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Abstract. The elastic block cipher design employs the round function of a given,
b-bit block cipher in a black box fashion, embedding it in a network structure to
construct a family of ciphers in a uniform manner. The familyis parameterized by
block size, for any size betweenb and2b. The design assures that the overall work-
load for encryption is proportional to the block size. When considering the approach
taken in elastic block ciphers, the question arises as to whether cryptanalysis results,
including methods of analysis and bounds on security, for the original fixed-sized ci-
pher are lost or, since original components of the cipher areused, whether previous
analysis can be applied or reused in some manner.
With this question in mind, we analyze elastic block ciphersand consider the security
against two basic types of attacks, linear and differentialcryptanalysis. We show
how they can be related to the corresponding security of the fixed-length version of
the cipher. Concretely, we develop techniques that take advantage of relationships
between the structure of the elastic network and the original version of the cipher,
independently of the cipher.
This approach demonstrates how one can build upon existing components to allow
cryptanalysis within an extended structure (a topic which may be of general interest
outside of elastic block ciphers). We show that any linear attack on an elastic block
cipher can be converted efficiently into a linear attack on the fixed-length version of
the cipher by converting the equations used to attack the elastic version to equations
for the fixed-length version. We extend the result to any algebraic attack. We then
define a general method for deriving the differential characteristic bound of an elastic
block cipher using the differential bound on a single round of the fixed-length version
of the cipher. The structure of elastic block ciphers allowsus to use a state transition
method to compute differentials for the elastic version from differentials of the round
function of the original cipher.
Key words: security analysis, linear cryptanalysis, differential cryptanalysis.

1 Introduction

Elastic block ciphers were designed to convert existing fixed-length block ciphers into
variable-length block ciphers in an efficient manner. Furthermore, the design allows certain
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properties of the fixed-length cipher to remain intact in theelastic version, creating a well-
defined relationship between the security of the elastic andfixed-length versions [3, 4].
Exploiting existing ciphers’ components in the design of new ciphers is not uncommon.
In the elastic block cipher case, since the cipher attempts to cover a large range of block
sizes, a specific design for each size was traded against a general design methodology.
Naturally, in a general design, as opposed to an optimized design for a specific block
size, one may lose the ability to provide tight security bounds, but security analysis is
required nevertheless. A natural approach when building upon existing components is to
reuse the security properties of the building blocks. Thus,our work is concerned with how
the security of an elastic block cipher relates to the security of the fixed-length version.

In more detail, we view elastic block ciphers as a category ofblock ciphers with (some-
what generic) design rules, and we consider how to evaluate their security against the two
most basic types of cryptanalysis: linear [6] and differential cryptanalysis [1]. The elastic
design is a generic approach that inserts the round functionfrom an existing block ci-
pher into a network structure (the elastic network). Therefore, new methods are needed to
perform our analysis that are derived from the structure of the elastic network. Since the
approach taken in forming elastic block ciphers is non-traditional in the sense that it does
not focus on optimizing the design for a specific block size, one may dismiss the entire
idea and stick to usual designs of ciphers of fixed size; however, we believe that the idea
of having a substitution-permutation network that is size-flexible (i.e., the elastic network)
and is somewhat generic is an interesting subject that deserves investigation. This work is
a step in this direction.

Concretely, we first prove that any linear attack on an elastic block cipher can be con-
verted in polynomial time and memory into a linear attack on the fixed-length version of
the cipher. This is done by showing how to convert the equations for such an attack on the
elastic version to an attack on the fixed-length version. Therefore, if the fixed-length ver-
sion is immune to linear cryptanalysis, the elastic versionis also immune. We extend the
result to any algebraic attack. We then define a general method for deriving the differential
characteristic bound of an elastic block cipher from the differential bound on a round of
the fixed-length version. We summarize our application of the method to elastic versions
of AES [9] and MISTY1 [7].

The remainder of the paper is organized as follows. In Section 2, we briefly review the
construction of elastic block ciphers. In Section 3, we prove that a linear attack, or more
generally any algebraic attack, on an elastic block cipher implies that such an attack exists
on the fixed-length version of the block cipher. In Section 4,we define our method for
deriving differential bounds on an elastic block cipher. Section 5 concludes the paper.

2 Elastic Block Cipher Review

2.1 Overview

We briefly review the method presented by Cook,et. al, for creating elastic block ciphers
[3]. The method converts the encryption and decryption functions of existing block ciphers
to accept blocks of sizeb to 2b bits, whereb is the block size of the original block cipher.
The general structure of an elastic block cipher is shown in Figure 1. An elastic version
of a block cipher is created by inserting the cycle of the original fixed-length block cipher



into the network structure to form the round function of the elastic version. In each round
the leftmostb bits are processed by the round function and the rightmosty bits are omitted
from the round function. Afterwards, the rightmosty bits are XORed with a subset of the
leftmostb bits and the results swapped. This swapping of bits may be omitted after the last
round. The elastic version also includes initial and end of round whitening, and an initial
and final key dependent permutation. The number of expanded-key bits required varies
based on the block size and the original block cipher. The keyschedule of the original
cipher is replaced with a generic key schedule that generates as many expanded-key bits
as needed. In theory, the expanded key bits can take on any value and we view the expanded
key bits in this manner in our analysis. For actual implementations, a stream cipher was
suggested as one option for the key schedule [3].

Fig. 1. Elastic Block Cipher Structure [3]

We use the following notation:

– G denotes any existing fixed-length block cipher.
– r denotes the number of cycles inG, where a cycle inG is the point at which allb bits

of the block have been processed by the round function ofG. For example, ifG is a
Feistel network, a cycle is the sequence of applying the round function ofG to the left
and right halves of theb-bit block. In AES, the round function is a cycle.

– b denotes the block length of the input toG in bits.
– y is an integer in the range[0, b].
– G′ denotes the elastic version ofG with a (b + y)-bit input for any valid value ofy.



– r′ denotes the number of rounds inG′. r′ = r + ⌈ ry

b
⌉.

– The round function ofG′ will refer to one entire cycle ofG.
– The swap step will refer the step in which the rightmosty bits are XORed with a

subset of the leftmostb bits and the results swapped.

3 Linear Cryptanalysis

We consider linear attacks and algebraic attacks on elasticblock ciphers in general. We
prove that any practical linear or algebraic attack on an elastic block cipher,G′, can be
converted into a polynomial time related attack on the original cipher,G, independently of
the specific block cipher used forG. We take advantage of the elastic block cipher structure
to define a linear relationship, if one exists, acrossr rounds ofG′ in terms of any linear
relationship in a cycle ofG.

Linear cryptanalysis involves finding equations relating plaintext, ciphertext and key
(usually expanded-key) bits via XORs that hold with probability 1

2 + α for non-negligible
α. Without loss of generality, we assume the equations are in the form such that0 <

α ≤ 1
2 , and that the equations involve the expanded-key bits. We omit the initial and final

key-dependent permutations in the elastic block cipher construction when performing our
analysis in order to focus on the core structure of elastic block ciphers. The two permuta-
tions do not impact any relationship that exists across the rounds ofG′.

We show that a linear relationship acrossr rounds ofG′ implies such a relationship
acrossr cycles ofG. If any such linear relationship holds with a probability such that
fewer than2(b−1) (plaintext, ciphertext) pairs are required for an attack, thenG is subject
to a linear attack that requires fewer plaintexts, on average, than an exhaustive search over
all plaintexts. Whether or not using the equations is computationally feasible depends on
number of (plaintext, ciphertext) pairs and the number of equations that must be computed.
If at least2(b−1) plaintext, ciphertext pairs are required for an attack onr rounds ofG′,
then either the attack is infeasible onr rounds ofG′ from a practical perspective orG is
subject to a brute force attack in practice. Note that we are dealing with an attack on only
r rounds ofG′ and the probability of a linear relationship holding acrossr′ = r + ⌈ ry

b
⌉

rounds ofG′ will be less than that forr rounds. More specifically, if the attack onG′

involves a maximum correlation between plaintext, ciphertext and key bits which occurs
with probability≤ 2−b on r rounds (thus requiring in practice≥ 2b plaintexts), then an
attack on2r rounds involves a maximum correlation that occurs with probability ≤ 2−2b

and requires> 22b plaintexts. In this case,G′ is practically secure against a linear attack
when⌈ ry

b
⌉ = r. A direct implication of our result is that ifG′ is subject to an attack using

any algebraic equations, as opposed to just linear equations, then so isG.

Theorem 1. Given a block cipherG with a block size ofb bits andr cycles, and its elastic
versionG′ with a block size ofb + y bits for 0 ≤ y ≤ b, if G′ is subject to a linear attack
onr rounds then eitherG is subject to a linear attack or the resources exist to perform an
exhaustive search onG over all plaintexts, assuming the key schedules ofG andG′ do not
produce message-dependent expanded keys, meaning any expanded-key bits depend only
on the key and do not vary based on the plaintext or ciphertextinput to the cipher.

Proof. We first note that if the linear attack onr rounds ofG′ requires at least2b (plain-
text, ciphertext) pairs then either the attack is computationally infeasible orG is insecure



independent of the attack (since the attacker has the resources to encrypt2b plaintexts).
Therefore, it can be assumed that the attack onG′ requires< 2b (plaintext, ciphertext)
pairs. The assumption that the expanded key bits do not depend on the input to the cipher
(the plaintext or ciphertext) is true of block ciphers used in practice and of elastic block
ciphers. The theorem is proved by showing how a linear attackonG′ can be converted into
an attack inG. With no further assumptions about the key schedules, the result is an attack
that finds an expanded key forG that produces the(plaintext, ciphertext) pairs consis-
tent withG, but which may or may not adhere to the key schedule ofG. If the expanded
key is inconsistent with the key schedule ofG, this itself indicates another weakness inG

because it means there is some expanded key that is not produced by the key schedule ofG

but which produces the same(plaintext, ciphertext) pairs thatG would produce when
using some key generated byG’s key schedule (i.e. the attack finds an equivalent key). If
the following three assumptions are placed on the expanded key bits ofG′, then the attack
onG will find a key consistent with the key schedule ofG:

– The rightmosty bits of each whitening step inG′ can take on any value and are
independent of any other expanded-key bits.

– Any expanded-key bits used in the round function of the firstr consecutive rounds of
G′ can take on the same values as the expanded-key bits used in the cycles ofG.

– If G contains initial and end of cycle whitening, any expanded-key bits used for the
leftmostb bits of each whitening step in the firstr consecutive rounds ofG′ can take
on the same values as the corresponding whitening bits inG.

To understand how a linear relationship (if one exists) between the plaintext, ciphertext
and expanded-key bits is determined forG′, we first consider how a linear relationship is
derived for a block cipher structured as a series of rounds with block lengthb and then add
the impact of the whitening and swap step to these relationships. We number the rounds
from 1 tor. We will refer to any initial whitening step that occurs prior to the first round
as round 0 and the round function of round 0 is just the initialwhitening. The relationship
between the output of thejth round/cycle and the input to the(j + 1)st round/cycle is
depicted in Figure 2 for bothG andG′.

We use the following notation for describing the relationships across the rounds ofG′:

– Two bits, x1 and x2, cancel each other in an equation meansx1 ⊕ x2 = 0 with
probability 1.

– Let uji denote theith bit of the input to the round function in roundj, 1 ≤ i ≤ b,
0 ≤ j ≤ r.

– Let vji denote theith bit of the output from the round function in roundj, 1 ≤ i ≤ b,
0 ≤ j ≤ r.

– Let nj denote the number of expanded-key bits used in the round function in roundj,
0 ≤ j ≤ r. This does not include any end of round whitening added to form G′, but
does include the end of round whitening if it is part of the cycle of G (as is the case
with AES). If G does not contain initial whitening, the round function in round 0 is
the identity function andn0 = 0.

– Let ekji denote theith expanded-key bit in the round function in roundj, 1 ≤ i ≤ nj .
– LetLj([uj1, ...ujb]⊕[vj1, ...vjb]⊕[ekj1, ...ekjnj

]) denote the set of linear equations (if
any) relating the input, output and round key bits with non-negligible probability for
the round function in roundj, 0 ≤ j ≤ r. We will abbreviate this asLj . An equation



Fig. 2. Linear Relationship Between Roundj’s Output and Round(j + 1)’s Input

in Lj holds with probability1
2 + α for some non-negligibleα such that0 < α ≤ 1

2 .
For example, ifu12 ⊕ v13 ⊕ ek15 = 0 with probability 0.75, this equation will be in
L1. Any equation which reflects a negative relationship, meaning the equation holds
with probability 1

2 − α, is rewritten as an equation holding with probability1
2 + α.

– Without loss of generality, the equations inLj are in reduced form; for example,uj2⊕
uj2 ⊕ uj2 = 1 will be reduced touj2 = 1.

– Internal variables will refer to the set ofuji for 1 ≤ j ≤ r andvji for 0 ≤ j ≤ r − 1,
with 1 ≤ i ≤ b. i.e.,any variable corresponding to an input bit for rounds 1 tor or to
an output bit of rounds 0 (initial whitening step) tor − 1.

A linear relationship across consecutive rounds is obtained by combining the linear equa-
tions for each of the rounds, withvji becomingu(j+1)i. A linear relationship exists that
involves only plaintext, ciphertext and expanded-key bitsif the intermediate round in-
puts and outputs (the internal variables) cancel when combining the per round equations,
leaving equation(s) involving onlyu0i’s, vri’s and expanded-key bits. For example, if in
G with two cycles:u11 ⊕ v12 = ek11 andu22 ⊕ v26 = ek23. Then, sincev12 = u22,
u11 ⊕ ek11 ⊕ v26 = ek23.

We now consider how the steps between the rounds inG′ impact the linear relation-
ships across the rounds.

– Let Y denote the rightmosty bits of the data block for a(b + y)-bit data block.
– Let Γ ′ refer to the set of the equations used in a linear attack onr rounds ofG′

formed from combining theLj ’s for the individual rounds along with the end of round
whitening and swap steps.

– Let Γ refer to a set of linear equations forG formed from equations inΓ ′.



– Let kwji denote theith key bit used for the whitening step added in roundj when
constructingG′, 1 ≤ i ≤ b + y and1 ≤ j ≤ r. kwji = 0 for 1 ≤ i ≤ b if the cycle
of G includes end of cycle whitening andkw0i = 0 for 1 ≤ i ≤ b if G contains initial
whitening becauseG′ does not add whitening to theb bits when it is already present.

– Let wjl denote thelth bit of theY portion of the data, for1 ≤ l ≤ y and2 ≤ j ≤ r.
wjl = v(j−1)h⊕kw(j−1)h where1 ≤ h ≤ b andh is the bit position swapped with bit
positionl in the previous swap. Whenj = 1, w1l = w0l ⊕ kw0(b+l), the initial input
bit XORed with the initial whitening applied.

With the addition of the whitening and swap steps, the input to the round function is now
defined as:

– u(j+1)i = vji ⊕ kwji whenvji is not involved in the swap step.
– u(j+1)i = vji ⊕ kwji ⊕ wjl ⊕ kwj(b+l) whenvji is involved in the swap step. When

j ≥ 2, this can be written asu(j+1)i = vji ⊕ kwji ⊕ v(j−1)h ⊕ kw(j−1)h ⊕ kwj(b+l).

Notice that the steps between applications of the round function in G′ maintain a linear
relationship between the output of one round and the input ofthe next round.

If the key schedule ofG′ produces whitening bits which are created independently of
the key bits used within the round function (to the extent that the key bits are pseudo-
random), and of the round function’s input and output, thesewhitening bits will cancel
with any vji, uj+1 and/orekji with probability 1

2 + e for negligiblee (i.e., there is no
discernable relationship between these whitening bits andany of the plaintext, ciphertext
and expanded-key bits used internal to the round function bydefinition of the key sched-
ule). Thus, thekwji’s added when formingG′ will not increase the probability of a linear
relationship between plaintext bits, ciphertext bits and expanded-key bits used in the round
function. If a key schedule is used forG′ that does not guarantee independence amongst
thekwji’s and that results in cancellation among somekwji’s, this is merely cancelling
variables that are not present in the linear equations for the round function and thus will
not simplify the equations or increase the probability thatan equation holds acrossr ap-
plications of the round function.

Now we assume a set of equations,Γ ′, exist forG′ that contains no internal variables
and show how to convert them to a set of equations forG. Given the sets,Lj ’s, of linear
equations for the round function inG′, these same sets of equations hold forG because the
elastic version does not alter the cycle ofG. These equations are combined across cycles
as was done for the rounds ofG′, except to form the input to one cycle from the output of
the previous cycle, the impact of the swap step and any whitening added when formingG′

is removed as follows:

– Setkwji to 0 for 0 ≤ j ≤ r and1 ≤ i ≤ b so these whitening bits are omitted
from the resulting equations. This removes any initial and end of round whitening that
was added to the leftmostb bits when formingG′. Recall that ifG had initial and end
of cycle whitening, it was treated as part of the round function of G and additional
whitening on the leftmostb bits in each round was not added when formingG′ (i.e.
kwji was already 0 in the equations forG′ for 0 ≤ j ≤ r and1 ≤ i ≤ b).

– Setkw0(b+l) = 0 andkw1(b+l) = 0 for 1 ≤ l ≤ y. This sets the rightmosty bits of
the initial whitening and of the end of round whitening in thefirst round to 0. By using
plaintexts that have the rightmosty bits set to 0, this results in the rightmosty bits in
the first round having no impact on the equations.



– Setkwj(b+l) to v(j−1)h for 2 ≤ j ≤ r − 1 and1 ≤ l ≤ y, whereh is the index in
the leftmostb bits corresponding to the bit position swapped with thelth bit of the
rightmosty bits. This removes the impact of the swap steps by having the rightmost
y bits of whitening in each round cancel with they bits omitted from each round.
These settings are needed only on rounds 2 throughr−1. The output of therth round
function is the ciphertext so the swap step is not applicableafter therth round. Per
the previous item, the rightmosty bits in the first round can be set to have no impact
on the equations. Each such setting can add an internal variable,v(j−1)h, which now
equalsujh, to the equations.

These settings result in each input bit to the(j + 1)st round function being of the form
u(j+1)i = vji and the impact of any added end of round whitening and the swapstep being
removed. The equations will combine to form a set of equations,Γ from the equations in
Γ ′ with anykwji’s which appear inΓ ′ removed and with at most(r−2)y internal variables
added to the equations. Before explaining how these variables can be accommodated, we
first state a few additional notes on the resulting equations. The equations inΓ may contain
up toy extra plaintext bits and up toy extra ciphertext bits beyond theb-bit block size ofG
sinceG′ processesb + y bit blocks. The attacker can set these extraneousy plaintext bits
to any value (the whitening bits were set in the conversion based on these plaintext bits
being set to 0) and the extray ciphertext bits are identical toy of the bits output from the
next to last round function. For any equationEq′ ∈ Γ ′ that holds with probability12 + α,
the corresponding equation,Eq ∈ Γ , formed by removing thekw′

jis from Eq′ will also
hold with probability1

2 + α. Furthermore, only variables representing whitening bitsnot
present inG are deleted when convertingΓ ′ to Γ and no equations are added or removed.
An equation will not disappear when removingkwji variables because that would imply
the equation did not involve plaintext and/or ciphertext bits.

We now address the presence of the internal variables inΓ . Since it was assumed
Γ ′ consists entirely of equations involving only plaintext, ciphertext and expanded-key
bits, the removal of the swap step can introduce up toy internal variables,(vji′s), per
round (cycle) into the equations. The removal of the swap step impactsr − 2 rounds
(cycles), resulting in a maximum of(r − 2)y internal variables in the equations inΓ . If
equations inΓ ′ corresponding to somey > 0 are converted directly into equations for the
original cipher (y = 0), this results in at most2(r−2)y possible values to try for the internal
variables. However, it is possible to make the number of suchvalues to test linear iny
instead of exponential iny. Instead of converting the attack onG′ directly to an attack on
G, repeatedly decreasey one bit at a time (decrease the block size ofG′) converting the
attack onG′ with ab+n bit block size to an attack onG′ with ab+n−1 bit block size, for
n = y, y−1, ...1. WhenΓ ′ is converted into a set of equations for the cipher corresponding
to ab+ y− 1 blocksize, there are at mostr− 2 internal values, one for each of rounds 2 to
r − 1, and therefore at most2r−2 possible combinations of values for the internal values.
Let Γ ′

b+y−1 denote this set of equations. Using (plaintext,ciphertext) pairs with ab+ y−1
bit block size, solve the equations, setting ther−2 internal variables in the equations to the
specific values that result in a solution consistent with the(plaintext, ciphertext) pairs. In
the worst case, all possible combinations of values for the interal variables must be tested
in the equations, resulting in at most2(r−2) combinations to test. Then repeat the process,
decreasing the block size one bit at a time. In each iteration, there are at mostr−2 internal
variables whose values need to be determined.



More formally, givenG′ with a block size ofb + y bits, where0 ≤ y ≤ b and the set
of linear equationsΓ ′ used to attackr consecutive rounds ofG′:

– Let G′
b+n refer to an elastic version ofG with a (b + n)- bit block size, where0 ≤

n ≤ y.
– Let Γ ∗

b+n refer to the set of linear equations forr consecutive rounds ofG′
b+n with at

mostr − 2 internal variables present in the equations.
– Let Γ ′

b+n refer Γ ∗
b+n with the values of the internal variables determined. This is a

set of linear equations involving only plaintext, ciphertext and expanded key bits forr
rounds ofG′

b+n.
– Let Ab+n refer to the attack onG′

b+n usingΓ ′
b+n.

Convert the attack onG′ to an attack onG as follows:

n = y

Γ ′
b+n = Γ ′

while (n > 0) {
convertΓ ′

b+n to Γ ∗
b+n−1

Using (plaintext,ciphertext) pairs forG′
b+n−1, solve for any

internal variables inΓ ∗
b+n−1 to obtainΓ ′

b+n−1.
n← n− 1

}

The set of equations,Γ , used to attackG will be Γ ′
b. This results in at most

∑y

1 2(r−2) =
y2(r−2) possible combinations of the internal variables to try as opposed to≤ 2(r−2)y

combinations. Sincer is constant (and small in practice) andy is bounded byb, which is
constant, the amount of work in converting the attack onG′ to an attack onG is polynomial
in the time to attackG′, specifically, the work is bounded by a constant times the time to
attackG′. For example, in AES with a 128-bit key,b = 128 andr = 10, thusy ≤ 128
andy(2(r−2)) ≤ 128 ∗ 256 = 32768. The amount of memory required is linear in the
amount of memory required to attackG′. In the worst case, a separate amount of memory
is required when forming eachΓ ′

b+n. Thus, a linear attack on ar-round version ofG′ that
requires less than2b (plaintext, ciphertext) pairs implies a linear attack exists onG.

Theorem 1 can be applied to algebraic equations in general. An algebraic attack on a
block cipherG is defined in the same manner as the linear attack with the modification
that the equations can involve any algebraic operations, not just XORs.

Lemma 1. Given a block cipherG with a block size ofb bits andr cycle, and its elastic
versionG′ with a block size ofb + y bits for 0 ≤ y ≤ b, if G′ is subject to an algebraic
attack onr rounds then eitherG is subject to an algebraic attack or the resources exist to
perform an exhaustive search onG over all plaintexts.

Proof. The proof follows directly from the proof to Theorem 1 by removing the qualifi-
cation in Theorem 1’s proof that the equations in theLj sets are linear. NowΓ ′ andΓ

contain algebraic equations instead of only linear equations.Γ is formed fromΓ ′ exactly
as before (the conversion adds only XORs of variables to the equations). Therefore, if an
algebraic attack exists onr rounds ofG′ then an attack exists onG.



4 Differential Cryptanalysis

4.1 Overview

We consider how the conversion of a block cipher to its elastic form impacts differen-
tial cryptanalysis. We define a general method for bounding the probability a differential
characteristic occurs in the elastic version of a cipher when given the bound for a single
round of the original cipher. We have illustrated the methodon elastic versions of AES
and MISTY1 in [2]. We use the symbol∆ to refer to the XOR of two bit strings. The
sequence of∆ inputs and outputs of the rounds of a block cipher is a differential charac-
teristic. Specifically, let(P1, C1) and(P2, C2) be two (plaintext, ciphertext) pairs for a
block cipher withr rounds.∆P = P1⊕P2 and∆C = C1⊕C2. Letλij refer to the delta
input to roundj and letλoj refer to the delta output of roundj. λi1 = ∆P . λor = ∆C.
Let prj be the probabilityλoj occurs givenλij . Let Ω = (λi1, λo1, λi2, λo2...λir , λor).
The probabilityΩ ocurrs is

∏j=r

j=1 prj . If the block size isb bits, it is sufficient to show
that no differential characteristic occurs with probability ≤ 2−b in order to prove a cipher
is immune to differential cryptanalysis (because this implies≥ 2b (plaintext, ciphertext
pairs) are required for the attack).

The variable block size and the swap step in elastic block ciphers significantly increase
the number of cases to explore when determining the probability of a differential charac-
teristic compared to that of the fixed-length version of a block cipher. This is the reason
why we had to find a new approach to modelling the differentials instead of using an ex-
isting approach, such as the differential trails approach used on AES [5]. Furthermore, the
structure of elastic block ciphers allows analysis performed on the fixed-length version to
be partially reused when evaluating the elastic version.

The method we use to bound the probabilities of differentialcharacteristics for an
elastic block cipher involves defining states representingwhich bytes in the differential
input to a round have a non-zero delta and tracking what sequences of states the cipher
can potentially pass through over a number of rounds. Using this method and differential
bounds for the round function of the original cipher, we can derive an upper bound on
differential characteristics for the elastic version of a cipher. We exclude the initial and
final key-dependent mixing steps from our analysis in order to focus on the core struc-
ture and these permutations will only reduce the probability of any specific differential
characteristic occurring.

4.2 General Observation

The first observation we make regarding differential cryptanalysis of elastic block ciphers
is that, unlike linear cryptanalysis where the equations for the elastic version,G′, of a block
cipher can be converted directly into equations for the original cipherG, a differential
characteristic forG′ cannot be converted directly into a differential characteristic for G

except for one special case.
We use the following notation when describing a differential characteristic of an elastic

block cipher.

– ∆Yi is the XOR of twoy-bit segments for roundi.
– ∆Bini is the XOR of twob-bit segments input to the round function in roundi.



– ∆Bouti is the XOR of twob-bit segments output from the round function in roundi.
– A b-bit value formed from the XOR of ab-bit value and ay-bit value, wherey ≤ b,

refers to theb-bit result when they bits are XORed with a subset ofy bits of theb bits
and the remainingb − y bits are unchanged.

– Forming∆Yi+1 from ∆Bouti refers to setting∆Yi to they bits from∆Bouti that
are in the bit positions involved in the swap step after roundi.

– ∆Y , ∆Bin and∆Bout without a subscript ofi refers to a specific delta independently
of the round.

Fig. 3. Differential in Original and Elastic Versions of a Cipher

In the elastic version of a cipher,∆Bini+1 is determined by∆Bouti and∆Yi. If
∆Yi 6= 0 then∆Bini+1 6= ∆Bouti; whereas,∆Bini+1 = ∆Bouti in the original block
cipher. This is shown in Figure 3. Therefore, a sequence of deltas ocurring across multiple
rounds in the elastic version will not hold across the original version unless∆Yi = 0 for r

sequential rounds.
Now we consider the special case wherer consecutive∆Yi’s are 0.

Lemma 2. If a differential characteristic occurs in the elastic version, G′, of a block ci-
pher that containsr consecutive rounds with∆Yi = 0 and this characteristic can be used
to attackG′, then it can be used to attackG.

Proof. LetΩ′ be the characteristic corresponding to the∆Bini values and∆Bouti values
for ther consecutive rounds each with∆Yi = 0. Ω′ is also a characteristic for ther rounds
of G. Ω′ must hold with probability> 2−b−y to be used in an attack onG′. If Ω′ holds with
probability2−α > 2−b, then it can be used to attackG directly, provided the probability
is large enough that it is computationally feasible to encrypt O(2α) plaintexts.



If it holds with probability2−α such that2−b > 2−α > 2−b−y, it can be used to attack
G as follows: Using anr round version ofG′ and (plaintext, ciphertext) pairs consistent
with the delta input and delta output ofΩ′ by setting the leftmostb bits to be consistent
with Ω′ and the rightmosty bits to have a∆ of 0. Then apply the attack onG′ to find the
round keys for ther rounds and use these as the keys for ther cycles ofG.

However, if this later case where2−b > 2−α > 2−b−y is computationally feasible, it
implies it is computationally feasible to encrypt2b plaintexts withG. ThusG is insecure
because given a ciphertext,C, an attacker can ask for all2b plaintexts be encrypted with
the same key (which is unknown) used to generateC and see which plaintext produces
C. As an estimate of the probability ofr consecutive rounds having∆Y = 0, consider
what happens if they bits left out of each round inG′ take on any of the possible2y

values with equal probability. Then, ignoring the differential for theb-bit portions of each
round’s input and output, a case where∆Yi = 0 for r consecutive rounds may be found
for small values ofy andr. If each∆Yi occurs with probability2−y, then the probability
that∆Yi = 0 in r consecutive rounds is2−yr. For example, in MISTY1,r = 4 (MISTY1
contains four cycles and a cycle is used as the round functionin the elastic version). When
y = 1, the probability ofr consecutive∆Y ’s being zero is1

16 .

4.3 State Transition Method

We now consider how to evaluate any elastic block cipher’s immunity or susceptibility to
differential cryptanalysis by using the bound from a singlecycle of the fixed-length version
of the cipher.

Theorem 2. The differential probabilities from the cycle of a fixed-length block cipherG
can be used to bound the probability that a differential characteristic occurs in its elastic
versionG′.

The general method we use is the tracking of states through the rounds of an elastic
block cipher. We devise a method for categorizing the impactof the swapping of bits be-
tween rounds on the differentials entering a round. We combine the impact of the swap step
with the upper bound on the probability a differential characteristic occurs in a single ap-
plication of the round function (from available analysis onG) to determine an upper bound
the probability of a differential characteristic across multiple rounds inG′. By obtaining a
bound,x, on the probability acrossn rounds inG′, the probability acrossr′ rounds can be

bounded byx⌊ r′

n
⌋.

In the case where the round function ofG is a cycle, such as in AES, we view the
(b+ y)-bit data block entering a round ofG′ as ab-bit segment and ay-bit segment. Three
main states are defined:

(∆Bin = 0 and∆Y 6= 0), (∆Bin 6= 0 and∆Y = 0), (∆Bin 6= 0 and∆Y 6= 0)
The state in which∆Bin = 0 and∆Y in = 0 is not of interest because, given a non-zero
delta input to the cipher, a delta of zero across allb + y bits cannot occur. Within a main
state, the number of bytes for which the delta is non-zero arecounted. For example, if the
input to the third round has a∆Bin that is 1 in the2nd and18th bit positions and is zero
in all other bits, then there are two bytes with non-zero deltas in∆Bin. Tracking of states
between rounds involves determining what∆Bin||∆Y can result for the(i + 1)st round



based on the delta in theith round. For example, if∆Bin = 0 and∆Y 6= 0 in the input to
roundi, then∆Bin 6= 0 and∆Y = 0 in roundi + 1. This is because the delta output of
the ith round function will be zero, then the non-zero∆Y will be swapped into theb-bit
portion input to the(i + 1)st round and a delta of zero will be swapped out to form the
∆Y for the(i + 1)st round.

When the original cipher is a Feistel network (or is a Feistelnetwork with additional
steps as in the case of MISTY1), the∆Bin portion is viewed as a left half (∆Lin) and
right half (∆Rin). The main states are the seven combinations of∆L, ∆R and∆Y being
= 0 or 6= 0 with at least one being6= 0.

Using the states, an upper bound (which is not necessarily a tight upper bound) can
be determined for the probability of a differential characteristic forr′ rounds ofG′. The
probability of a differential characteristic occurring for a single application of the round
function ofG and the possible∆B or ∆L||∆R values entering the round function in each
round are used to bound the probability for a round ofG′. The possible∆B or ∆L||∆R

and∆Y values in a round determine the possible input states to the next round ofG′.

4.4 Examples

We applied the state transition method to the elastic versions of AES and MISTY1 de-
scribed in [3]. The process and results are described in [2].We briefly state the results of
the work here. Elastic AES is an example in which the input to each round is viewed in
the form of∆Bin||∆Y . AES is a 128-bit block cipher with 10 rounds. The number of
rounds,r′, in the elastic version is10 + ⌈ 10y

128 ⌉. Elastic MISTY1 is an example in which
the input to each round is viewed in the form of∆L||∆R||∆Y . MISTY1 is a 64-bit block
cipher involving four cycles of a Feistel network.r′ = 4 + ⌈ 4y

64 ⌉ in the elastic version of
MISTY1.

We analyzed the elastic versions without the initial and final key dependent permuta-
tions to simplify the model since these permutations will only decrease the probability that
a specific differential characteristic occurs. Our analysis is independent of the key sched-
ule.4 The swap step is performed by selectingy consecutive bits from the round function’s
output to XOR and swap with they bits left out of the round function. In the implementa-
tion of elastic AES, the starting position of they bits selected rotates to the right one byte
each round. In elastic MISTY1, the starting position alternates between the left and right
halves of theb bit segment in addition to rotating to the right within the half block each
round.

When analyzing the state transitions for both elastic AES and elastic MISTY1, we
are concerned with how many byte positions have non-zero deltas. Therefore, we only
need to consider each block size whereY contains an integer number of bytes. The case
for y = 8x wherex is an integer such that1 ≤ x ≤ b

8 covers the cases ofy such
that 8(x − 1) < y ≤ 8x. For example, the lower bound on a differential characteristic
occurring for the case ofy = 8 is also the lower bound for values ofy in the range of1
to 7 because this range ofy influences exactly one byte inb-bit portion during each of the
swap steps.

In order to analyze the state transitions in elastic AES, we created a program that
tracks how many bytes contain a non-zero differential characteristic in each round and

4 In the constructions from [3], the stream cipher RC4 was usedfor the key schedule.



determines the possible next states. The number of bytes with a non-zero delta in theb-
bit portion in a single round bounds the probability that a differential characteristic holds
through that round. A lower bound on the differential probability for a single round of
AES is≤ 2−exp whereexp = 6 ∗ |∆Bin|. The multiplication by 6 is due to the fact that
the probability a specific difference in two one-byte inputsto AES’s S-Box produces a
specific difference in the two outputs of the S-Box is2−6 or 2−7, depending on the exact
byte values ([5] pages 205-206). For block sizes of 17, 18 ...to 32 bytes, the model was run
through three rounds for all possible input states. A lose lower bound for allr′ rounds was
then calculated by viewing ther′ rounds as 3 round segments plus 0 to 2 additional rounds,
depending on the exact value ofr′. Sequences producing a three round bound which did
not exclude the possibility of a differential attack were traced through subsequent rounds,
with the number of rounds depending on the exact size ofy and the probability produced
after each round. The results from our analysis show that theprobability of a differential
characteristic occurring is≤ 2−128−y. Therefore, a differential attack is impossible.

Our analysis of elastic AES is general in terms of block size but only considers a
single method for selecting the bits to swap (described previously) after each round as
opposed to all possible ways of selectingy bits from128 bits. In [4] it was proven that an
elastic version of a cipher is immune to any practical key-recovery attack if the original
cipher is immune to the attack regardless of the specific bit positions chosen for the swap
steps. Differential cryptanalysis is covered by this result. The state transition method can
be applied to any choice of bits to swap, but it is computationally infeasible to include in
one model all2y(r′−1) possible ways of selecting the bits to swap in the firstr′− 1 rounds
(recall that the swap step adds no value after the last round and thus can be omitted from
roundr′).

MISTY1 uses two functions, referred to asF0 andFL, as building blocks along with
a Feistel network.F0 is the round function in the Feistel network. In each cycle ofthe
Feistel network,FL is applied to one half of the data andFL−1 is applied to the other
half. An upper bound of2−56 on the probability a differential characteristic occurs was
derived for 4 cycles of the 64-bit version [8] by using a boundof 2−14 per cycle due
entirely to the bound from theF0 function. Using a manual analysis of state transitions
and only the bound for theF0 function, we derive an upper bound on the elastic version
of MISTY1 of 2−14(r′−1), wherer′ is the number of rounds (cycles of MISTY1) in the
elastic version. This bound is not tight and does not by itself eliminate the possibility of a
differential attack (either in MISTY1 or the elastic version). However, the state transition
analysis does reduce the number of state sequences that needto be investigated to tighten
the bound overr′ rounds. The bound of2−14(r′−1) also allows the potential contribution
needed from the initial and final key-dependent mixing stepsin preventing differential
attacks to be determined.

5 Conclusions

We showed how to convert a linear, or more generally any algebraic, attack on an elastic
block cipher into such an attack on the fixed-length version of the block cipher to prove
that if the fixed-length version is immune to such an attack then so is the elastic version.
This was accomplished by proving that any set of linear or algebraic equations used in an



attack on the elastic version can be converted in polynomialtime and memory into equa-
tions for the fixed-length version. We also devised a method for bounding the probability
of a differential characteristic on the elastic version of ablock cipher using the differential
bounds for the cycle of the fixed-length version of the cipher. When performing differential
cryptanalysis on an elastic block cipher, the differentialbound for the round function is the
bound from the cycle of the original version of the cipher. The swapping of bits between
rounds in the elastic version impacts the sequence of differentials entering the series of
rounds by altering the output of theith application of the round function before it is input
to the(i + 1)st application of the round function. The bound for the round function and
the impact of the swap step can be combined to bound the probability a differential char-
acteristic occurs in the elastic version of a block cipher. This is accomplished by defining
states representing whether or not there is a non-zero differential in theb-bit portion and/or
y-bit portion of the round’s input, then determining what states may potentially occur as
input to each round. The possible state sequences in the elastic version of the cipher are
combined with the probabilities a differential characteristic occurs in one cycle of the orig-
inal cipher to bound the probability of a differential characteristic across all rounds of the
elastic version of the cipher.
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