
Defending Against Next Generation through
Network/Endpoint Collaboration and Interaction

Spiros Antonatos*, Michael Locasto+, Stelios Sidiroglou+

Angelos D. Keromytis+ and Evangelos Markatos*

 * Foundation for Research and + Department of Computer Science
Technology Hellas (FORTH-ICS) Columbia University

 Greece USA

1 Problem Statement

Over the past few years we have seen the use of Internet worms, i.e.,
malicious self-replicating programs, as a mechanism to rapidly invade
and compromise large numbers of remote computers [SPW02]. Although
the first worms released on the Internet were large-scale, easy-to-spot
massive security incidents [MSB02, MPS+03, SM04, BCJ+05b], also
known as flash worms [SMPW04], it is currently envisioned (and we see
already see signs, in the wild) that future worms will be increasingly
difficult to detect, and will be known as stealth worms. This may be
partly because the motives of early worm developers are thought to have
been centered around self-gratification brought by the achievement of
compromising large numbers of remote computers, while the motives of
recent worm and malware developers have progressed to more mundane
(and sinister) financial and political gains. Therefore, although recent
attackers still want to be able to control a large number of compromised
computers, they prefer to compromise these computers as quietly as
possible, over a longer period of time, so as to impede detection by
current defense mechanisms. To achieve stealthy behavior, these
attackers have started using, or at least have the capacity to use, a wide
variety of mechanisms that will make their worms more difficult to
detect. Such mechanisms might include:

·Encryption: Attackers may communicate with the potential victim
using a secure (encrypted) connection, making it difficult for network-
based Intrusion Detection Systems [Roe99, XCA +06] to spot their
attempted attack.

·Metamorphism: The body of worms usually contains some initial
code that will be executed when the worm invades the victim
computer. Metamorphism obfuscates this code by adding various
instructions to it, and/or by substituting blocks of instructions with
equivalent blocks of other instructions [SFOl]. In this way, two
"copies" of the worm would appear to be completely different from
each other, confusing worm detection systems that depend on all
copies of a worm being practically identical [SEVS04, KK04,
AAM05].

·Polymorphism: Polymorphic approaches obfuscate the worm's body
by encoding it and prepending a decoder. When propagating, the worm
mutates its body so that two "copies" of the worm would look
completely different from each other (modulo the body of the encoder)
[Szo05, DUMU03, K20l]. Much like metamorphic approaches,
polymorphic systems confuse worm detection systems.

·Hit Lists: The first versions of recent worms selected their victims
pseudo-randomly, i.e., by generating a random IP address in the range
0.0.0.0 to 255.255.255.255. It has been proposed however, that worms
may be more effective if they first create a hit-list of all vulnerable
computers and then attack only computers in that hit-list [SPW02,
AAMA05]. This hit-list may even be filtered to exclude honeypots1.
Armed with a hit-list, a worm is able to compromise a number of
vulnerable computers, while generating the minimum amount of traffic
possible, limiting the effectiveness of defense mechanisms that detect
visible traffic anomalies.

·Hybrid Worms: Traditionally, worms have exploited vulnerabilities
in applications and services open to Internet traffic. However, as more
computers are located behind firewalls and NATs, they are
theoretically protected from such types of attacks. Unfortunately,
worm developers may exploit several different invasion paths

11A honeypot is a computer waiting to be attacked. Once attacked, the honeypot
records as much information as possible so that the administrators will be able
to characterize the attack and possibly generate a signature for it.

including, infected email attachments, infected files shared through
peer-to-peer (P2P) networks, and infected files accessed through
locally shared disks [KE03].

·Defense Mapping: Many of the proposed (and deployed) techniques
for detecting and countering new attacks use honeypots as early-
warning systems [Spi03, DQG+04, YBP04, CBMM04, BCJ+05a,
RMT05, MVSOl]. However, recent work has shown that attackers can
exploit certain features and aspects of honeypot behavior to identify
and avoid such detectors [BFV05, SII05, RMT06]. Combined with hit-
lists, this can render worms (especially slow-spreading ones) and other
automated attacks virtually undetectable.

·Client-side Attacks: In the past few years (2005-2006) we have seen
an increase in the use of zero-day attacks aimed at client software
(especially browsers, but also various types of document viewers such
as Microsoft Word, Excel and PowerPoint, and Adobe Acrobat). Other
than stand-alone, host-based intrusion detection/prevention
mechanisms (such as virus scanners), very little has been done in
hardening vulnerable client systems.

1.1 Impact of failing to solve the problem

Compromised computers can be used to cause harm to third parties or
even to cause harm to their traditional owners.

·Attacks to third parties: Recent worm writers organize
compromised computers into botnets, i.e., armies of hosts that are
primarily used for malicious acts, including launching of Denial of
Service (DoS) attacks, blackmailing, sending of SPAM mail, click
fraud, theft of intellectual property, and even identity theft. One would
envision that botnets in the future could be used for political warfare
purposes as well.

·Attacks to the owners of compromised computers: A compromised
computer can be used to steal private data and facilitate identity theft.
Unfortunately, once ordinary users start to realize the dangers of a
compromised computer, they will probably get increasingly less
inclined to trust their computers for financial transactions or private
communications. This will probably impede the adoption of an
information society and may eventually reduce its overall spread and
impact.

2 R e s e a r c h D i r e c t i o n s

Over the last five years significant research has been conducted in the
area of detection and containment of cyber-attacks. Indeed, we believe that
we have currently reached the point where it is possible to readily detect
one particular class of worms: rapidly spreading and massively parallel
flash worms. However, it is unclear we have the technical knowledge or
the deployed mechanisms in order to detect and contain stealth attacks.
Using a combination of the techniques described earlier, such attacks can
become invisible (or at least very difficult to detect) to network-based
defenses.

Our view is that such attacks can only be detected via large-scale
collaboration among end-hosts: by exchanging and correlating relevant
information, it is possible to identify stealthy attacks, and to take
appropriate measures to defend against them, or at least quarantine those
nodes that appear to have been compromised. Specifically, we believe that
it is increasingly important to include home and small business computers
in the attack-detection process. These computers are increasingly
becoming the primary targets of most attackers. Therefore, including them
in the worm- (or, more generally, attack-) detection process will increase
the chances of attack detection. Exemplifying a large range of access
patterns and a large range of applications, these computers typically tend
to have more representative configurations than the traditional honeypots
currently being used in worm detection. Furthermore, ordinary computers
being used by their regular owners are more difficult to be categorized as
honeypots and avoided by future attacks. The inclusion, however, of home
computers in the detection process, should (1) guarantee the safety of the
end computer and (2) the minimum possible intrusion in the ordinary use
of the computer. Towards this direction, we propose two systems:
Honey@home and Application Communities. We give a high-level
description of both systems in the next two sections, both as concrete
examples of collaborative defense mechanisms and to motivate further
work in this direction.

On the other hand, we are not completely discounting network-based
defenses: rather, we believe that such defenses must be integrated with
end-host defenses. In the past, network and end-host security were viewed
as two distinct areas that were meant to complement each other but kept
separate. While this allowed for a clean separation between the respective
security mechanisms, it also meant that the potential of both was stunted.
Furthermore, by keeping them isolated, it was (and is) impossible to
exploit scale for defensive purposes. Exploiting scale is something that

attackers have learned to do well, as evidenced by such phenomena as
distributed denial of service attacks, self-propagating worms, and botnets.

The industry is beginning to follow such an approach, albeit in a
fragmented, ad hoc fashion. For example, several enterprises exchange
alert and IDS logs through sites such as DShield.org; anti-virus vendors
with extensive presence on the desktop are correlating information about
application behavior from thousands of hosts; network security and
monitoring companies perform similar correlation using network traces
and distributed black-holes (honeypots). To the extent that such
approaches are being explored, they seem largely confined to the realm of
information gathering. This also largely seems to be the situation with the
US Department of Defense and the various intelligence agencies. For
example, DARPA is currently funding the Application Communities effort,
which seeks to leverage large software monocultures to distribute the task
of attack monitoring - again, an approach confined to the end-host.
Previous work (notably in the DARPA OASIS program) looked into the
space of reactive security, but only considered small-scale environments.
Arguably, we need to extend the reach of our collaboration-based
mechanisms to counter such pervasive threats as DDoS and botnets.

Thus, we argue that it is important to transition into an network
architecture design where networks and end-hosts, in various
combinations, can elect to collaborate and coordinate their actions and
reactions to better protect themselves (and, by implication, the network at
large). There are several research issues arising in such an environment,
including:

·What problems are best addressed through a collaborative approach;

·New mechanisms at all levels of the network architecture (routers,
protocols, end-hosts, processes, hardware) that are "collaboration
friendly";

·Metrics that quantify the security of collaborative approaches over
non-collaborative approaches ;

·Who to trust, and to what extend;

·How to prevent attacks that exploit such mechanisms, including

insider threats;

·Command-and-control vs. loose-coupling mechanism composition.

Furthermore, in an era of distributed software services (what is

fashionably called "Web 2.0"), no single application, node, or network has
enough information to detect and counter high-level semantic attacks, or
even some of the more conventional web-based malware (e.g., cross-site
scripting attacks). Large-scale distributed systems require large-scale
distributed defenses. This is particularly true within specific application
domains (such as health care and industrial SCADA control), where large-
scale collaborative (but independent) defenses will allow better control to
critical information and resources.

3 Honey@home

 Traditional honeypot architectures are based on monitoring unused IP
addresses located at specific institutes and organizations [CBMM04]. This
unused IP address space, also called “dark space”, is easy to identify and
thus be blacklisted by attackers [BFV05]. Furthermore, all honeypot tech-
nologies rely on the size of the dark space in order to be effective; the
more dark space is used, the faster and more accurate the results obtained.
To overcome these two problems, Honey@home [AAM07] empowers or-
dinary users and organizations, institutes and enterprises, who are not fa-
miliar with honeypot technologies, to contribute their dark space to a net-
work of affined honeypots. Many public bodies, universities and even
home users do not use all the address space they possess. They also do not
have the expertise to setup and maintain a honeypot to monitor that unused
space. Honey@home fills that gap by installing a virtual honeypot to the
machine(s) of unfamiliar users. Several other “@home” approaches, like
Seti@home and Folding@home, have shown that users can contribute sig-
nificantly towards a common goal.
 Honey@home is designed to be used by people unfamiliar with
honeypot technologies. From the user perspective, no configuration is
needed. Honey@home is a cross-platform tool that requires minimal
resources and can run unsupervised at the background, just like modern
messengers. Its basic functionality is to claim an unused IP address
through the DHCP server of the local network it is installed on and
forward all the traffic going to that address to a centralized farm of
honeypots. The centralized farm runs multiple services/applications, and
processes all the traffic received from Honey@home clients. Central
honeypots will provide answers to the received traffic and send them back
to the Honey@home clients. From their side, Honey@home clients will
send the responses from honeypots back to the originators of the attack.
The attacker is under the impression that she communicates with the
address claimed by Honey@home client, but in reality she communicates

with a central honeypot that gathers, analyzes, and responds to her attacks
and probes. More advanced users can manually declare their dark space
and contribute more than one unused IP address. The centralized farm is
implemented by a number of Argos [PSB06] honeypots that are able to
catch previously unknown attack vectors.
 Honey@home enables the creation of an infrastructure where the
monitored dark space is distributed over the network and can become
arbitrarily large, depending on the number of Honey@home clients.
Although the idea of forwarding traffic destined for an unused IP address
to a centralized farm of honeypots may sound simple, there are several
challenges behind the Honey@home approach. First, participating clients
should be undetectable. If an attacker can easily determine whether an
address is monitored by Honey@home, clients can be blacklisted and not
contribute to the overall infrastructure. (Note, however, that this could be
turned into a defensive advantage by acting as a deterrent.) Second, central
honeypots must be hidden so that they cannot be remotely exploited or
otherwise attacked. Finally, the installation of mock clients that will
overload the central honeypots with nonsense traffic must be prevented.
Honey@home tries to deal with these challenges by employing various
techniques, like anonymization networks [Tor03] to hide honeypots and a
registration process to prevent massive automatic installation of fake
clients.

4 Application Communities

 An Application Community (AC) is a collection of congruent instances
of the same application running autonomously on end-hosts distributed
across a wide-area network, whose members cooperate in identifying
previously unknown flaws/attacks [AC06]. By exchanging information, the
AC members may be able to prevent the failure from manifesting in the
future. Although individual members may be susceptible to new failures,
the AC should eventually converge into a state of immunity against a
particular fault, adding a dimension of learning and adaptation to the
system. An AC may be considered a “virtual honeypot” composed of many
machines/applications that are in actual use (i.e., they are not passive, non-
guided entities as traditional honeypots are); AC members contribute a
share of their resources (such as CPU cycles) towards the processing done
by this virtual honeypot. By using real applications and systems as
detectors, Application Communities can identify targeted attacks, attacks
that exploit specific state, or attacks that require user action (e.g., for client
applications such as web browsers). The size of the AC, in terms of
number of participating nodes, impacts coverage (in detecting faults) and

fairness (in distributing the monitoring task) [ASA05]. An AC is composed
of three main mechanisms, for monitoring, communication, and defense,
respectively.
 The purpose of the monitoring mechanism is the detection of
previously unknown (“zero day”) software failures. There exists a plethora
of work in this area, namely, using the compiler to insert run-time safety
checks,”sandboxing”, anomaly detection, and content-based filtering [2].
While shortcomings may be attributed to each of the approaches, when
they are considered within the scope of an AC a different set of
considerations need to be examined. Specifically, the significance of the
security vs. performance tradeoff is de-escalated with respect to the ability
to efficiently employ the mechanism in a distributed fashion. The
advantage of utilizing an AC is that the use of a fairly invasive mechanism
(in terms of performance) may be acceptable, since the associated cost can
be distributed to the participating members. By employing a more invasive
instrumentation technique, the likelihood of detecting subversion and
identifying the source of the vulnerability is increased. The monitoring
mechanism in our prototype is an instruction-level emulator that can be
selectively invoked for arbitrary segments of code, allowing us to mix
emulated and non-emulated execution inside the same execution context
[STEM05], although other mechanisms can be used instead (or in addition)
[SGK05].
 Once a failure is detected by a member’s monitoring component, the
relevant information is distributed across the AC. Specifically, the purpose
of the communication component is the dissemination of information
pertaining to the discovery of new failures and the distribution of the
monitoring work load within the AC. The choice of the communication
model to be employed by an AC is subject to the characteristics of the
collaborating community, such as size and flexibility. The immediate trade-
off associated with the communication model is the overhead in messages
versus the latency of the information in the AC. In the simplest case, a
centralized approach is arguably the most efficient communication
mechanism. However, there are a number of scalability and trust issues
associated with this approach. If there is a fixed number of collaborating
nodes, a secure structured overlay network can be employed, with
exemption from the problems associated with voluminous joins and leaves.
If nodes enter and leave the AC at will, a decentralized approach may be
more appropriate. Efficient dissemination of messages is outside the scope
of this paper, but has been the topic of much research in the networking
community.
 The immunizing component of our architecture is responsible for
protecting the AC against future instances of a specific failure. Ideally,
upon receiving notification of a failure observed by another AC member,

individual members independently confirm the validity of the reported
weakness and create their own fix in a decentralized manner. At that point,
each member in the AC decides autonomously what fix to apply in order to
inoculate itself. As independent verification of an attack report may be
impossible in some situations, a member’s action may depend on
predefined trust metrics (e.g., trusted verifications servers). Depending on
the level of trust among users, alternative mechanisms may be employed
for the adoption of universal fixes and verification of attack reports. In the
case of systems where there is minimal trust among members a voting
system can be employed at the cost of an increased communication
overhead. Finally, given that a fix could be universally adopted by the AC,
special care must be placed in minimizing the performance implications of
the immunization.
 The inoculating approach that can be employed by the AC is contingent
on the nature of the detection mechanism and the subsequent information
provided on the specific failure. The type of protection can range from
statistical blocking, behavioral or structural transformation. For example,
IP address and content filtering, code randomization [KKP03], adaptive
defenses [SGK05], and emulation [STEM05] may be used for the
protection of the AC members.

5 Conclusions

 We have argued that the Internet-borne cyber-attacks of the future re-
quire collaborative solutions that encompass (and perhaps focus) on end-
hosts, rather than depend on network-based defenses. We have briefly de-
scribed two such research thrusts, Honey@home [AAM07] and Applica-
tion Communities [AC06]. Although there are many research challenges
(and opportunities) ahead, we believe that large-scale collaborative de-
fenses hold the key to a future secure Internet.

Acknowledgments: This material is partially based on research sponsored
by the Air Force Research Laboratory under agreement number FA8750-
06-2-0221 and by NSF Grant 06-27473, with additional support from
Google and New York State. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. There opinions expressed herein do not
reflect those of the NSF or the U.S. Government.

References

[AAM05] P. Akritidis, K. G. Anagnostakis, and E. P. Markatos. Efficient
content-based worm detection. In Proceedings of the 40th
IEEE International Conference on Communications (ICC),
2005.

[AAM07] S. Antonatos, K. G. Anagnostakis and E. P. Markatos.
Honey@home: A New Approach to Large-Scale Threat
Monitoring. To appear in the Proceedings of the 5th ACM
Workshop on Recurring Malcode (WORM), November 2007.

[ASA05] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E.
Markatos, and A. D. Keromytis. Detecting Targeted Attacks
Using Shadow Honeypots. In Proceedings of the 14th USENIX
Security Symposium, pages 129-144, August 2005.

[AAMA05] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G.
Anagnostakis. Defending against hit list worms using
network address space randomization. In Proceedings of the
ACM Workshop on Rapid Malcode (WORM), pages 30-40,
November 2005.

[AC06] M. E. Locasto, S. Sidiroglou, and A. D. Keromytis. Software
Self-Healing Using Collaborative Application Communities.
In Proceedings of the 13th ISOC Symposium on Network and
Distributed Systems Security (SNDSS), pages 95-106,
February 2006.

[BCJ+05a] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson.
The Internet Motion Sensor: A Distributed Blackhole
Monitoring System. In Proceedings of the 12th ISOC
Symposium on Network and Distributed Systems Security
(SNDSS), pages 167-179, February 2005.

[BCJ+05b] M. Bailey, E. Cooke, F. Jahanian, D. Watson, and J. Nazario.
The Blaster worm: Then and now. In IEEE Security &
Privacy Magazine, 3(4):26-31, 2005.

[BFV05] J. Bethencourt, J. Franklin, and M. Vernon. Mapping Internet

Sensors With Probe Response Attacks. In Proceedings of the
14th USENIX Security Symposium, pages 193-208, August
2005.

[CBMM04] E. Cooke, M. Bailey, Z. M. Mao, and D. McPherson. Toward
Understanding Distributed Blackhole Placement. In
Proceedings of the ACM Workshop on Rapid Malcode
(WORM), pages 54-64, October 2004.

[DQG+04] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and
H. Owen. HoneyStat: Local Worm Detection Using
Honepots. In Proceedings of the 7th International Symposium
on Recent Advances in Intrusion Detection (RAID), pages
39-58, October 2004.

[DUMU03] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk.
Polymorphic shellcode engine using spectrum analysis. In
Phrack, 11(61), August 2003.

[K20l] K2. ADMmutate. http://www.ktwo.cal/ADMmutate-0.8.4.tar.
gz.

[KE03] D. M. Kienzle and M. C. Elder. Recent worms: A survey and
trends. In Proceedings of the ACM Workshop on Rapid
Malcode (WORM), pages 1-10, 2003.

[KK04] H. Kim and B. Karp. Autograph: Toward automated,
distributed worm signature detection. In Proceedings of the
13th USENIX Security Symposium, pages 271-286, August
2004.

[KKP03] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
Code-Injection Attacks With Instruction-Set Randomization.
In Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS), pages 272–280, October
2003.

[LAAA06] V. T. Lam, S. Antonatos, P. Akritidis, and K. G. Anagnostakis.
Puppetnets: Misusing Web Browsers as a Distributed Attack
Infrastructure. In Proceedings of the 13th ACM Conference on
Computers and Communications Security (CCS), November
2006.

[MD88] P. Mockapetris and K. J. Dunlap. Development of the Domain
Name System. In Proceedings of the ACM SIGCOMM

Symposium on Communications architectures and protocols,
pages 123-133, 1988.

[MPS+03] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the Slammer worm. In IEEE Security
& Privacy Magazine, 1(4):33-39, 2003.

[MSB02] D. Moore, C. Shannon, and J. Brown. Code-Red: A case study
on the spread and victims of an Internet worm. In
Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet Measurement (IMW), pages 273-284, 2002.

[MVSOl] D. Moore, G. Stalker, and S. Savage. Inferring Internet
Denial-of-Service Activity. In Proceedings of the 10th
USENIX Security Symposium, pages 9-22, August 2001.

[PSB06] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an
Emulator for Fingerprinting Zero-Day Attacks. In
Proceedings of ACM SIGOPS Eurosys, April 2006.

[RMT05] M. A. Rajab, F. Monrose, and A. Terzis. On the Effectiveness
of Distributed Worm Monitoring. In Proceedings of the 14th
USENIX Security Symposium, pages 225-237, August 2005.

[RMT06] M. A. Rajab, F. Monrose, and A. Terzis. Fast and Evasive
Attacks: Highlighting the Challenges Ahead. In Proceedings
of the 9th International Symposium on Recent Advances in
Intrusion Detection (RAID), pages 206-225, September 2006.

[Roe99] Martin Roesch. Snort: Lightweight intrusion detection for
networks. In Proceedings of USENIX LISA, pages 229-238,
1999.

[SEVS04] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated
Worm Fingerprinting. In Proceedings of OSDI, pages 45-60,
2004.

[SFOl] P. Szor and P. Ferrie. Hunting for metamorphic. In
Proceedings of the Virus Bulletin Conference, pages 123-144,
September 200l.

[SGK05] Stelios Sidiroglou, Giannis Giovanidis, and Angelos D.
Keromytis. A Dynamic Mechanism for Recovering from
Buffer Overflow Attacks. In Proceedings of the 8th
Information Security Conference (ISC), pages 1-15,

September 2005.

[SII05] Y. Shinoda, K. Ikai, and M. Itoh. Vulnerabilities of Passive
Internet Threat Monitors. In Proceedings of the 14th USENIX
Security Symposium, pages 209-224, August 2005.

[SM04] C. Shannon and D. Moore. The spread of the Witty worm. In
IEEE Security & Privacy Magazine, 2(4):46-50, 2004.

[SMPW04] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The Top
Speed of Flash Worms. In Proceedings of the ACM Workshop
on Rapid Malcode (WORM), pages 33-42, November 2004.

[Spi03] L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley,
2003.

[SPW02] S. Staniford, V. Paxson, and N. Weaver. How to Own the
Internet in your spare time. In Proceedings of the 11th
USENIX Security Symposium, August 2002.

[STEM05] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building Ra Reactive Immune System for
Software Service. In Proceedings of the USENIX Annual
Technical Conference, pages 149-161, April 2005.

[Szo05] Peter Szor. The Art of Computer Virus Research and Defense.
Addison-Wesley Professional, February 2005.

[Tor03] R. Dingledine, N. Matthewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In Proceedings of the 13th
USENIX Security Symposium, August 2004.

[VE06] R. Vaughn and G. Evron. DNS Amplification Attacks
(Preliminary Release). http://www.isotf.org/news/DNS-
Amplification-Attacks.pdf.

[XCA +06] K. Xinidis, I. Charitakis, S. Antonatos, K. G. Anagnostakis,
and E. P. Markatos. An active splitter architecture for
intrusion detection and prevention. In IEEE Transactions on
Dependable Secure Computing, 3(1):31-44, 2006.

[YBP04] V. Yegneswaran, P. Barford, and D. Plonka. On the Design
and Use of Internet Sinks for Network Abuse Monitoring. In
Proceedings of the 7th International Symposium on Recent
Advances in Intrusion Detection (RAID), pages 146-165,

October 2004.

