys between
endpoints, potentially revealing the internal logical architecture and SOA de-
pendencies. Chafle et al. [12] use data flow constraints to protect web services,
but this requires complete, centralized control of all SOAs involved.

3 Architecture

In this section, we describe our network and threat models, and our design
requirements. We then examine several design alternatives, before explaining
the overall F3ildCrypt architecture.

3.1 Network model

We consider service-oriented architecture (SOA)-style networks where external
requests to the network have a single entry point and request-handling takes the
form of a tree. A single parent SOA may make requests on multiple child SOAs in
the course of processing a request.The SOAs may each operate under different
administrative domains, with varying legal and corporate policies toward the
privacy and protection of data traversing their networks. There may also be
political, corporate, or technical pressure to prevent disclosure of the logical
architecture of each SOA, and the identities of their children SOAs.

3.2 Threat model

A corporation whose business model requires handling sensitive user information
(e.g., credit cards, Social Security numbers, etc.) has both financial and political
incentives to protect those data as they traverse its network. There are commonly
used mechanisms, like SSL, for protecting the data point-to-point, but this does
not protect against data leakage at compromised intermediate hosts.

Thus, our threat model encompasses large-scale networks of inter-operating
SOAs where multiple internal hosts or networks may be compromised. These
nodes may cooperate to extract and reveal data from transient information flows.
We focus particularly on those information flows containing sensitive data related
to, e.g., identity theft. Our approach does not protect against the compromise
of a node that legitimately has the need to view a specific piece of sensitive
information.



Additionally, the logical architecture of the corporate network, along with
any SOA peering agreements, is sensitive. Information of this nature should be
protected from disclosure.

3.3 Requirements

Our goal is to provide XML-field granularity end-to-end protection of data trans-
mitted from a web browser to each field’s destination end-host within the web
pipeline of an e-commerce site. The web pipeline may encompass multiple re-
mote SOAs, and the end-to-end property must hold across SOA boundaries.
Additionally, the confidentiality of the logical internal architecture of each SOA
must be respected. That is, no architecture details should be disclosed to the
web clients or across parent or children SOA boundaries.

3.4 Design alternatives

An XML firewall, like those marketed by IBM [6] or Cisco [4], or a similar proxy,
sited at an SOA’s network edge, can provide some protection. The proxy or
firewall encrypts individual fields of each document to the fields’ destination
host within the SOA. However, this is not an end-to-end solution and an end-
user has no way of verifying that an XML firewall or proxy is in place, let alone
operating correctly. The customer must simply trust the SOA beyond the narrow
confines of the commercial transaction.

Another approach is to generate a public key pair at each host in the web
pipeline, use a trusted third party (VeriSign, GeoTrust, etc.) to sign certificates
for each, and deliver the certificate set to each web browser or SOA client. In the
event that a document containing fields with sensitive data must be delivered to
the website, the web browser (or a browser-embedded crypto engine) can then
encrypt each field directly to its destination end host.

There are several serious flaws in this design. If the e-commerce site links
to external SOAs, the keys for each host in each external SOA must also be
delivered to the web client. Thus, this solution does not necessarily scale well in
the number of certificates. As more SOAs become involved, a cache of hundreds
or thousands of certificates would have to be provided to each new web client,
and the certificate caches for existing web clients would have to be updated
each time the internal architecture of the SOA or any of its dependent SOAs
changed. This solution also has the unfortunate consequence of revealing details
to the end user (and thus to competitors) about the logical architecture of the e-
commerce site and its SOA partners. By collecting and correlating the certificate
sets, an adversarial client may be able to identify individual hosts in an SOA.
Furthermore, this technique reveals the identities of the SOA partners. These
details may encompass trade secrets and other confidential information.

3.5 F3ildCrypt Architecture

Our proposed solution is based on the technique of proxy re-encryption. Each
SOA publicizes a certificate containing a public key, called the external key, pkE .



This key is used by the SOA’s clients, either web browsers or other SOAs. Before
sending a document containing sensitive data fields to an SOA, a client cryp-
tographically transforms each field containing sensitive data, using the external
key. The client chooses which fields to transform based on an XACML client
policy delivered from the SOA.

Meanwhile, each host or application in the SOA has an associated public key
pair. This set of public keys is the internal key set pkI0 ...pkIn

. These keys are
used for communication internal to the SOA.

The external key pkE is generated at a host called the external-key holder.
The public keys of the internal applications pkI0 ...pkIn

are delivered to this
host and used, in concert with the external secret key skE to generate the re-
encryption keys rkE→I0 ...rkE→In

, as in [7]. The fundamental property of proxy
re-encryption holds that, for any plaintext P and internal application j:

pkIj
(P ) = rkE→Ij

(pkE(P )) (2)

The re-encryption keys are installed at a host called the proxy re-encryption

engine. Fields from documents arriving at the SOA have been encrypted under
pkE and are handled by the proxy re-encryption engine. The latter re-encrypts
each field under re-encryption key rkE→Ij

, where j is the individual host within
the web pipeline designated to process that field, based on a XACML server
policy. The plaintext is not revealed until it arrives at the intended destination
host.

This solution requires an SOA to deliver to its clients a certificate containing
only the single external key pkE , avoiding the problem of sending what could be
a set of hundreds or thousands of certificates. Furthermore, no logical infrastruc-
ture details are revealed to the client. With the exception of the external-key
holder, any subset of intermediate hosts between the client and end-host – includ-
ing the proxy re-encryption engine itself – can be compromised without leaking
any sensitive user data.

Compromise of the external-key holder, however, could be dangerous, requir-
ing that special care be taken to secure this machine. Luckily, the bandwidth
requirements on the external-key holder are extremely low. It is only used to
generate the re-encryption keys so, after initial setup, its use is only required
when adding new internal hosts. Thus, in the extreme, it is possible to keep the
external-key holder offline at all times, and distribute keys through it by hand.

4 Implementation

Our implementation of F3ildCrypt consists of a Javascript-based policy engine
and a Java-based cryptography engine delivered to each web browser. The web
server connects to the server using SSL. On the server side, we provide a Python-
based XML gateway with in-line proxy re-encryption engine for each SOA, and a
Python-based XML proxy at each internal application. These proxies store the
key pairs for their respective applications, and perform decryption and XML
unwrapping on behalf of the application.



The Java cryptography engine and in-line proxy re-encryption engine use
the proxy re-encryption algorithm described in [7]. This algorithm is based on
bilinear maps [10], and is partially implemented in the JHU-MIT Proxy Re-
cryptography Library (PRL) [5]. For our implementation, we ported the PRL to
both Java and Python. We note that the JHU-MIT PRL supports only single-
hop re-encryption, thus limiting the recursive depth of our implementation until
such time as an implementation of the multi-hop algorithm from [9] is available.

F3ildCrypt setup in an SOA begins by designating an offline host as the
external-key holder and generating the external key pair. The public key pkE

is signed by a trusted third party and the certificate is made available to the
public. This is the key with which all clients will encrypt sensitive data sent to
the SOA.

At each application inside the SOA we install an XML proxy which serves
as that application’s entry point into the F3ildCrypt network. This proxy stores
the internal key pair (pkIj

, skIj
) associated with the application. Any documents

with encrypted fields arriving at the application are intercepted and decrypted
by the XML proxy before delivery to the application proper.

Each internal public key is delivered in offline fashion (hand-delivered via
USB key, for example) to the external-key holder, where the re-encryption keys
are generated. The re-encryption key for proxy j is rkE→j and it is a function
of the external secret key skE and pkIj

. The re-encryption keys are then hand-
delivered to the proxy re-encryption engine.

The proxy re-encryption engine operates as a client to the XML gateway.
The XML gateway stores a set of XSLT stylesheets. Each stylesheet describes
the transformation to be applied to a given field type in a document. The XSLT
implementation is extended with the proxy re-encryption function, so applying
the cryptographic transformations becomes an application of a stylesheet, as in
W3bCrypt [28]. The specific stylesheets are chosen based on a system adminis-
trator-defined XACML policy.

The XML gateway uses the XSLT transforms to re-encrypt designated fields,
targeting them to the appropriate internal hosts. It processes incoming doc-
uments containing fields encrypted under pkE . These fields are re-encrypted
under the various re-encryption keys rkE→I0 ...rkE→In

, in accordance with the
XACML policy, before forwarding the document on to the web pipeline.

When a client connects to the SOA over SSL, the SOA responds with the
contents of an Ajax web application, implementing, for example, a shopping cart
application. Packaged along with the application is the Javascript-based policy
engine and an applet containing the Java cryptography engine. At the browser,
the package then downloads from the SOA an XACML policy document to be
applied to uploaded documents, and a certificate store containing the signed cer-
tificate for the SOA’s external key. When, in the course of user interaction with
the application, an XML document must be uploaded, the Javascript engine
applies the XACML client policy. This policy describes which fields of the doc-
ument should be encrypted. The cryptography engine encrypts the designated
fields with the external key, and then the document is uploaded to the SOA.



Now consider the case of a parent SOA, with external key pkEp
making

requests on a child SOA with external key pkEc
. The child SOA implements the

F3ildCrypt architecture, with internal key pairs for its own internal applications.
As in the parent case, and given the appropriate proxy re-encryption algorithm,
XML documents arriving at the child SOA’s XML gateway are re-encrypted by
the proxy re-encryption engine.

To make use of the child SOA, the system administrator at the parent uses
the publicly known pkEc

and its secret key skEp
to generate a re-encryption key

rkp→c. Fields within a document sent to the parent SOA, but destined for the
child SOA, are re-encrypted under rkp→c at the parent XML gateway. When the
fields arrive at the child XML gateway, they may be re-encrypted again, to the
end-hosts within the child SOA.

4.1 Example

In this section we will describe a sample application of the F3ildCrypt archi-
tecture. It is based on the network for a small e-commerce site selling widgets,
called Widgets4Cheap. The site consists of a firewall, web server with business
logic, and back-end databases for marketing and purchases, as was shown in
Figure 1. Widgets4Cheap also makes use of an external credit card processor.

The website presents to the user a web page with a simple catalog and shop-
ping cart application, where the user may browse widgets and select items to
purchase. When the customer makes an order, the order is delivered to the web
server in the form of an XML document. An order consists of the customer’s
name, physical address, email address, a list and count of each model of widget
to be purchased, and the customer’s credit card information.

Customer data, including name, billing address, and order history are stored
in the purchasing database. The customer’s email address is stored in the mar-
keting database. As orders arrive, the business logic transmits order information
and credit card details to the website’s credit card processor.

Revealing the internal architecture of the Widgets network is undesirable, as
it may reveal business or trade secrets (this is exacerbated in more sophisticated
networks). Additionally, even with an SSL connection between the client and the
web server, the compromise of any internal host in the Widgets4Cheap pipeline
could be catastrophic to the company and its customers, since every internal
host, particularly the firewall and web server, has access to all the customer
information in transit.

To protect this network, we define a high-level security policy. The cus-
tomer’s billing address, and order details may only be revealed to the purchas-
ing database, while the email address may only be revealed to the marketing
database. The credit card information and total payment is revealed only to the
credit card processor.

Before implementing this policy, we deploy the F3ildCrypt infrastructure, as
shown in Figure 2. Co-located with each internal application is an XML proxy
which stores the key pair for that application. This XML proxy serves to decrypt
the incoming XML documents, and unwrap the XML as necessary. On a separate
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Fig. 2. Diagram of the network for Widgets4Cheap with F3ildCrypt installed.

offline machine (the external-key holder) the system administrator generates the
external key pair which will be presented to remote users. A certificate for this
key is signed by a third-party certificate authority. In the case of this example
implementation, this was an in-house certificate authority.

The external-key holder is then used to generate re-encryption keys for each
internal application and the credit-card processor, and these are delivered to the
XML gateway, thereby allowing the gateway to re-encrypt traffic to the internal
applications and credit-card processor SOA.

At the XML gateway we place a set of XACML policy files that describe the
transformations to be applied to documents in transit, an example rule of which
is shown in Figure 3. The XML gateway also contains a set of XSLT documents
for implementing those transforms, an example of which is shown in Figure 4.

Meanwhile, the Javascript policy engine and Java crypto engine applet are in-
corporated into the Ajax application viewed by customers, along with a XACML
client policy file and a certificate store containing the Widgets4Cheap external
key. After browsing the catalog and selecting his items, the customer makes
his purchase as in Figure 5. Before transmitting this document, the applica-
tion applies the XACML client policy. The XACML client policy file describes
which fields in the order document should be encrypted. A snippet from the
Widgets4Cheap client policy is shown in Figure 6. When the policy is evalu-
ated, the cryptography engine encrypts the necessary fields, resulting in a new,
field-encrypted order document.

When the now-transformed document arrives at the Widgets4Cheap website,



<rule ruleid="creditcard_transform" effect="permit">

...

<attributevalue datatype"string">

order/creditcard

</attributevalue>

...

</rule>

<obligation obligationid="reencrypt_on_transit" fulfillon="permit">

<attributeassignment attributeid="reencrypt" datatype="string">

ccn_reencrypt.xsl

</attributeassignment>

</obligation>

Fig. 3. A rule from the XACML server policy file. When the gateway receives an XML
document, the rule attempts to match the XPath order/creditcard. When this rule
fires, the obligation indicates that the XSLT transform ccn reencrypt.xsl should be
applied.

<xsl:template match="creditcard">

<xsl:copy-of

select="encrypt:reencrypt(., reencrypt_key[7]’)"/>

</xsl:template>

Fig. 4. An XSLT snippet for re-encrypting the credit card information. Demonstrates
usage of the XSLT extension function reencrypt(). It applies proxy re-encryption to
the matched XML field using the re-encryption key reencrypt key[7].

it is processed by the XML gateway/proxy re-encryption engine, which applies
the server XACML policy to determine which XSLT transforms to apply. The
XSLT transforms apply the proxy re-encryption to the document, re-targeting
the field encryptions that were originally applied by the client. The business logic
then processes the order, delivering the various XML fields to their intended
targets. The individual XML fields are intercepted by the XML proxies at each
application and decrypted before being passed on to the application proper. The
re-encrypted credit card information is passed to the credit-card processor, who
may recursively apply this system, distributing the received information through
its network.

5 Evaluation

We evaluated the performance of F3ildCrypt by measuring its impact on the
web browser clients, on the XML gateway, and on the XML proxies at each host.
We performed micro-benchmarks at the individual hosts, as well as throughput
measurements on the servers.

Our experimental setup consisted of the network described in Figure 2. Each
server application ran on a Dell PowerEdge 2650 Server, with a 2.0GHz Intel
Xeon processor, 1GB RAM, and 36GB Ultra320 SCSI hard drive. All machines



<order> <items>

<date>1 January 2008</date> <item>

<name>H. Simpson</name> <quantity>1</quantity>

<address> <detail>Big red widget</detail>

<street>742 Evergreen Ter.</street> <cost>69.96</cost>

<city>Springfield</city> </item>

<state>USA</state> <item>

<zip>12345</zip> <quantity>1</quantity>

</address> <detail>Blue suede widget</detail>

<email>homer@springfield.com</email> <cost>109.95</cost>

<creditcard> </item>

<payment>179.90</payment> </items>

<issuer>American Express</issuer> </order>

<number>1234-5678-1234-5678</number>

<expiration month="10" year="2010"/>

</creditcard>

Fig. 5. A purchase order for two pairs of widgets from Widgets4Cheap.

<rule ruleid="creditcard_rule" effect="permit">

...

<attributevalue datatype"string">

order/creditcard

</attributevalue>

...

</rule>

<obligation obligationid="encrypt_on_send" fulfillon="permit">

<attributeassignment attributeid="encrypt" datatype="string">

encrypt(key[n])

</attributeassignment>

</obligation>

Fig. 6. The XACML client rule, abridged for clarity and space. This rule and obligation
describes the action to be taken on the credit card section of the XML document:
encrypting it with a key obtained from the certificate store.

ran OpenBSD 4.2. and were linked via Gigabit Ethernet. The applications in-
cluded OpenBSD PF on the firewall, Apache 1.3.29/PHP 4.4.1 on the business
logic server, and MySQL 5.0.45 on the database servers.

The client ran on a MacBook Pro, with a 2.4 GHz Intel Core 2 Duo, 2 GB
RAM, and 150GB 5400 RPM Fujitsu hard drive. The machine used OS X 10.5.2
with Darwin kernel version 9.2.2. The web browsing platform installed on this
computer was Mozilla Firefox 2.0.0.13.

The extra work incurred on the web browsing client consists of applying
the XACML policy followed by application of the appropriate cryptographic
transformations. We used a Java port of the JHU-MIT Proxy Re-cryptography
Library [5], running as an applet in the browser, which implements the proxy re-
encryption scheme described in [7]. The Java cryptographic engine applet and
Javascript policy engine together are approximately 25KB. We measured the
performance of the client by encrypting multiple 128-byte fields, as shown in



Figure 7a. After processing, most XML documents increase in size between 10%
and 30%.
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Fig. 7. (a) Time (ms) to encrypt multiple 128-byte fields on the client. (b) Processing
time on a document containing a single field of 20 bytes. Shows the relative time
devoted to cryptography versus the XML and XACML processing.

The most common sizes for identity-related sensitive data (e.g., credit card
numbers, birth dates, etc.) are less than 1K, so the cost incurred at the browser
in these cases will range from 40 to 150 ms. Of course, this cost is only incurred
when sensitive data requiring encryption is actually transmitted.
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Fig. 8. (a) Re-encryption rate (fields/s) at the XML gateway vs. incoming field size.
As field size grows, the processing rate decreases. (b) Decryption rate at an XML proxy
vs. incoming field size.

The additional work incurred at the XML gateway consists of parsing the
incoming XML documents and applying proxy re-encryption; Figure 7b shows
the combined cost. We isolated the re-encryption cost per field in Figure 8a. An
XML proxy decrypts the encrypted fields from incoming documents; we isolated
the decryption cost at the XML proxy in Figure 8b.

These results show that fields from XML documents can be processed at



a rate of 100 to 140 fields/second, and the majority of the processing time is
dedicated to the re-encryption process. This time can be significantly improved
through software optimization; the JHU-MIT PRL is not optimized for execution
time. The re-encryption cost can be further substantially reduced through the
addition of a hardware cryptographic accelerator [19].

6 Discussion

The F3ildCrypt system is designed to assist an online entity in protecting its
users’ sensitive information. The user must not longer collectively trust the web
application, the back-end databases, and the system administrators with each
sensitive item he provides. Now, for that same item, he only has to trust its
intended destination.

F3ildCrypt is designed to assist the system administrators in making the end-
user’s trust well-founded. However, to provide further assurance to the user, this
approach may be combined with a P3P-like policy [13] working in concert with
a browser-based cryptography engine like W3bCrypt [28]. Additional protection
may come from obtaining a signature on the Ajax application itself from a trusted
third party. This trusted third party (e.g., the Better Business Bureau) would
certify that the Ajax is encrypting or protecting data to the correct recipients.
Regardless of the means, the user, or a trusted third party, must verify the
contents of the Ajax application and the associated policy.

For a motivated adversary attacking a F3ildCrypt-enabled system, note that
the external-key holder possesses the secret key corresponding to the external
public key. Whoever possesses of the secret key is capable of decrypting all
messages to that SOA, making the external-key holder a desirable target for
attackers. However, it is infrequently used and has low bandwidth requirements.
This machine can operate entirely offline, with the occasional generation of a
re-encryption key taking place via diskette or USB key.

We also note that, within the network of the F3ildCrypt-equipped SOA, like
in a traditional network, an adversary who has compromised an intermediate
machine may swap or replay fields, or otherwise modify documents as they pass
through that machine’s possession. F3ildCrypt does not prevent such attacks,
though they can be alleviated via timestamps and signatures on the individual
fields.

There is an attack on web browsing transactions that comes from transaction
generators. Transaction generators wait for users to log on to their accounts,
and then issue transactions on their behalf. Jackson et al. [18] propose as a
solution a form of confirmation page. This confirmation page can be integrated
with F3ildCrypt and the user-certification process described above to provide
additional protection to the user.



7 Conclusion

The F3ildCrypt system provides end-to-end protection to users and SOAs by
encrypting XML fields at the client web browser. The SOA protects its internal
architecture by using proxy re-encryption to re-target the XML fields at the
SOA edge. The processing cost at the web browser ranges from .5 to 1 second
when making sensitive transactions, and a processing rate of 100 to 140 XML
fields/second on the server, of which the latter could be easily improved through
software optimization and hardware acceleration.

Future work on F3ildCrypt includes integration of the proxy re-encryption
engine with the web browser itself, and extensions to the browser to assure the
user that the correct transformations have been applied.
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