
Designing Host and Network Sensors to Mitigate the Insider
Threat

Brian M. Bowen Malek Ben Salem Shlomo Hershkop
Angelos D. Keromytis Salvatore J. Stolfo

Department of Computer Science, Columbia University

Abstract

We propose a design for insider threat detection that combines an array of complementary
techniques that aims to detect evasive adversaries. We are motivated by real world incidents
and our experience with building isolated detectors: such standalone mechanisms are often
easily identified and avoided by malefactors. Our work-in-progress combines host-based user-
event monitoring sensors with trap-based decoys and remote network detectors to track and
correlate insider activity. We identify several challenges in scaling up, deploying, and validat-
ing our architecture in real environments.

1 Introduction

The annual Computer Crime and Security Survey for 2008 [1] surveyed 522 security employees
from US corporations and government agencies, finding that insider incidents were cited by 44
percent of respondents, nearly as high as the 49 percent that encountered a conventional virus in
the previous year. In general, there is an increasing recognition of the significance, scope and
cost of the malicious insider problem. Some state-of-the-art defenses focus on forensics analysis
and attribution after an attack has occurred using techniques such as sophisticated auditing [2]
and screen capture [3]. Other commercially available systems are designed to prevent, detect, and
deter insider attack. The ideal case is to devise systems that prevent insider attack. Policy-based
mechanisms and access control systems have been the subject of study for quite some time but
have not succeeded in solving the problem of preventing insider abuse. Monitoring, detection, and
mitigation technologies are realistic necessities.

Detection systems have been designed to identify specific attack patterns or deviations from known,
long-term user behavior. Such techniques are typically used as part of standalone mechanisms
rather than in an integrated defense architecture. For that reason, the malicious behavior detection-
based insider defenses suffer from several problems.

1



• Since behavior is a noisy approximate of user intent in the absence of sufficient contextual
information about the user and the overall environment, such systems are typically tuned
to minimize false alerts by being less stringent about what is considered malicious. While
reducing the administrators’ workload and the users’ irritation factor, such tuning may allow
some malicious behavior to go undetected. As with many probabilistic detection mecha-
nisms. The tradeoffs inherent in tuning systems are poorly understood.

• Since the relationship between behavior and intent is hard to determine, and alarms may be
false, it is difficult to confidently take some action (whether automated or at the human level)
in response to an alert.

• By operating as standalone mechanisms, it is easy for an adversary with some knowledge of
their existence to either evade or even disable them. In fact, we see an increasing number
of malware attack that disable defenses such as antivirus software and host sensors prior to
undertaking some malicious activity [4].

To address the malicious insider problem, we posit that systems must leverage multiple comple-
mentary and mutually supportive techniques to detect and deter intentionally malicious adversaries.
We direct our efforts against inside attackers that have some, but perhaps not complete knowledge
of the enterprise environment. In this article, we do not address the important problem of malicious
system administrators who have control over all defensive systems. This remains a particularly in-
teresting open problem.

The first component in our architecture is a decoy document generation system to deceive an insider
by leveraging uncertainty of the authenticity of information that may be accessed in an unautho-
rized manner. Our system generates realistic-looking documents that contain both decoy creden-
tials that are monitored for (mis)use, and stealthy embedded beacons that signal when the docu-
ment is opened. Beacons are embedded in documents using methods of deception and obfuscation
gleaned from studying malcode embedded in malicious documents as seen in the wild [5].

The network component integrates monitored network traps with the decoy document generation
component, and allows our system to isolate the activity of malicious users. These traps allow us
to follow “personalized” decoy credentials even after they leave the local environment. As with
honeypots [10] the misuse of the network traps guarantees an insider has misappropriated internal
information. The absconded information may even have been accessed in a way that has evaded
detection (and even forensic analysis) altogether. Nonetheless, our system can determine the time
and location of the leak through the use of decoys embedded in the content of the decoy document,
allowing further forensic investigation and damage assessment.

The host-based sensors we designed in our architecture, collectively named “RUU”, collect low-
level audit data from which we identify specific user actions. RUU profiles user actions to form a
baseline of normal behavior utilizing anomaly detection techniques to isolate behavior differences
over time. Subsequent monitoring for abnormal behaviors that exhibit large deviations from this
baseline signal a potential insider attack. We conjecture that the evidence provided by the host

2



sensor combined with other detection techniques will indicate insider activity that violates policy.
It is often noted that, on their own, anomaly detection systems have high levels of false positives.
Combining multiple views of the same event can dramatically reduce the number of false positives
associated with a malicious event [7].

In this article we:

• introduce and analyze a system that uses multiple sensors in a scalable fashion to leverage
context for detecting malicious insider activity;

• describe new lightweight sensors that model user actions on the host level;

• present a design for decoys that combines a number of methods and monitors, both internal
and external to an organization, to detect insider exploitation using ordinary-looking docu-
ments as bait.

• present a large-scale automated decoy creation and management system for deploying baited
documents that allow us to detect the presence (and, in some cases, identity) of malicious
insiders, or at least determine the existence of malicious insider activity. This provides a
means for ordinary users to deploy decoys on their hard drives without having to deploy and
configure sophisticated honeypots and sensors. Users are alerted by email when a decoy has
been touched on their laptops and personal computers.

• present a preliminary analysis of the overhead and effectiveness of the system in a realistic
environment.

2 Threat Model - Level of Sophistication of the Attacker

The architecture described in Section 3 relies on the use of decoys to deceive, confuse, and con-
found attackers, ultimately forcing them to expend far more effort to discern real information from
bogus information. To understand the capability of the various decoys we introduce, it is necessary
to first explore the various levels of attacker sophistication. We broadly define four monotonically
increasing levels of insider sophistication and capability that may be used to break through the
deception our decoys seek to induce. Some will have tools available to assist in deciding what is a
decoy and what is real. Others will only have their own observations and insights.

Low: Direct observation is the only tool available. The adversary largely depends on what can
be gleaned from a first glance. We strive to defeat this level of adversary with our beacon
documents, even though decoys with embedded beacons may be distinguished with more
advanced tools.

Medium: A more thorough investigation can be performed by the insider; decisions based on
other information can be made. For example, if a decoy document contains a decoy account

3



credential for a particular identity, an adversary may verify that the particular identity is
real or not by querying an external system (such as http://www.whitepages.com/).
Such adversaries will require stronger decoy information, possibly corroborated by other
sources of evidence.

High: Access to the most sophisticated tools is available to the attacker (e.g., super computers,
other informed people who have organizational information). The notion of the “Perfect
Decoy” described in the next section may be the only indiscernible decoy by an adversary of
such caliber.

Highly Privileged: Probably the most dangerous of all is the privileged and highly sophisticated
user. Such attackers will be fully aware that the system is baited and will employ sophis-
ticated tools to try to analyze, disable, and avoid decoys entirely. As an example of how
defeating this level of threat might be possible, consider the analogy with someone who
knows encryption is used (and which encryption algorithm is used), but still cannot break
the system because they do not have knowledge of an easy-to-change operational parameter
(the key). Likewise, just because someone knows that decoys are used in the system does
not mean they should be able to identify them all. Devising a hard-to-defeat scheme is the
principle we explore in the next section.

We further define insider threats by differentiating between Masqueraders (attackers who imper-
sonate another system user) and Traitors (attackers using their own legitimate system credentials)
who each have varying levels of knowledge. The masquerader is presumed to have less knowledge
of a system than the victim user whose credentials were stolen. The innocent insider who mis-
takenly violates policy is undoubtedly the largest population of insiders that we also target using
trap-based decoys.

3 Architecture

The architecture combines host-based user-event monitoring sensors with trap-based decoys and
remote network detectors as shown in Figure 1. The combination is designed to make it difficult
for insiders to avoid detection with low likelihood of mis-attribution. The architectural components
are described in detail in the sections that follow.

3.1 Decoy Document Distributor

One of the core components of the architecture is the Decoy Document Distributor (D3) System,
a web-based service for generating and distributing decoys. D3 can be used by registered users
to generate decoys for download, or as a decoy data source for the host and network compo-
nents.

4



The primary goal of a decoy is to detect malfeasance. Since no system is foolproof, D3 has been
built so that multiple overlapping signals may be automatically embedded in decoy documents to
increase the likelihood of detecting decoy misuse. Any alert generated by the decoy signals is an
indicator that some insider activity has occurred. Since the attacker may have varying levels of so-
phistication (as discussed in Section 3.3), a combination of techniques is used in decoy documents
to increase the likelihood that one will succeed in generating an alert. D3 generates decoys with
several means of detecting their misuse:

• embedded honeytokens, computer login accounts created that provide no access to valuable
resources, and that are monitored when (mis)used;

• an embedded “beacon” that alerts a remote server at Columbia, that we call SONAR.

• an embedded marker, to enable detection by the host-level or network decoy sensor.

These features are explored in the following sections.

Our current deployment of D3 is tailored for a university environment by both the type of doc-
uments and the bait within in them, but it can easily be adapted for other deployment environ-
ments (e.g., an arbitrary commercial enterprise) . Complete details of D3 including an evalu-
ation of decoy documents can be found in [12]. The reader is encouraged to visit the Decoy
Document Distribution (D3) website to evaluate our technology developed to date at: http:
//www.cs.columbia.edu/ids/RUU/Dcubed.

3.2 SONAR

SONAR is the alert-management system. Its primary role is to collect alerts triggered by host and
network monitors, and individual beacon signals generated by unauthorized opening of decoy doc-
uments downloaded by registered users. In response to signals it receives, it emits emails to the
registered users associated with the particular decoys. Depending on the type of decoy, some sig-
nals are sent directly from a decoy itself (as is the case with beacons), while others require SONAR
to poll other resources for information (i.e., credential monitoring). SONAR currently polls a
number of servers to monitor credential misuse including university authentication log servers and
mail.google.com for Gmail account misuse. In the case of Gmail accounts, custom scripts access
and parse the bait account pages to gather account activity information.

3.3 Decoys and Network Monitoring

The use of deception, or decoys, plays a valuable role in the protection of systems, networks, and
information. The first use of decoys in the cyber domain has been credited to Stoll [8, 9] and
detailed in the novel “The Cuckoos Egg.” Stoll’s methods included the use of bogus networks,
systems, and documents to gather intelligence on the attackers, who were apparently seeking state

5



Figure 1: Architecture

secrets. Among the many techniques described, he crafted “bait” files, bogus classified documents
that contained non-sensitive government information, and attached “alarms” to them so that he
would know if anyone accessed them. Our decoy system builds on that notion increasing the
scope, scale and automation of decoy generation and monitoring.

3.3.1 Perfectly Believable Decoys

In order to create decoys to bait insiders with various levels of knowledge and maximize the decep-
tion they induce, one must understand the core properties of a decoy. These properties guide the
design of systems that automate the generation and placement of trap-based decoys. The proper-
ties include conspicuousness, enticement, non-interference, variability, differentiable, detectability,
and believability [12]. In this article, we describe our efforts on maximizing the believability of
decoys, one of the fundamental properties required to snare an inside attacker.

A good decoy should make it difficult for an adversary to discern whether they are looking at an
authentic document from a legitimate source or if they are looking at a decoy. For concreteness, we
build upon the definition of “perfect secrecy” proposed in the cryptographic community [13] and
define a “perfect decoy” to be a decoy that is completely indistinguishable from one that is not. One
approach we use in creating decoys relies on a document marking scheme in which all documents

6



contain embedded markings such that decoys are tagged with HMACs (i.e., a keyed cryptographic
hash function) and non-decoys are tagged with indistinguishable randomness. Here, the challenge
of distinguishing decoys reduces to the problem of distinguishing between pseudorandom and ran-
dom numbers, a task proven to be computationally infeasible under certain assumptions about the
pseudorandom generation process. Hence, we claim these to be examples of perfect decoys and
the only attacker capable of distinguishing them is one with the key, perhaps the highly privileged
insider.

Decoys in Computer Security

Deception-based information resources that have no production value other than to attract

and detect adversaries (like those used by Stoll described in Section 3.3) are commonly

known as honeypots. Honeypots serve as effective tools to gather intelligence to under-

stand how attackers operate. Honeypots are considered to have low false positive rates

since they are designed to capture only malicious attackers, except for occasional mistakes

by innocent users. Spitzner described how honeypots can be useful for detecting insider

attack [10], in addition to the common external threats for which they are traditionally

known. He discusses the use of honeytokens, which he defines as “a honeypot that is not

a computer” [9], citing examples that include bogus medical records, credit card numbers,

and credentials, with descriptions of how they can be used to detect malicious insiders

[10, 9]. In current systems, the decoy/honeytoken creation is a laborious and manual pro-

cess requiring administrator intervention. In contrast, we propose the seeding of decoy

information (of various different types) throughout an operational system. Our work ex-

tends these basic ideas to an automated system of managing the creation and deployment

of these honeytokens. Yuill et al. [8, 11] extend the notion of honeytokens with a “honey-

file system” to support the creation of bait files, or as they define them, “honeyfiles.” The

honeyfile system is implemented as an enhancement to the Network File Server. The sys-

tem allows for any file within user file space to become a honeyfile through the creation of

a record associating a filename to userid. The honeyfile system monitors all file access on

the server and alerts users when honeyfiles have been accessed. This work does not focus

on the content or automatic creation of files, but does mention some of the challenges in

creating deceptive files (with respect to names) that we address as well.

As a prototype perfect decoy implementation,
we built a component into D3 for adding
HMAC markers into PDF documents. Markers
are added automatically using the iText API,
and inserted into the OCProperties section of
the document. The OCProperties section was
chosen because it can be modified on any PDF
without impact on how the document is ren-
dered, and without introduction of visual arti-
facts. The HMAC value itself is created using
a vector of words extracted from the content
of the PDF. The HMAC key is kept secret and
managed by D3, where it is also associated with
a particular registered host. Since the system
depends on all documents being tagged, an-
other component inserts random decoy markers
in non-decoy documents, making them indis-
tinguishable from decoys without knowledge
of the secret key.

3.3.2 Trap-based Decoys

Our trap-based decoys have an inherent prop-
erty of being detectable outside of a host, so
they do not require host monitoring nor suffer the performance burden characteristic of decoys
that require constant internal monitoring. This form of decoy is made up of “bait information”
such as online banking logins provided by a collaborating financial institution 1, login accounts
for online servers, and web based email accounts. In our current deployment we use Columbia
University student accounts and Gmail email accounts as bait, but these can be customized to any
set of monitored credentials. The trap-based decoys are managed by the D3 web service, thereby

1By agreement, the institution requested that its name be withheld.

7



enabling programmatic access to them from all registered web-enabled clients. The automation of
this service enables their distribution and deployment in large volume.

3.3.3 Beacon Decoys

Beacons are implemented to silently contact a centralized server when a document is opened, pass-
ing to the server a unique token that was embedded within the document at creation time. The
token is used to uniquely identify the decoy document and its association to the IP address of
the host accessing the decoy document. Additional data is collected, depending on the particular
document type and rendering environment used to view the beacon decoy document. The first
proof-of-concept beacons have been implemented in Word and PDF and are deployed through the
D3 website. The Word beacons rely on a stealthily embedded remote image that is rendered when
the document is opened. The request for the remote image signals SONAR that the document has
been opened. In the case of PDF beacons, the signaling mechanism relies on the execution of
Javascript within the document-rendering application.

The D3 web service generates many types of beacon decoys including receipts, tax documents,
medical reports and other common form-based documents with decoy credentials, realistic names,
addresses and logins, information that is familiar to all users. In contrast to the HMAC decoys, the
believability of these documents lies in the realism of the content within them.

As noted earlier, the believability of decoys depends on how indistinguishable they are from nor-
mal documents. In the case of beacons, the network connection of the beacon may be used as a
distinguishing feature. Hence, in their current form the utility of beacon decoys may be limited
to ensnaring only the least sophisticated attacker. We are currently investigating environments in
which it is possible to embed beacons in all documents, thereby making beacon decoys indistin-
guishable (modifying the document rendering application is a feasible option). Another potential
problem for beacons is that it is possible for the signaling mechanisms to fail or be subverted;
however, when combined with other mechanisms, we posit their use increases the likelihood of
detection.

3.4 Host-based Sensors

One of the key techniques employed by the architecture involves host-level monitoring of user-
initiated events. The host sensor serves two functions. The sensor is designed to profile a baseline
for the normal search behavior of a user. Subsequent monitoring for abnormal file search behaviors
that exhibit large deviations from this baseline signal a potential insider attack. The host sensor also
detects when decoy documents containing embedded markers are read, copied, or exfiltrated. The
goal of the host-level decoy sensor is to detect these malicious actions accurately and with negligi-
ble performance overhead. Abnormal user search events that culminate in decoy document access

8



are a cause for concern. A challenge to the user, such as asking one of a number of personalized
questions, may establish whether a masquerade attack is occurring. In Section 3.4.1, we present a
preliminary evaluation of this sensor.

Data and Evaluation

Research in insider attack is made difficult due to the lack of readily available insider at-

tackers or a complete set of realistic data they generate. For this reason, researchers must

resort to generating their own data that simulates insider attacks. The Schonlau dataset

[14] is the most widely used for academic study. It consists of sequences of 15,000 UNIX

commands generated by 50 users with different job roles, but the data does not include

command arguments or timestamps. The data has been used for comparative evaluations

of different supervised machine learning algorithms. The Schonlau data is not a “true Mas-

querade” data set: the data gathered from different users were randomly mixed to simulate

a masquerader attack, making the dataset perhaps more suitable for “author identification”

studies. An alternative approach to acquire sufficient data for evaluating monitoring and

detection techniques is to devise a process to acquire human user data under normal op-

eration as well as simulated attack data where “red team” users are tasked to behave as

inside attackers. This type of study is typically subject to Institutional Review Board ap-

provals since human subjects are involved. The process is costly, in time and effort but

is sensible and appropriate to protect personally identifiable data of individual volunteer

subjects. This was the approach taken by Maloof et al. for evaluating ELICIT [6]. We

as well gathered data from 34 users, all CS students at Columbia University, by distribut-

ing host sensors that upload system event data during normal system use. The population

of student volunteers assures us the data they generate is derived from sources that have a

common “role” in the organization, and hence variations in the user behavior and their data

are not attributable to different job functions as is undoubtedly the case with the Schonlau

dataset. We have also gathered data from 14 paid volunteers who emulated masquerade

attacks on equipment provided in our lab. The dataset, which we call the RUU (Are You

You?) data set, is over 8 GBytes and is available to legitimate researchers for download:

http://www1.cs.columbia.edu/ids/RUU/data/. The data collected for each

user averages about 5 days of normal system use, ranging in the extreme between 1 day

and 59 days, and an average of more than 1 million records per user. Preliminary results

using this data and the abnormal search benavior sensor described in the article show that

the red team of masqueraders deviate substantially from ordinary system users. [15]

Our prototype sensor has been built for the
Windows XP platform and relies on hooks
placed in the Windows ServiceTable. This is
a typical approach used by malicious rootkits;
however, in contrast to the traditional rootkit
objective of remaining undetected, the host-
level decoy sensor does not require operational
secrecy. Our threat model assumes attackers
have knowledge that a system is being mon-
itored, but they must not know the identities
of the decoys or the key used by the sensor to
differentiate them. Furthermore, the attacker
will likely not know the victim user’s behav-
ior, information that is not readily stolen such
a credential or a key. Given that adversaries
may be aware of system monitoring, special
care must be taken to prevent the sensor from
being subverted or, equally important, to de-
tect if it is subverted. We have ongoing work
aimed at preventing and detecting subversion
of the sensor. One strategy involves a means
to “monitor the monitor” to detect if the host
sensor is disabled use of tamper-resistant soft-
ware techniques. One possible solution we are
investigating relies on “out-of-the-box” moni-
toring [16], in which a virtual machine-based
architecture is used to conduct host-based mon-
itoring outside of the host from within a virtual
machine monitor.

3.4.1 Detecting Anomalous User Search
Actions

The sensor collects low-level data from file accesses, windows registry accesses, dynamic library
loading, and window access events. This allows the sensor to accurately capture data about spe-
cific system and user behavior over time. For example, we posit that one method to check if an

9



insider has infiltrated the system is to model “search” behavior as a baseline for normal behavior.
We conjecture that each user searches their own file system in a unique manner. They may use
only a few specific system functions to find what they are looking for. Furthermore, it is unlikely
a masquerader will have full knowledge of the victim user’s file system and hence may search
wider and deeper and in a less targeted manner than would the victim user. Hence, we believe
search behavior is a viable indicator for detecting malicious intentions. Specific sections of the
windows registry, specific DLLs, and specific programs on the system are involved with system
searching applications. For a given time period (10 seconds in our initial experiments), we model
all search actions of a user. After a baseline model is computed, the sensor switches to detection
mode and alerts if the current search behavior deviates from the user’s baseline model. Deviation
measurements are made by examining a combination of the volume and velocity of system events
in association with other user activities that should add some context to the user search actions,
such as the number of processes being created and destroyed. Presently, this sensor component
is being integrated in the architecture to function with the host sensor described next that detects
decoy document accesses.

To evaluate this model, we first gathered user-event data to compute the baseline normal models,
as well as data that simulates masquerade attacks. The dataset, known as the RUU dataset is
described in “Data and Evaluation” sidebar. For the former, we had 34 computer science students
install a host sensor on their personal computers. The sensor monitored all registry-based activity,
process creation and destruction, window GUI access, and DLL libraries activity. The data gathered
consisted of the process name and ID, the process path, the parent of the process, the type of
process action (e.g., type of registry access, process creation, process destruction, etc.), the process
command arguments, action flags (success/failure), and registry activity results. A timestamp was
also recorded for each action. The collected data was automatically uploaded to a server, after the
students had the chance to filter any data that they were not willing to share.

To obtain masquerade attack data, we conducted a user study in which 14 students had unlimited
access to the same file system for 15 minutes each. None of the users had prior access to this
file system, which was designed to look very realistic and to include potentially interesting patent
applications, personally identifiable information, as well as account credentials stored in various
files. The students were provided a scenario where they were asked to perform a specific task,
which consisted of finding any data on the file system that could be used for financial gain.

The features used for modeling were in essence volumetric statistics characterizing search volume
and velocity, and describing the overall computer session in terms of number of processes running,
particulalrly the number of editing applications. A one-class Support Vector Machine (ocSVM)
model was then trained for each user using those features. The same features were extracted from
test data after dividing them into 10-second epochs. The ocSVM models were tested against these
features, and a threshold was used to determine whether the user activity during the 10-second
epochs was normal or abnormal. If the user activity was performed by the normal user, but was
classified as abnormal by the ocSVM model, a false positive is recorded. Our results using the

10



collected data and the modeling approach described above show that, we can detect all masquerader
activity with 100% accuracy, with a false positive rate of 0.1%.

Extensive prior work on masquerade attack detection has focused on the Schonlau dataset for eval-
uation [14]. The data set served as a common gold standard for researchers to conduct comparative
evaluations of competing machine learning algorithms. The basic paradigm this work follows is a
supervised training methodology where 5000 commands from each user serve as training data for
the users normal behavior model. A classifier or model for each user is then tested against hold out
data not used in training from the users command dataset but embedded in a random location with
another randomly chosen users data. The performance results reported indicate the accuracy of
the classifiers learned by a particular machine learning algorithm in identifying foreign commands,
those blocks of commands deemed abnormal.

The model we chose to embed in the user search command sensor is different from these prior bag
of command oriented models. Our current studies analyze user command events and the rates at
which commands are issued using the RUU datasets described in the sidebar. Accuracy is estimated
with respect to classification errors measured for each 10 second epoch of user events. Furthermore,
whereas the Schonalu data consists of Unix commands, the RUU datasets contain user events
created in a Windows environment.

In order to compare our results with these prior studies, we need to translate the false positive rates
in classifying blocks of 100 commands with the error rate of classifying user commands issued
within each standard duration epoch. Unfortunately, the Schonalu datasets are devoid of times-
tamps and a direct comparison of our modeling technique is not feasible. No one can accurately
determine how long it takes each user in the Schonlau data to issue 100 commands. If we as-
sume that it takes 20 seconds to issue one user command on average (a rough estimate from the
RUU datasets for certain periods of time), our experiments show a detection rate of 100% can be
achieved with a false positive rate of 1.4%. This is a 78% improvement in false positive rate over
the best reported classifier in the prior Schonlau work. Indeed, none of the prior work reports a
100% detection rate at any reasonable false positive rate. If we assume it takes on average longer
than 20 seconds to issue a user command, the results we achieved drops the false positive rate even
further.

The comparison may not be entirely fair since the models and the data are quite different even
though the data are generated by human users. The use of temporal statistical features from the
RUU data set is crucial in modeling users behavior leading to far more accurate results than blocks
of commands. Furthermore, in our work, we focus on user search events, limiting the amount of
data analyzed and reducing the complexity of the learning task. Complete details of the volumet-
ric and contextual features we used when modeling user commands and the results achieved are
reported in [15] where results of reducing the data in the Schonlau experiments are also described.
The RUU datasets were created and are available to serve as a more up to date and modern gold
standard for other researchers to perform similar studies.

11



3.4.2 Detecting Perfectly Believable Decoys

The second host sensor also detects malicious activity by monitoring user actions directed at
HMAC-embedded decoy documents. Any action directed toward a decoy is suggestive of mali-
cious activity. When a decoy document is accessed by any application or process, the host sensor
initiates a verification function. The verification function is responsible for differentiating between
decoys and normal documents by computing a decoy HMAC (as described in Section 3.3.1) for the
particular document in question and comparing it to the one embedded in the OCProperties section
of the document. If there is a match, the document is deemed a decoy and an alert is triggered;
otherwise, the document is deemed normal and no action is taken.

The host sensor performs tasks similar to antivirus programs. In evaluating the performance of
the sensor, we use overhead comparisons of antivirus programs as a benchmark, since the task
of comparing an HMAC code is not substantially different from testing for an embedded virus
signature. Hence, accuracy performance is not revelant for this particular detector. However, there
is a fundamental difference between the task of detecting malware and that of detecting decoy
activity. Antivirus programs are designed to prevent the execution of and quarantine malicious
software whenever any process is initiated. In decoy detection the objective is merely to trigger
an alert when a decoy file is loaded into memory. Thus, the decoy detection need not serialize
execution; for example, it may be executed asynchronously (and in parallel by running on multiple
cores).

We have tested the decoy host sensor on a Windows XP machine. A total of 108 decoy PDF
documents generated through D3 were embedded in the local file system. Markers containing
randomness in place of HMACs were embedded in another 2,000 normal PDF files on the local
system. Any attempt to load a decoy file in memory was recorded by the sensor including content
or metadata modification, as well as any attempt to print, zip, or unzip the file.

The sensor detects the loading of decoy files in memory with 100% accuracy by validating the
HMAC value in the PDF files. However, as we discovered during our validation tests, decoy tests
can be susceptible to non-negligible false positive rates. The problem encountered in our testing
was created by antivirus scans of the filesystem! The file accesses of the scanning process that
touched a large number of files, resulted in the generation of spurious decoy alerts. Although we
are engineering a solution to this particular problem by ignoring automatic antivirus scans, our test
does highlight the challenges faced by such monitoring systems. There are many applications on a
system that access files indiscriminately for legitimate reasons. Care must be taken to ensure that
only (illicit) human activity triggers alerts. As a future improvement to the sensor, file touches not
triggered by user-initiated actions, but rather caused by routine processes, such as antivirus scan-
ners or backup processes may be filtered. Nevertheless, this demonstrates a fundamental design
challenge to architect a security system with potentially interfering competing monitors.

With regard to the resource consumption of the sensor, the components of the sensor used an
average 20 KB of memory during our testing, a negligible amount. When performing tests such

12



as the zipping or copying of 50 files, the file access time overhead averaged 1.3 sec on a series of
10 tests, using files with an average size of 33 KB. The additional access time introduced by the
sensor is unnoticeable when opening or writing document files. Based on these numbers, we assert
that our system has a negligible performance impact to the system and user experience.

4 Concluding Remarks and Future Work

We introduced an architecture that relies on a set of mutually supportive monitoring and auditing
techniques. The approach is grounded on the security principle of defense-in-depth and aims to
maximize the likelihood of detecting insider malfeasance by employing multiple detection meth-
ods. These mechanisms are designed to act synergistically with the goal of making it difficult for an
adversary to avoid detection. The architecture combines host-based user-event monitoring sensors
with trap-based decoys with the aim of maximizing detection of malicious insider behaviors. To aid
in deployment of decoys we built D3, a convenient system to automatically generate and distribute
decoy documents. As part of the system, we introduced the concept of the perfectly believable
decoy, and developed host-level sensors to demonstrate it with negligible performance overhead.
A user search behavior sensor was also presented demonstrating impressive masquerade detection
performance far better than previously published results. We posit the integration of all these sen-
sors raises the bar against insider attackers. The risk of detection is likely far greater. Much work
remains to be done, particularly on response strategies and system designs that gather and protect
evidence to create a demonstrable sense of risk that an insider may be caught and punished for their
malicious acts.

The spectrum of techniques we propose covers a broader range of potential attack scenarios than
would any of the constituent components in isolation. To date, we have tested and evaluated the
individual detectors in isolation, but have not created an integrated end-to-end solution. A fully
integrated detection system proposed here cannot be adequately developed, deployed, and formally
tested without a fully capable response component, a separate topic beyond the scope of this paper.
We must carefully consider the responses to events that are detected by the detectors. For example,
should the user be challenged with questions to ascertain whether they are a masquerader, or should
a signal alert a system administrator to immediately revoke a credential that is being misused?
These questions are context dependent (e.g., determined by an organization’s policies) and typically
part of product design in a commercial setting. Testing each component detector poses its own
challenges due to the lack of generally available insider attack data as discussed in the sidebar. The
sidebar describes the 9 month effort to acquire simulated masquerader data for testing one of the
sensors. Acquiring useful “traitor” data to test an integrated system poses challenges we have yet
to overcome in a university environment. Even so, we posit that a true controlled study evaluation
should be performed when the integrated system responds to insider events it has detected.

13



References

[1] Richardson R., “CSI Computer Crime and Security Survey”, 2008.
[2] Verdasys. http://www.verdasys.com/.
[3] Oakley Network’s Sureview. http://www.oakleynetworks.com/products/

sureview.php.
[4] Llet, D., “Trojan attacks Microsoft’s anti-spyware”, CNET News, February 9, 2005.
[5] Li, W., Stolfo, S. J., Stavrou A., Androulaki, E., and Keromytis, A., “A Study of Malcode-

Bearing Documents”. DIMVA, 2007.
[6] Maloof, M. and Stephens, G. D., “ELICIT: A System for Detecting Insiders Who Violate

Need-to-know”. RAID, 2007.
[7] Lee, W., Fan, W., Miller, M., Stolfo, S., and Zadok, E. “Toward Cost-Sensitive Modeling

for Intrusion Detection and Response,” Workshop on Intrusion Detection and Prevention, 7th

ACM Conference on Computer Security, November 2000.
[8] Yuill, J., Zappe M., Denning D., and Feer F.. “Honeyfiles: Deceptive Files for Intrusion Detec-

tion”, IEEE Workshop on Information Assurance, June 2004.
[9] Spitzner, L., “Honeytokens: The Other Honeypot”, Security Focus, 2003.
[10] Spitzner, L., “Honeypots: Catching the Insider Threat”, ACSAC, December 2003.
[11] Yuill, J., D. Denning, Feer, F., “Using Deception to Hide Things from Hackers : Processes,

Principles, and Techniques”, Journal of Information Warfare, 5(3):26–40, November 2006.
[12] Bowen, B. M., Hershkop, S., Keroymytis, A. D., Stolfo, S. J., “Baiting Inside Attackers using

Decoy Documents,” Columbia University Department of Computer Science Technical Report,
CUCS-016-09, 2009.

[13] Katz, John and Yehuda L., Introduction to Modern Cryptography, Chapman and Hall CRC
Press, 2007.

[14] Masquerading User Data. http://www.schonlau.net/intrusion.html.
[15] Ben Salem, M., Stolfo, S. J., “Masquerade Attack Detection using a Search-Behavior Mod-

eling Approach”, Columbia University Department of Computer Science Technical Report,
CUCS-027-09, 2009.

[16] Jiang, X., Wang, X., “Out-of-the-box Monitoring of VM-Based High-Interaction Honeypots”,
RAID, pp. 198–218, 2007.

14


