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Abstract. Enterprise networks are ubiquitious and increasingly com-
plex. The mechanisms for defining security policies in these networks
have not kept up with the advancements in networking technology. In
most cases, system administrators define policies on a per-application ba-
sis, and subsequently, these policies do not interact. For example, there is
no mechanism that allows a web server to communicate decisions based
on its ruleset to a firewall in front of it, even though decisions being
made at the web server may be relevant to decisions at the firewall. In
this paper, we describe a path-based access control system for service-
oriented architecture (SOA)-style networks which allows services to pass
access-control-related information to neighboring services, as the services
process requests from outsiders and from each other. Path-based access
control defends networks against a class of attacks wherein individual
services make correct access control decisions but the resulting global
network behavior is incorrect. We demonstrate the system in two forms,
using graph-based policies and by leveraging the KeyNote trust manage-
ment system.
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1 Introduction

Most enterprise networks are distributed structures with multiple administrative
domains and heterogeneous components. Defining and enforcing security policies
in these networks is challenging – it is difficult for a system administrator or
group of system administrators to conceptualize the security policy for such a
network, let alone correctly express that policy in the myriad of languages and
formats required by such an environment.

Consider a system where an oracle responds to all policy requests from the
network. The complete, high-level policy for the network, as defined by the sys-
tem administrator, is stored in and evaluated at the oracle. For every policy de-
cision, a service queries the oracle and acts based on its response. Such a system
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provides a globally coherent policy, but clearly does not scale well. Therefore, it
is common practice to derive from the system administrators’ high-level concep-
tual policy a set of policy components where each component is deployed at a
single service or node. Each policy component is translated into the appropriate
language for the target service and deployed directly at that service. In most
cases, this task is performed by hand by the system administrator, though there
have been some attempts at automating it, as in [1][2].

1.1 Example

Fundamentally, there is a violation of assumptions that comes from taking a high-
level conceptual policy and componentizing it, either manually or mechanically.
Consider the simple e-commerce network in Fig. 1. A firewall protects several
hosts. On the first host are a web server and some business logic in the form of,
e.g., PHP or ColdFusion; on the second host is a database.

We propose a high-level conceptual policy for this network: all connections
should arrive at port 80 on the firewall, authenticate at web server with a user-
name and password, and the business logic must authenticate to the database
using a public-key pair.

Web

Internet

server
Firewall Database

Fig. 1. A simple network. A web server and database are connected to the Internet
through a firewall.

The system administrator derive from that high-level conceptual policy a set
of policy components. One policy component is the firewall ruleset which blocks
traffic to all ports except TCP port 80. Another component is the .htaccess file
on the web server indicating that only a set of username/passwords may access
the files containing the business logic. A final component is the grant table at the
database which indicates that only the key pair used by the business logic may
access the tables for that application. It is our contention that, in the process of
generating these policy components, path information has been lost.

Consider an unknowing or malicious employee who plugs in a wireless access
point, as in Fig. 2. An adversary can connect to this wireless access point and,
through it, probe the web server and database. Such a connection violates the
conceptual policy determined by the system administrator, but none of the in-
dividual policy mechanisms in place will detect it. That is, none of the policy
mechanisms (the firewall ruleset, the .htaccess file, etc.)allows for governing
how a request arrived at the service, but only what it requests after arrival.
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Fig. 2. A vulnerable network.

Similar flaws may occur if, for example, the firewall accidentally fails open
due to misconfiguration or routing changes, or if an adversary attempts to access
the business logic through some routing path that was unintentionally enabled.
A compromised internal machine may be used to probe the remainder of the
network. A misconfigured router may allow connections to bypass a firewall.

1.2 Contributions

In this work, we dynamically model the paths that requests take as they traverse
an enterprise network and use those models as the basis for informing policy
decisions. Requests traversing invalid paths are barred from penetrating deeper
into the network. In a service-oriented architecture (SOA), the type of network
we focus on in this paper, the path of interaction followed by a request is a
tree. The root of the tree is the first point of interaction with the network
(the firewall in the example above) and the branches of the tree represent the
various actions taken by the various services in the network in response to that
request. Enforcing policy consists of examining each pathway to determine that
it followed a proscribed route.

We use a binary view in the policy-enforcement mechanism. Either a policy-
proscribed service is in a pathway, or it is not. However, we also collect additional
fine-grain details about events in each pathway in order to perform aggregate
analysis. By exposing more information to downstream services, it is possible for
the policy engine at each service to make decisions based on historical data or
statistical trends. Note that the statistical analysis is not the focus of this paper
and we do not address it further.

Accumulating path-traversal information benefits an enterprise by providing
a simple, low cost, mechanism for preventing attacks that violate system admin-
istrators’ assumptions about allowed or valid pathways. For example, a rogue
wireless point is no longer the danger it once was. A misconfigured firewall will
be more easily detected and many attacks during the window of vulnerability
will be prevented.
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In this paper, we present two solutions. The first is a low-cost, high-performance
system that models incoming requests as graphs, where events are vertices and
dependencies are edges. The second extends this concept and provides protection
in some situations where internal nodes are untrusted; it leverages the KeyNote
trust management system[3][4]. We show that in both cases, the performance
overhead on the SOA is low.

The remainder of this paper is organized as follows. In Sect. 2, we discuss
related work in the field. In Sect. 3, we describe the architecture of our two
solutions. In Sect. 4, we give details on their implementation. We evaluate the
work in Sect. 5 and conclude in Sect. 6.

2 Related Work

Most prior work in the policy field can be divided into three major categories:
policy specification [3, 5], resolving policy conflicts [6, 7], and distributed enforce-
ment [8, 9].

In their work in the field of trust management, Blaze, et al., [10–12] built
PolicyMaker, a tool that takes a unified approach to describing policies and
trust relationships in enterprise-scale networks by defining policies based on cre-
dentials. It is based on a policy engine that identifies whether some request r

with credentials c complies with policy p. In PolicyMaker, policies are defined
by programs evaluated at runtime. SPKI [13–15] is a similar mechanism that
uses a formal language for expressing policies. However, in both cases, the focus
is on trust management rather than policy correctness. Both systems can be
used as components in facilitating path-based access control, but alone, they are
insufficient.

When there are multiple policies or multiple users defining policy there is al-
ways the possibility of conflict. Cholvy, et al. [7] describe a method for resolving
that inconsistency and show that the problem is exacerbated in large-scale net-
works. As with PolicyMaker and SPKI, this method may facilitate path-based
access control but it does not provide the information transfer necessary for
resolving violated system administrator assumptions.

The STRONGMAN trust management system [2] focuses on the problem
of scaling the enforcement of security policies and resolving policy conflicts. In
STRONGMAN, high-level, abstract security policies are automatically trans-
lated into smaller components for each service in the network. STRONGMAN
features no provision for future interaction between components, a key feature
of path-based access control.

Bonatti, et al., [16] propose an algebra for composing heterogeneous secu-
rity policies. This is useful in networks with multiple policies defined in multiple
languages (i.e., most networks today). However, this system requires that all

policies and supporting information and credentials be available at a single de-
cision point, e.g. an oracle as discussed previously.

Firewalls [17, 18] are one of the most common and most well-known mecha-
nisms for policy enforcement. The Firmato system [19] is a firewall management
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toolkit for large-scale networks. It provides a portable, unified policy language,
independent of the firewall specifics. Firewall configuration files are generated
automatically from the unified global policy. Firmato is limited to packet filter-
ing, and it does not provide for future interactions between components.

The Oasis architecture [20] takes a wider view and uses a role-based system
where principals are issued names by services. A principal can only use a new
service on the condition that it has already been issued a name from a specific
other service. Oasis recognizes the need to coordinate the dependencies between
services, but since credentials are limited to verifying membership in a group or
role, it is necessary to tie policies closely to the groups to which they apply.

In [21], the authors use KeyNote to distribute firewall rulesets, allowing end-
point nodes to perform enforcement independently. The path-based access con-
trol mechanism can be viewed as an extension of the distributed firewall system,
allowing each endpoint node to incorporate the path of the request into its policy
evaluation. The path-based system can further be viewed as an instantiation of
the virtual private services described in [22]. Each request is presented a view
of the network (a “private service”) that is customized, based on the path the
request has taken up to that point.

3 Architecture

In this section, we describe two methods for implementing path-based access
control. The systems differ primarily in the mechanism by which the policy
is evaluated. In the first system, we model policies and incoming requests as
graphs, and we evaluate the policies by comparing the graphs representing actual
requests with the policy graphs. The second system extends the first by modeling
incoming requests and policies as KeyNote assertion chains.

Both systems are designed for use in SOA-style networks, so policy definition
consists of defining trees representing valid requests. The policy distributed to
each service is a list representing the path from the root to that service in the
policy graph. This technique is simple and can be performed quickly, making it
a good fit for dynamic networks where request patterns change quickly.

In both systems, the threat we consider is one where an adversary is attempt-
ing to access the network through unauthorized pathways. That is, pathways
which have not been explicitly allowed by the system administrator.

3.1 Graph-Based Access Control

The goal of this system is to forward information about access control-related
events at each service to subsequent services. The accumulated information is
used by a policy engine co-located with each service to detect pathway-violation
attacks.

At each service, a small program called a sensor observes information re-
garding access-control events and forwards that data to downstream nodes. We
packetize this data and call each packet an event. Each sensor is situated such
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that it can observe its target service and report on the access-control decisions
made therein. Typically, sensors are quite simple. For example, the sensor for
the Apache web server parses the Apache log and error files for reports on au-
thorization attempts. Each entry for an authorization attempt in the log files
is an event. The details of the event are associated with it as a set of attribute
key-value pairs and reported to downstream services.

Second-order sensors, called correlation sensors, use additional information
reported by the sensors to correlate events on a hop-by-hop basis. For example
the events generated by the Apache sensor are correlated with packets departing
the firewall based on the time, the source port, the IP address, and the TCP
sequence number. The complete data set received by a downstream node is a
chain, linking the incoming request with the source principal and all intermediate
hops in the network. Thus, the policy decision made at a given service can
incorporate the additional information obtained from upstream nodes.

As a request propagates through a network, the associated events are for-
warded along with it. The events are represented as vertices in a graph, and
the correlation information generated by the correlation sensors is used to form
edges between them. When a request arrives at a service, it is accompanied by
a graph representing the history of its interaction with the network.

Reactive systems like this, as with most intrusion detection systems, depend
on the inviolability of the sensor network. This requires particular attention be
spent securing the sensors. In this paper, we do not address attacks wherein the
sensor network itself is compromised, though we do note that the KeyNote-based
system will alleviate some of those attacks. Sensors may be further protected by
lifting them into a hypervisory role, or by isolating sensors and applications
through virtual machines, as in [23].

Firewall

Web server Business logic

Database

File server

Fig. 3. The tree of applications handling a request.

Note that the overall path taken by a request as it traverses a network is a
tree, as in Fig. 3. However, the path taken by a request from its arrival in the
network to a given node is a tree-traversal from the root to a leaf or internal
node. This path is necessarily linear. As a request passes through a network,
the events generated by the sensors associated with it represent the linear path
of that request. By situating correlation sensors between hosts and between
services, the graph is propagated across the network. Each node in the graph
receives the access control decisions made by all its upstream nodes, and this is
used to inform future access control decisions.
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Fig. 4. A graphical representation of the policy at (a) the web server (b) the business
logic and (c) the database.

To enact the access control mechanism, we define the policy at each node
as a graph, as shown in Fig. 4. The graph representing an incoming connection
must match a policy graph in order for the connection to be accepted. However,
since the graph is always linear, the policy takes the form of a list of services
over which the request must traverse, and valid values for the key-value pairs
associated with each event. Any request taking an unexpected pathway or with
non-matching attributes will necessarily be detected and rejected.

For example, the policy evaluation at the business logic consists of a traversal
of the graph delivered from the upstream node to verify that each node from
Fig. 4b appears, and is in the correct order.

3.2 KeyNote-Based Access Control

This method can be viewed as an extension of the graph-based access-control
system. In the graph-based system, we build a path representing the route a
request took from its entry in the network to a given host. In this system,
we leverage the cryptographic tools and trust-management capabilities of the
KeyNote system to instead build a certificate chain representing the path taken
by a request from its entry in the network to a given host.

Like all reactive, sensor-based systems, the previously-described graph-based
system is vulnerable to malicious internal nodes. That is, a compromised or
otherwise malicious intermediate node on the path between an application and
the entry point for a request can modify the graph dataset before forwarding it.
The addition of the KeyNote system protects from some classes of such attacks.

In the KeyNote system, events are reported in the form of KeyNote creden-
tials, and policy is evaluated at each service by a KeyNote compliance checker.
Traditional KeyNote credentials allow principals to delegate authorization to
other principals, while in the path-based access control scheme, KeyNote cre-
dentials delegate authorization for handling a request from a given application
to the next downstream application.

When a request generates an event e1 at host H1 and the request is then
forwarded then to host H2 where it generates event e2, a correlation sensor
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correlates the events as in the graph-based architecture. However, in this case
the correlation notification takes the form of a KeyNote credential. That is, it is
a signed assertion, with authorizer H1 and licensee H2, indicating that e1 and
e2 are linked. For example, the following credential might be issued by a firewall
when it redirects an incoming request to a web server.

KeyNote-Version: 2

Comment: Forward request to web server

Local-Constants: FW_key = "RSA:acdfa1df1011bbac"

WEB_key = "RSA:deadbeefcafe001a"

Authorizer: FW_key

Licensees: WEB_key

Signature: "RSA-SHA1:f00f2244"

Conditions: ...

KeyNote provides an additional field Conditions which is used to encapsu-
late references to events e1 and e2. Credentials are chained such that the licensee
for each event is designated as the next hop in the graph. In a simple e-commerce
example, an event generated at a web server and passed to the database would
include the previous credential along with the following.

KeyNote-Version: 2

Comment: Send SQL SELECT statement to the DB

Local-Constants: WEB_key = "RSA:deadbeefcafe001a"

DB_key = "RSA:101abbcc22330001"

Authorizer: WEB_key

Licensees: DB_key

Signature: "RSA-SHA1:baba3232"

The first link of the credential chain is created by the firewall. This credential
binds the principal (the TCP/IP address of the incoming connection) to the first
hop in the chain. The key for the principal is randomly generated, and then
cached, at the firewall. Such a credential takes the following form:

KeyNote-Version: 2

Comment: New principal at the firewall

Local-Constants: P_key = "RSA:ffeedd22eecc5555"

FW_key = "RSA:acdfa1df1011bbac"

Authorizer: P_key

Licensees: FW_key

Conditions: hop0 == "PRINCIPAL"

Signature: "RSA-SHA1:ceecd00d"

As a request progresses through the network, the result is a chain of creden-
tials that link the incoming request at a given node back through each interme-
diate node to the principal.

The policy at each node is a list of keys, in order, that must be found in the
credential chain. It is similar in concept to the policy definitions shown in Fig. 4,
but with each node is also associated a key. As the set of credentials arrives at
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each node, the local KeyNote compliance checker verifies that the set comprises
a chain. If successful, the policy engine then traverses the chain to verify that
the keys occur in the order expressed in Fig. 4. If either step fails, the request is
blocked.

4 Implementation

Each of these systems were implemented in the Python programming language.
Sensors were written and deployed for the OpenBSD PF firewall, Apache, PHP,
and MySQL, among other applications. These sensors parse the log files and
observe authentication-related behavior of each application in order to generate
events describing the access control behavior of each. The correlation sensor en-
gine, an instance of which is deployed between each pair of neighboring sensors,
maintains a cache of recently-observed events and generates correlation events
based on runtime-configurable fields from the event descriptions. Each time a
correlation between two events is made, the two events are linked and forwarded
to the next-hop service, along with all previously accumulated events and cor-
relations associated with the request.

At each service, requests are intercepted by a local firewall and redirected
to the local policy engine. This engine delays the request until the associated
graph arrives from the upstream node. The policy engine traverses the graph
and verifies that it conforms to the administrator-defined policy. If the graph
validates, the request is allowed to continue to the application, and the graph
information is passed to the application sensor.

The KeyNote implementation is similar, but where the graph-based system
generated events with arbitrary fields, this implementation generates KeyNote
credentials using the KeyNote credential format. The policy for the credential
chain is evaluated using the KeyNote compliance checker, through the pykeynote
module.

5 Evaluation

PF

Internet

10.0.0.3

10.0.0.2

10.0.0.1 MySQL

Apache

Fig. 5. Testbed network. The OpenBSD PF firewall protects an Apache web server
and MySQL database.
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We evaluated these two systems on a testbed network consisting of an OpenBSD
PF firewall, an Apache web server running PHP 5.2.3, and a MySQL 5.0.45
server. The network is deployed as shown in Fig. 5. The only unblocked incom-
ing port on the firewall is port 80. The firewall also performs network address
translation (NAT) so the internal machines have IP addresses in the 10.0.0.0/24
netblock. The testbed application consists of a PHP application which loads and
displays a 1MB image from the MySQL database.

The high-level conceptual policy for this network – that is, the policy as it
might be expressed informally by the system administrator – is that all connec-
tions into this network must be vetted by the firewall to guarantee that they are
arriving on the correct port, then processed by the web server and PHP engine,
and finally passed to the database. In the attack scenario, a rogue wireless access
point is attached to the network as shown in Fig. 6. This opens the potential for
incoming connections to access the web server or database without first being
processed by the upstream nodes – an assumption-violation attack. No events
or path information will be generated by requests passing through the wireless
access point, since, in this example, the system administrator is unaware of its
existence and has not installed any sensors on it.

Apache

Internet

PF

MySQL

Wireless AP
10.0.0.3

10.0.0.2

10.0.0.1

Fig. 6. Vulnerable testbed network. A wireless access point has been connected to the
network, allowing traffic to the web server that has not traversed the firewall.

We evaluate the system on two fronts: performance and effectiveness. Perfor-
mance is measured by timing batch requests made on the system. Effectiveness
is analyzed by attempting to detect previously-unseen assumption-violating at-
tacks.

The graph-based access control system is deployed on the testbed network as
follows. Sensors are deployed on the network interfaces of all machines, including
both network interfaces of the firewall, and at the firewall, web server, PHP
engine, and database themselves. Correlation sensors are placed between each
neighboring pair of nodes. When a request arrives from an external host, it
is processed by the firewall and the sensor on the external network interface.
As the request is subsequently processed by the firewall engine itself, and then
forwarded out through the internal network interface, the sensors generate events
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which are linked by correlation sensors. The graph thus generated is collected
and forwarded from node to node as the request progresses through the network.

The high-level policy for this network is that all requests must pass, in order,
from the firewall to the web server to the database. We derive the actual policy
for each node from the high-level policy by determining the path that a request
must travel in order to reach that node. Thus, the policy at the database is that
it will only handle requests which have traversed the firewall and web server. The
policy at the web server is that it will only handle requests that have traversed
the firewall. The policy definition for each service consists of an ordered list of
nodes. Policy evaluation is a matter of traversing the linear graph built by the
sensors and correlation sensors to verify that the nodes occur and are in the
correct order.

We test the effectiveness of this system by attempting to connect to the web
server and database, through the wireless access point. Since the requests do not
pass through the firewall, the graphs associated with the requests, do not have
the firewall as the root node. The requests are therefore denied by the policy
engine at the web server and database policy engines.

The KeyNote-based system is deployed on the same network. In KeyNote,
the policy, rather than being a list of nodes, is a list of keys. The credential chain
have have signed credentials, in the correct order, from each of those nodes. E.g.,
the policy at the database is that the credential chain must have credentials
signed by the web server and firewall, in that order. Policy evaluation consists
of verification that the credential chain is, in fact a chain, and then a search of
that chain for the policy key list.

One test of the effectiveness of the KeyNote system is similar to the tests for
the graph-based system. Requests on the firewall are handled as expected, and
requests through the wireless access point are blocked as the credential chains
thus generated are incorrect.

We analyzing the performance of these systems by determining the overhead
incurred by the additional network traffic and processing over the vanilla net-
work. The test application deployed in this network loads files stored in a table
in the MySQL database. The test file was 1 megabyte of binary data, and the
time for the vanilla system to return that file, from request arrival to completion
of the file transfer 162ms, averaged over 25 trials. The average handling time
for the graph-based system was 317ms, averaged over 25 trials. The average
handling time for the KeyNote-based system was 1.12s, averaged over 25 trials.

The majority of the overhead in the graph-based implementation is due to
the delay in waiting for graph information to catch up to each request. The cost
increase in the KeyNote-based system is due to the cryptographic costs inherent
in the KeyNote system.

We find that in the graph-based system the overhead for a three-node net-
work is 155ms, or approximately 50ms per node. In the KeyNote system, the
overhead is 958ms, or approximately 320ms per node. As before, the additional
overhead in the KeyNote-based system comes from the substantial cryptographic
requirements of the KeyNote architecture.
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6 Conclusion

In this work, we have described a mechanism for enhancing the current paradigm
of access control to protect against a new class of attacks. These attacks take
advantage of the fact that, in the process of converting a security policy from
its conceptual, high-level, format to its distributed, low-level, form, information
is lost. We describe two systems for defending against this new class of attacks,
by passing path information from service to service as the request traverses the
network. We show that the overhead incurred in these systems is relatively low.
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