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Abstract. The elastic block cipher design employs the round functiba given,
b-bit block cipher in a black box fashion, embedding it in awmk structure to
construct a family of ciphers in a uniform manner. The fanislyparameterized by
block size, for any size betweérand2b. The design assures that the overall work-
load for encryption is proportional to the block size. Whensidering the approach
taken in elastic block ciphers, the question arises as tetheheryptanalysis results,
including methods of analysis and bounds on security, ®uotiiginal fixed-sized ci-
pher are lost or, since original components of the cipheuaeel, whether previous
analysis can be applied or reused in some manner.

With this question in mind, we analyze elastic block cipteerd consider the security
against two basic types of attacks, linear and differertiigptanalysis. We show
how they can be related to the corresponding security of ¥eelfiength version of
the cipher. Concretely, we develop techniques that takardgedyge of relationships
between the structure of the elastic network and the ofigiesion of the cipher,
independently of the cipher.

This approach demonstrates how one can build upon existimgpaonents to allow
cryptanalysis within an extended structure (a topic whiyroe of general interest
outside of elastic block ciphers). We show that any linec&ton an elastic block
cipher can be converted efficiently into a linear attack anftked-length version of
the cipher by converting the equations used to attack tistielsersion to equations
for the fixed-length version. We extend the result to any lalgie attack. We then
define a general method for deriving the differential chimastic bound of an elastic
block cipher using the differential bound on a single roufitthe fixed-length version
of the cipher. The structure of elastic block ciphers allos$o use a state transition
method to compute differentials for the elastic versiomfdifferentials of the round
function of the original cipher.

Key words: security analysis, linear cryptanalysis, differentigiptanalysis.

1 Introduction

Elastic block ciphers were designed to convert existingdfilemngth block ciphers into
variable-length block ciphers in an efficient manner. Femthore, the design allows certain
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properties of the fixed-length cipher to remain intact inetastic version, creating a well-
defined relationship between the security of the elasticfaxedl-length versions [3, 4].
Exploiting existing ciphers’ components in the design ofvregphers is not uncommon.
In the elastic block cipher case, since the cipher attenaptever a large range of block
sizes, a specific design for each size was traded againsteaajetesign methodology.
Naturally, in a general design, as opposed to an optimizetyddor a specific block
size, one may lose the ability to provide tight security badsjrbut security analysis is
required nevertheless. A natural approach when buildirangxisting components is to
reuse the security properties of the building blocks. Thuswork is concerned with how
the security of an elastic block cipher relates to the secafithe fixed-length version.

In more detail, we view elastic block ciphers as a categobfatk ciphers with (some-
what generic) design rules, and we consider how to evalhategecurity against the two
most basic types of cryptanalysis: linear [6] and diffel@rdryptanalysis [1]. The elastic
design is a generic approach that inserts the round funétion an existing block ci-
pher into a network structure (the elastic network). Thanesfnew methods are needed to
perform our analysis that are derived from the structurdefalastic network. Since the
approach taken in forming elastic block ciphers is nonitiauhl in the sense that it does
not focus on optimizing the design for a specific block sizge may dismiss the entire
idea and stick to usual designs of ciphers of fixed size; heweve believe that the idea
of having a substitution-permutation network that is diegible (i.e., the elastic network)
and is somewhat generic is an interesting subject that deseatvestigation. This work is
a step in this direction.

Concretely, we first prove that any linear attack on an elddtick cipher can be con-
verted in polynomial time and memory into a linear attack lom fixed-length version of
the cipher. This is done by showing how to convert the eqnatior such an attack on the
elastic version to an attack on the fixed-length versionrdfoee, if the fixed-length ver-
sion is immune to linear cryptanalysis, the elastic verssosso immune. We extend the
result to any algebraic attack. We then define a general détinaeriving the differential
characteristic bound of an elastic block cipher from théedéntial bound on a round of
the fixed-length version. We summarize our application efriiethod to elastic versions
of AES [9] and MISTY1 [7].

The remainder of the paper is organized as follows. In Se&jave briefly review the
construction of elastic block ciphers. In Section 3, we prthat a linear attack, or more
generally any algebraic attack, on an elastic block ciptngties that such an attack exists
on the fixed-length version of the block cipher. In Sectiorw4, define our method for
deriving differential bounds on an elastic block cipherct®m 5 concludes the paper.

2 Elastic Block Cipher Review

2.1 Overview

We briefly review the method presented by Coel,al, for creating elastic block ciphers
[3]. The method converts the encryption and decryptiontions of existing block ciphers
to accept blocks of sizeto 2b bits, whereb is the block size of the original block cipher.
The general structure of an elastic block cipher is shownigmfe 1. An elastic version
of a block cipher is created by inserting the cycle of theiaatfixed-length block cipher



into the network structure to form the round function of theséc version. In each round
the leftmosb bits are processed by the round function and the rightmnbis are omitted
from the round function. Afterwards, the rightmagbits are XORed with a subset of the
leftmostb bits and the results swapped. This swapping of bits may b#exhafter the last
round. The elastic version also includes initial and endahd whitening, and an initial
and final key dependent permutation. The number of expakdgdits required varies
based on the block size and the original block cipher. Thedaedule of the original
cipher is replaced with a generic key schedule that gerseeestenany expanded-key bits
as needed. Intheory, the expanded key bits can take on argyasatl we view the expanded
key bits in this manner in our analysis. For actual impleragohs, a stream cipher was
suggested as one option for the key schedule [3].
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Fig. 1. Elastic Block Cipher Structure [3]

We use the following notation:

— G denotes any existing fixed-length block cipher.

— r denotes the number of cycles@h where a cycle ir7 is the point at which alb bits
of the block have been processed by the round functiad.dfor example, ifG is a
Feistel network, a cycle is the sequence of applying theddunction ofG to the left
and right halves of thé-bit block. In AES, the round function is a cycle.

— b denotes the block length of the inputdbin bits.

— yis aninteger in the range, b].

— @' denotes the elastic version @fwith a (b + y)-bit input for any valid value of.



— 7’ denotes the number of roundsaii. r’ = r + [££].

— The round function oz’ will refer to one entire cycle ofs.

— The swap step will refer the step in which the rightmgdtits are XORed with a
subset of the leftmogtbits and the results swapped.

3 Linear Cryptanalysis

We consider linear attacks and algebraic attacks on elbktak ciphers in general. We
prove that any practical linear or algebraic attack on astieldlock cipherG’, can be
converted into a polynomial time related attack on the aagcipherG, independently of
the specific block cipher used f6f. We take advantage of the elastic block cipher structure
to define a linear relationship, if one exists, acressunds ofG’ in terms of any linear
relationship in a cycle ofy.

Linear cryptanalysis involves finding equations relatifgmtext, ciphertext and key
(usually expanded-key) bits via XORs that hold with protigbi; + o for non-negligible
«. Without loss of generality, we assume the equations arbenfdrm such that <
a< % and that the equations involve the expanded-key bits. Wetbminitial and final
key-dependent permutations in the elastic block ciphesitaotion when performing our
analysis in order to focus on the core structure of elasticlotiphers. The two permuta-
tions do not impact any relationship that exists acrossdbads ofG’.

We show that a linear relationship acressounds ofG’ implies such a relationship
acrossr cycles ofG. If any such linear relationship holds with a probabilityceuthat
fewer thar2(®—1) (plaintext, ciphertext) pairs are required for an attabkni is subject
to a linear attack that requires fewer plaintexts, on av@rdman an exhaustive search over
all plaintexts. Whether or not using the equations is coruprtally feasible depends on
number of (plaintext, ciphertext) pairs and the number ofedipns that must be computed.
If at least2(’—1) plaintext, ciphertext pairs are required for an attack-aounds ofG’,
then either the attack is infeasible emounds ofG’ from a practical perspective ¢¥ is
subject to a brute force attack in practice. Note that we asdilng with an attack on only
r rounds ofG’ and the probability of a linear relationship holding acre'ss= r + [ 2£]
rounds of G’ will be less than that for rounds. More specifically, if the attack d@r’
involves a maximum correlation between plaintext, cipéerand key bits which occurs
with probability < 27% onr rounds (thus requiring in practice 2° plaintexts), then an
attack or2r rounds involves a maximum correlation that occurs with piokity < 2-2
and requires> 22 plaintexts. In this case;” is practically secure against a linear attack
when[ %] = r. Adirect implication of our result is that i’ is subject to an attack using
any algebraic equations, as opposed to just linear eqatioen so i<>.

Theorem 1. Given a block ciphe& with a block size ob bits andr cycles, and its elastic
versionG’ with a block size ob + y bits for0 < y < b, if G’ is subject to a linear attack
onr rounds then eithe is subject to a linear attack or the resources exist to perfan
exhaustive search ai over all plaintexts, assuming the key schedules ahdG’ do not
produce message-dependent expanded keys, meaning amgedgay bits depend only
on the key and do not vary based on the plaintext or cipheingxit to the cipher.

Proof. We first note that if the linear attack arrounds ofG’ requires at least® (plain-
text, ciphertext) pairs then either the attack is compotetily infeasible ol is insecure



independent of the attack (since the attacker has the @=s®tw encrypp’ plaintexts).
Therefore, it can be assumed that the attackGomequires< 2° (plaintext, ciphertext)
pairs. The assumption that the expanded key bits do not depethe input to the cipher
(the plaintext or ciphertext) is true of block ciphers usegractice and of elastic block
ciphers. The theorem is proved by showing how a linear attac®’ can be converted into
an attack in. With no further assumptions about the key schedules, thétris an attack
that finds an expanded key f6f that produces théplaintext, ciphertext) pairs consis-
tent with G, but which may or may not adhere to the key schedul€ off the expanded
key is inconsistent with the key schedule@fthis itself indicates another weaknesgin
because it means there is some expanded key that is not abdythe key schedule 6f
but which produces the sanfglaintext, ciphertext) pairs thatG would produce when
using some key generated bys key scheduleife. the attack finds an equivalent key). If
the following three assumptions are placed on the expanelediks of G’, then the attack
on G will find a key consistent with the key schedule®@f

— The rightmosty bits of each whitening step i6¥ can take on any value and are
independent of any other expanded-key bits.

— Any expanded-key bits used in the round function of the firsbnsecutive rounds of
G’ can take on the same values as the expanded-key bits usedaydhs ofG.

— If G contains initial and end of cycle whitening, any expandeg-kits used for the
leftmostb bits of each whitening step in the firstconsecutive rounds @’ can take
on the same values as the corresponding whitening b in

To understand how a linear relationship (if one exists) leetthe plaintext, ciphertext
and expanded-key bits is determined €8x we first consider how a linear relationship is
derived for a block cipher structured as a series of rounttsiock lengthh and then add
the impact of the whitening and swap step to these relatipastive humber the rounds
from 1 tor. We will refer to any initial whitening step that occurs prio the first round
as round 0 and the round function of round 0 is just the initiaitening. The relationship
between the output of thg” round/cycle and the input to thg + 1)** round/cycle is
depicted in Figure 2 for bot¥ andG’.

We use the following notation for describing the relatidpstacross the rounds 6F:

— Two bits, 1 and z2, cancel each other in an equation meafsd 22 = 0 with
probability 1.

— Letu;; denote the!” bit of the input to the round function in round 1 < i < b,
0<j<r.

— Letw;; denote the®” bit of the output from the round function in rouridl < i < b,
0<j<r.

— Letn,; denote the number of expanded-key bits used in the roundifurio roundj,
0 < j < r. This does not include any end of round whitening added tmfGf, but
does include the end of round whitening if it is part of theleyaf G (as is the case
with AES). If G does not contain initial whitening, the round function irunal O is
the identity function anehy = 0.

— Letek;; denote the'" expanded-key bit in the round function in roupd < i < n;.

— LetL;([ujn,...up]®[vj1,...v5] ek, ...ekjn,]) denote the set of linear equations (if
any) relating the input, output and round key bits with n@gligible probability for
the round function in roung, 0 < j < r. We will abbreviate this a$ ;. An equation
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in L; holds with probability% + « for some non-negligible: such that) < o < %
For example, ifu12 @ v13 ® ekys = 0 with probability 0.75, this equation will be in
Ly. Any equation which reflects a negative relationship, megutihe equation holds
with probability% — «, is rewritten as an equation holding with probabili{yk Q.

— Without loss of generality, the equationslin are in reduced form; for example;s ©
ujo @ ujo = 1 will be reduced taujo = 1.

— Internal variables will refer to the set of; for 1 < j < r andv;; for0 < j <r —1,
with 1 < ¢ < b.i.e.,any variable corresponding to an input bit for rounds % t to
an output bit of rounds 0 (initial whitening step)ito- 1.

A linear relationship across consecutive rounds is obthiyecombining the linear equa-
tions for each of the rounds, withy; becomingu;1y;. A linear relationship exists that
involves only plaintext, ciphertext and expanded-key Hitthe intermediate round in-
puts and outputs (the internal variables) cancel when coimipthe per round equations,
leaving equation(s) involving only,;’s, v,;'s and expanded-key bits. For example, if in
G with two cycles:ui; @ vio = eky1 andugs @ veg = ekos. Then, sincevis = oo,
ur1 D ek11 ® vog = ekas.

We now consider how the steps between the rounds’ impact the linear relation-
ships across the rounds.

— LetY denote the rightmogt bits of the data block for & + y)-bit data block.

— Let I'" refer to the set of the equations used in a linear attack oounds of G’
formed from combining thé ;'s for the individual rounds along with the end of round
whitening and swap steps.

— Let I' refer to a set of linear equations fG6rformed from equations ifi”.



— Let kw;; denote the’ key bit used for the whitening step added in roynathen
constructingG’, 1 <i < b+yandl <j < r. kw; =0forl < < bif the cycle
of G includes end of cycle whitening advy; = 0 for 1 < i < bif G contains initial
whitening becausé&’ does not add whitening to thebits when it is already present.

— Letwj; denote the*” bit of theY” portion of the data, fot <[ < yand2 < j < r.
wj = v(j—1yn Dkwj_1), wherel < h < bandh is the bit position swapped with bit
positionl in the previous swap. When= 1, wy; = wo; @ kwoy4), the initial input
bit XORed with the initial whitening applied.

With the addition of the whitening and swap steps, the inpuhé round function is now
defined as:
— ujy1) = vji © kwj; whenvj; is not involved in the swap step.
= Uiy1)i = Vji D kwj; © wj © kwjp4g) Whenvy; is involved in the swap step. When
J > 2, this can be written as; 1); = vj; © kwj; © v(—1yn D kwi—1)n © kwjp4r)-

Notice that the steps between applications of the roundtiomin G’ maintain a linear
relationship between the output of one round and the inptiteohext round.

If the key schedule ofs’ produces whitening bits which are created independently of
the key bits used within the round function (to the extent tha key bits are pseudo-
random), and of the round function’s input and output, the@b@ening bits will cancel
with anyvj;, uj1 and/orek;; with probability 2 + e for negligiblee (i.., there is no
discernable relationship between these whitening bitsaaycbf the plaintext, ciphertext
and expanded-key bits used internal to the round functioddsipnition of the key sched-
ule). Thus, théiw,;'s added when forming” will not increase the probability of a linear
relationship between plaintext bits, ciphertext bits axypbaded-key bits used in the round
function. If a key schedule is used fof that does not guarantee independence amongst
the kw,;’s and that results in cancellation among sokne;;’s, this is merely cancelling
variables that are not present in the linear equations foralind function and thus will
not simplify the equations or increase the probability graiequation holds acrossap-
plications of the round function.

Now we assume a set of equatiofi$, exist forG’ that contains no internal variables
and show how to convert them to a set of equationgfo6Given the sets[.;’s, of linear
equations for the round function &', these same sets of equations holdddrecause the
elastic version does not alter the cycle@fThese equations are combined across cycles
as was done for the rounds @f, except to form the input to one cycle from the output of
the previous cycle, the impact of the swap step and any whigaadded when forming”’
is removed as follows:

— Setkw;; to 0 for0 < j < randl < i < b so these whitening bits are omitted
from the resulting equations. This removes any initial amdl @ round whitening that
was added to the leftmogbits when forming’. Recall that ifG had initial and end
of cycle whitening, it was treated as part of the round funtof G and additional
whitening on the leftmosdi bits in each round was not added when formég(i.e.
kw,;; was already 0 in the equations f6f for 0 < j < r andl < i < b).

— Setkwyp4) = 0 andkwy 4y = 0for 1 < 1 < y. This sets the rightmogt bits of
the initial whitening and of the end of round whitening in firet round to 0. By using
plaintexts that have the rightmaogbits set to 0, this results in the rightmasbits in
the first round having no impact on the equations.



— Setkwjyqq) tovj_y, for2 < j <r —1andl <1 < y, whereh is the index in
the leftmostb bits corresponding to the bit position swapped with ifebit of the
rightmosty bits. This removes the impact of the swap steps by havingigimmost
y bits of whitening in each round cancel with thebits omitted from each round.
These settings are needed only on rounds 2 threugh. The output of the*” round
function is the ciphertext so the swap step is not applicafiker thert” round. Per
the previous item, the rightmogtbits in the first round can be set to have no impact
on the equations. Each such setting can add an internabl@rig; _1),,, which now
equalsu;, to the equations.

These settings result in each input bit to thiet+ 1)*¢ round function being of the form
u(j+1y; = vj; and the impact of any added end of round whitening and the stegbeing
removed. The equations will combine to form a set of equatibrfrom the equations in
I'" with anykw;;'s which appear if” removed and with at mo$t —2)y internal variables
added to the equations. Before explaining how these vasatdn be accommodated, we
first state a few additional notes on the resulting equatibne equations ii” may contain
up toy extra plaintext bits and up tpextra ciphertext bits beyond tthebit block size ofG
sinceG’ processes + y bit blocks. The attacker can set these extrangquiaintext bits
to any value (the whitening bits were set in the conversigetlaon these plaintext bits
being set to 0) and the extgaciphertext bits are identical tg of the bits output from the
next to last round function. For any equatiBiy’ € I" that holds with probability + c,
the corresponding equatiohlg € I, formed by removing théw?’,s from Eq" will also
hold with probability% + «a. Furthermore, only variables representing whitening ibits
present in are deleted when convertidd to I" and no equations are added or removed.
An equation will not disappear when removikg;; variables because that would imply
the equation did not involve plaintext and/or ciphertexs bi

We now address the presence of the internal variables. iBince it was assumed
I’ consists entirely of equations involving only plaintexipfeertext and expanded-key
bits, the removal of the swap step can introduce upg toternal variables(v;; ), per
round (cycle) into the equations. The removal of the swap 8tgactsr — 2 rounds
(cycles), resulting in a maximum @f — 2)y internal variables in the equations In If
equations il corresponding to somg > 0 are converted directly into equations for the
original cipher § = 0), this results in at mog("~2)¥ possible values to try for the internal
variables. However, it is possible to make the number of siathes to test linear iy
instead of exponential ip. Instead of converting the attack ¢f directly to an attack on
G, repeatedly decreageone bit at a time (decrease the block size58f converting the
attack on’ with ab+n bit block size to an attack o’ with ab+n —1 bit block size, for
n =1y,y—1,..1.WhenI" is converted into a set of equations for the cipher corredjmon
to ab+ y — 1 blocksize, there are at mast- 2 internal values, one for each of rounds 2 to
r — 1, and therefore at mo&t—2 possible combinations of values for the internal values.
Letl},, , denote this set of equations. Using (plaintext,cipheyteairs with ab +y — 1
bit block size, solve the equations, settingthe2 internal variables in the equations to the
specific values that result in a solution consistent with(fiaintext, ciphertext) pairs. In
the worst case, all possible combinations of values forriteral variables must be tested
in the equations, resulting in at mast —2) combinations to test. Then repeat the process,
decreasing the block size one bit at a time. In each iterati@ne are at most— 2 internal
variables whose values need to be determined.



More formally, givenG’ with a block size ob + y bits, whered < y < b and the set
of linear equationg™ used to attack consecutive rounds af':

- Let Gy, refer to an elastic version @ with a (b + n)- bit block size, wheré <
n < y.

- Let Iy, referto the set of linear equations foconsecutive rounds a@f; , with at
mostr — 2 internal variables present in the equations.

- Let I, refer I, with the values of the internal variables determined. This i
set of linear equations involving only plaintext, ciphettend expanded key bits for
rounds ofG7 ..

— Let Ay, refer to the attack ot usingl7 .

Convert the attack o6” to an attack ort? as follows:

n=uy
Fl:+n:‘l—”
while (n > 0) {

convert/y, to Iy, _,

!Jsmg (plamtext,m_phertext) pairs f_aﬂgfnfl, solve for any
internal variables iy, _, to obtainl; ;.

ne—n-—1

}

The set of equationd;, used to attacks will be I7. This results in at most¥ 2("=2) =
y2("=2) possible combinations of the internal variables to try agosed to< 2("—2)v
combinations. Since is constant (and small in practice) ands bounded by, which is
constant, the amount of work in converting the attackito an attack oid- is polynomial

in the time to attacky’, specifically, the work is bounded by a constant times the tion
attackG’. For example, in AES with a 128-bit kely,= 128 andr = 10, thusy < 128
andy(2(7=2) < 128 x 256 = 32768. The amount of memory required is linear in the
amount of memory required to attacK. In the worst case, a separate amount of memory
is required when forming eadfj , .. Thus, a linear attack onvaround version oz’ that
requires less tha2f (plaintext, ciphertext) pairs implies a linear attack éxisnG.

Theorem 1 can be applied to algebraic equations in genenadldebraic attack on a
block cipherG is defined in the same manner as the linear attack with thefioaiibn
that the equations can involve any algebraic operatiortgusbXORs.

Lemma 1. Given a block ciphet; with a block size ob bits andr cycle, and its elastic
versionG’ with a block size ob + y bits for0 < y < b, if G’ is subject to an algebraic
attack orw rounds then eithe€ is subject to an algebraic attack or the resources exist to
perform an exhaustive search ¢hover all plaintexts.

Proof. The proof follows directly from the proof to Theorem 1 by rerimm the qualifi-
cation in Theorem 1’s proof that the equations in fhesets are linear. Now” andI’
contain algebraic equations instead of only linear equatib is formed fromI™ exactly
as before (the conversion adds only XORs of variables to qu@tions). Therefore, if an
algebraic attack exists anrounds ofG’ then an attack exists af.



4 Differential Cryptanalysis

4.1 Overview

We consider how the conversion of a block cipher to its atafstim impacts differen-
tial cryptanalysis. We define a general method for boundiegorobability a differential
characteristic occurs in the elastic version of a ciphermgigen the bound for a single
round of the original cipher. We have illustrated the metbackelastic versions of AES
and MISTY1 in [2]. We use the symbal to refer to the XOR of two bit strings. The
sequence ofA inputs and outputs of the rounds of a block cipher is a difféad charac-
teristic. Specifically, le{P1,C1) and(P2,C2) be two (plaintext, ciphertext) pairs for a
block cipher withr rounds. AP = P1® P2 andAC = C1®C2. Let\;; refer to the delta
input to round; and let),; refer to the delta output of round A\;; = AP. A\, = AC.
Let pr; be the probability\,; occurs given\;;. Let 22 = (X1, o1, Ai2, Ao2---Air, Aor)-
The probability2 ocurrs is[ ;=] pr;. If the block size ish bits, it is sufficient to show
that no differential characteristic occurs with probabpitc 2 in order to prove a cipher
is immune to differential cryptanalysis (because this iagb 2° (plaintext, ciphertext
pairs) are required for the attack).

The variable block size and the swap step in elastic blodkessignificantly increase
the number of cases to explore when determining the prababfla differential charac-
teristic compared to that of the fixed-length version of ackloipher. This is the reason
why we had to find a new approach to modelling the differesiiastead of using an ex-
isting approach, such as the differential trails approagdwn AES [5]. Furthermore, the
structure of elastic block ciphers allows analysis perfedran the fixed-length version to
be partially reused when evaluating the elastic version.

The method we use to bound the probabilities of differertferacteristics for an
elastic block cipher involves defining states representihigh bytes in the differential
input to a round have a non-zero delta and tracking what semseof states the cipher
can potentially pass through over a number of rounds. Usiisgniethod and differential
bounds for the round function of the original cipher, we canive an upper bound on
differential characteristics for the elastic version ofipher. We exclude the initial and
final key-dependent mixing steps from our analysis in ordeiotus on the core struc-
ture and these permutations will only reduce the probghiftany specific differential
characteristic occurring.

4.2 General Observation

The first observation we make regarding differential crpptgsis of elastic block ciphers
is that, unlike linear cryptanalysis where the equationgife elastic version;’, of a block
cipher can be converted directly into equations for theinabcipherG, a differential
characteristic folG’ cannot be converted directly into a differential charastier for G
except for one special case.

We use the following notation when describing a differdraifmracteristic of an elastic
block cipher.

— AY; is the XOR of twoy-bit segments for round
— ABin,; is the XOR of twob-bit segments input to the round function in round



— ABout; is the XOR of twob-bit segments output from the round function in round

— A b-bit value formed from the XOR of &bit value and a-bit value, where; < b,
refers to theé-bit result when the bits are XORed with a subset ghits of theb bits
and the remaining — y bits are unchanged.

— Forming AY; ., from ABout; refers to settingAY; to they bits from ABout; that
are in the bit positions involved in the swap step after round

— AY, ABin andABout without a subscript of refers to a specific delta independently
of the round.

ABin, ABin, AY,
Round
Cycle Function
ABout; ABou, éB/
ABinm ABiHiH
Round
Cycle Function
ABout,,, ABout;,, AY,,,
Original Version Elastic Version

Fig. 3. Differential in Original and Elastic Versions of a Cipher

In the elastic version of a ciphefdBin;,, is determined byABout; and AY;. If
AY; # 0thenABin;1 # ABout;; whereasABin;1 = ABout; in the original block
cipher. This is shown in Figure 3. Therefore, a sequenceltdglecurring across multiple
rounds in the elastic version will not hold across the o@dgjirersion unlesg\Y; = 0 for »
sequential rounds.

Now we consider the special case whensecutiveAY;'’s are 0.

Lemma 2. If a differential characteristic occurs in the elastic viens, G’, of a block ci-
pher that containg consecutive rounds witlY; = 0 and this characteristic can be used
to attackG’, then it can be used to attack

Proof. Let {2’ be the characteristic corresponding to thBin; values andA Bout; values
for ther consecutive rounds each with; = 0. {2 is also a characteristic for therounds
of G. £’ must hold with probability> 2~°~% to be used in an attack @. If 2’ holds with
probability2=* > 2%, then it can be used to attackdirectly, provided the probability
is large enough that it is computationally feasible to ept€)(2%) plaintexts.



If it holds with probability2—* such tha—* > 2— > 27=¥ it can be used to attack
G as follows: Using an round version ofz’ and (plaintext, ciphertext) pairs consistent
with the delta input and delta output 6f by setting the leftmosh bits to be consistent
with £’ and the rightmosy bits to have aA of 0. Then apply the attack a@’ to find the
round keys for the: rounds and use these as the keys forthgcles ofG.

However, if this later case whee? > 27 > 27%=¥ js computationally feasible, it
implies it is computationally feasible to encry®t plaintexts withG. ThusG is insecure
because given a ciphertext, an attacker can ask for @b plaintexts be encrypted with
the same key (which is unknown) used to genetatand see which plaintext produces
C'. As an estimate of the probability efconsecutive rounds havingY = 0, consider
what happens if the bits left out of each round iz’ take on any of the possib¥
values with equal probability. Then, ignoring the diffetiahfor the b-bit portions of each
round’s input and output, a case whet&; = 0 for r consecutive rounds may be found
for small values of; andr. If each AY; occurs with probabilityz—¥, then the probability
that AY; = 0 in r consecutive rounds &~ ¥". For example, in MISTY1;y = 4 (MISTY1
contains four cycles and a cycle is used as the round funictithre elastic version). When
y = 1, the probability ofr consecutiveAY'’s being zero isll—6.

4.3 State Transition Method

We now consider how to evaluate any elastic block cipherfaimity or susceptibility to
differential cryptanalysis by using the bound from a sirgylele of the fixed-length version
of the cipher.

Theorem 2. The differential probabilities from the cycle of a fixeddémblock ciphei?
can be used to bound the probability that a differential @weristic occurs in its elastic
versionG’.

The general method we use is the tracking of states throwghotimds of an elastic
block cipher. We devise a method for categorizing the impéthe swapping of bits be-
tween rounds on the differentials entering a round. We camtiie impact of the swap step
with the upper bound on the probability a differential cledeaistic occurs in a single ap-
plication of the round function (from available analysis@)to determine an upper bound
the probability of a differential characteristic acrossltiple rounds inG’. By obtaining a
bound,z, on the probability across rounds inG’, the probability acrosg' rounds can be
bounded by: 1%/

In the case where the round function @fis a cycle, such as in AES, we view the
(b+ y)-bit data block entering a round 6f as ab-bit segment and g-bit segment. Three
main states are defined:

(ABin = 0andAY # 0), (ABin # 0 andAY = 0), (ABin # 0 andAY # 0)

The state in whickABin = 0 and AYin = 0 is not of interest because, given a non-zero
delta input to the cipher, a delta of zero acros$all y bits cannot occur. Within a main
state, the number of bytes for which the delta is non-zercauated. For example, if the
input to the third round has ABin that is 1 in the2”? and18*" bit positions and is zero
in all other bits, then there are two bytes with non-zeroaseih A Bin. Tracking of states
between rounds involves determining whsBin||AY can result for thei + 1)t round



based on the delta in th& round. For example, i\ Bin = 0 andAY # 0 in the input to
roundi, thenABin # 0 andAY = 0in round: + 1. This is because the delta output of
thei" round function will be zero, then the non-zefAd” will be swapped into thé-bit
portion input to the(i + 1)t round and a delta of zero will be swapped out to form the
AY for the (i + 1)* round.

When the original cipher is a Feistel network (or is a Feigtglvork with additional
steps as in the case of MISTY1), th®&Bin portion is viewed as a left hali{Lin) and
right half (ARin). The main states are the seven combinationd bf AR and AY being
= 0 or # 0 with at least one being 0.

Using the states, an upper bound (which is not necessarightiupper bound) can
be determined for the probability of a differential chaeaidtic forr’ rounds ofG’. The
probability of a differential characteristic occurring fa single application of the round
function of G and the possible\ B or AL||AR values entering the round function in each
round are used to bound the probability for a roundz6f The possibleAB or AL||AR
and AY values in a round determine the possible input states togkeraund ofG’.

4.4 Examples

We applied the state transition method to the elastic vessaf AES and MISTY1 de-
scribed in [3]. The process and results are described inN2]briefly state the results of
the work here. Elastic AES is an example in which the inputacheround is viewed in
the form of ABin||AY. AES is a 128-bit block cipher with 10 rounds. The number of
rounds,, in the elastic version i$0 + (%1. Elastic MISTY1 is an example in which
the input to each round is viewed in the formaAfL || AR||AY . MISTY1 is a 64-bit block
cipher involving four cycles of a Feistel network.= 4 + [‘é—g] in the elastic version of
MISTY1.

We analyzed the elastic versions without the initial andl ke dependent permuta-
tions to simplify the model since these permutations willyatecrease the probability that
a specific differential characteristic occurs. Our analysindependent of the key sched-
ule? The swap step is performed by selectingonsecutive bits from the round function’s
output to XOR and swap with thebits left out of the round function. In the implementa-
tion of elastic AES, the starting position of tpebits selected rotates to the right one byte
each round. In elastic MISTY1, the starting position alédes between the left and right
halves of the) bit segment in addition to rotating to the right within thdftdock each
round.

When analyzing the state transitions for both elastic AE& elastic MISTY1, we
are concerned with how many byte positions have non-zerasierherefore, we only
need to consider each block size wh&reontains an integer number of bytes. The case
for y = 8z wherex is an integer such that < z < g covers the cases af such
that8(z — 1) < y < 8z. For example, the lower bound on a differential charadieris
occurring for the case af = 8 is also the lower bound for values gfin the range ofl
to 7 because this range gfinfluences exactly one byte inbit portion during each of the
swap steps.

In order to analyze the state transitions in elastic AES, veated a program that
tracks how many bytes contain a non-zero differential attarstic in each round and

4 In the constructions from [3], the stream cipher RC4 was tisethe key schedule.



determines the possible next states. The number of bytésawibn-zero delta in thi

bit portion in a single round bounds the probability that #fedéntial characteristic holds
through that round. A lower bound on the differential probgbfor a single round of
AES is< 27°*P whereexp = 6 * | ABin|. The multiplication by 6 is due to the fact that
the probability a specific difference in two one-byte inpttsAES’s S-Box produces a
specific difference in the two outputs of the S-Boxis’® or 2-7, depending on the exact
byte values ([5] pages 205-206). For block sizes of 17, 18 32 bytes, the model was run
through three rounds for all possible input states. A loseldound for all’ rounds was
then calculated by viewing thé rounds as 3 round segments plus 0 to 2 additional rounds,
depending on the exact value ©f Sequences producing a three round bound which did
not exclude the possibility of a differential attack weraced through subsequent rounds,
with the number of rounds depending on the exact sizgaid the probability produced
after each round. The results from our analysis show thaprtbleability of a differential
characteristic occurring is 2128-v, Therefore, a differential attack is impossible.

Our analysis of elastic AES is general in terms of block siae dnly considers a
single method for selecting the bits to swap (describedipusly) after each round as
opposed to all possible ways of selectingits from128 bits. In [4] it was proven that an
elastic version of a cipher is immune to any practical kegowery attack if the original
cipher is immune to the attack regardless of the specificdsitipns chosen for the swap
steps. Differential cryptanalysis is covered by this restihe state transition method can
be applied to any choice of bits to swap, but it is computatilyrinfeasible to include in
one model alRv("'~1) possible ways of selecting the bits to swap in the fitst 1 rounds
(recall that the swap step adds no value after the last ronddhais can be omitted from
roundr’).

MISTY1 uses two functions, referred to &% and F'L, as building blocks along with
a Feistel networkF0 is the round function in the Feistel network. In each cyclehaf
Feistel network F'L is applied to one half of the data addl ! is applied to the other
half. An upper bound 0256 on the probability a differential characteristic occursswa
derived for 4 cycles of the 64-bit version [8] by using a bowid~'* per cycle due
entirely to the bound from th&'0 function. Using a manual analysis of state transitions
and only the bound for th€'0 function, we derive an upper bound on the elastic version
of MISTY1 of 2714~ wherer’ is the number of rounds (cycles of MISTY1) in the
elastic version. This bound is not tight and does not byfitdghinate the possibility of a
differential attack (either in MISTY1 or the elastic vemrs)joHowever, the state transition
analysis does reduce the number of state sequences thabraethvestigated to tighten
the bound over’ rounds. The bound df~14("'~1) also allows the potential contribution
needed from the initial and final key-dependent mixing stepgreventing differential
attacks to be determined.

5 Conclusions

We showed how to convert a linear, or more generally any a&gebattack on an elastic
block cipher into such an attack on the fixed-length versiotine block cipher to prove

that if the fixed-length version is immune to such an attaektso is the elastic version.
This was accomplished by proving that any set of linear ogladgic equations used in an



attack on the elastic version can be converted in polynotinie and memory into equa-
tions for the fixed-length version. We also devised a metloddunding the probability
of a differential characteristic on the elastic version bfack cipher using the differential
bounds for the cycle of the fixed-length version of the cipWiéren performing differential
cryptanalysis on an elastic block cipher, the differert@ind for the round function is the
bound from the cycle of the original version of the ciphere®wapping of bits between
rounds in the elastic version impacts the sequence of diffeals entering the series of
rounds by altering the output of thi& application of the round function before it is input
to the (i + 1)** application of the round function. The bound for the roundction and
the impact of the swap step can be combined to bound the pilitpaldifferential char-
acteristic occurs in the elastic version of a block ciph&isTs accomplished by defining
states representing whether or not there is a non-zerodiffial in theb-bit portion and/or
y-bit portion of the round’s input, then determining whattesamay potentially occur as
input to each round. The possible state sequences in th&celassion of the cipher are
combined with the probabilities a differential characticioccurs in one cycle of the orig-
inal cipher to bound the probability of a differential chetexistic across all rounds of the
elastic version of the cipher.
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